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Outline of TalkOutline of Talk

the promise of statistical dialog systems

Markov Decision Processes and their limitations

Partially Observable MDPs – an intractable solution?

the Hidden Information State system – a proof of concept.



3© Steve Young, 2006

Statistical Dialog SystemsStatistical Dialog Systems

A statistical approach to dialog system design offers the 
following potential advantages:

formalise dialog design criteria as objective reward functions
automatically learn dialog strategies from data
allow decision making to be optimised
increase robustness to recognition/understanding errors
enable on-line dialog policy adaptation to allow the system to 
learn from experience

Markov Decision Processes provide the framework to do this .....

Overall, increase robustness and reduce design, 
implementation and maintenance costs
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Dialog as a Markov Decision ProcessDialog as a Markov Decision Process
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Training an MDPTraining an MDP

Key idea is to associate a value function with each state

{ }mm sREsV |)( π
π = { }mmmm asREasQ ,|),( π

π =

A popular algorithm for implementing this is Q-Learning

)())(,( mmm sVssQ ππ π =where

then policy π ′ πis better than policy       . 

Given V or Q, policy optimisation is straightforward since if
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Limitations of MDP FrameworkLimitations of MDP Framework

state space is huge, hence propositional content and much of 
the relevant history is often ignored.  

dialogs are fragile because user state       and user dialog act are 
uncertain, hence estimate of machine state         is often incorrect

recovery strategies are difficult since no information is available for 
backtracking

no principled way to handle N-best ASR output.

ms~
us ua

Modelling dialog as an MDP suffers from a variety of practical problems
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Dialog as a Partially Observable MDPDialog as a Partially Observable MDP
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Belief Update EquationBelief Update Equation

Belief is updated every dialog turn as follows:
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Robustness of POMDP vs. MDPRobustness of POMDP vs. MDP
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Simulation of simple 2 slot 3-city travel problem 
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Summary of the POMDP FrameworkSummary of the POMDP Framework

system maintains multiple dialog hypotheses called the belief state

machine actions are based on the full belief state distribution not just 
the most likely state

no backtracking is required when misunderstanding detected

speech understanding output is regarded as an observation

belief distribution is re-computed each time a new observation is 
received in a process called belief monitoring

N-best ASRU outputs naturally incorporated into belief monitoring 
framework via an observation model

POMDP framework naturally includes a user model which gives 
probability of each user act given each possible dialog hypothesis

system maintains multiple dialog hypotheses called the belief state

machine actions are based on the full belief state distribution not just 
the most likely state

no backtracking is required when misunderstanding detected

speech understanding output is regarded as an observation

belief distribution is re-computed each time a new observation is 
received in a process called belief monitoring

N-best ASRU outputs naturally incorporated into belief monitoring 
framework via an observation model

POMDP framework naturally includes a user model which gives 
probability of each user act given each possible dialog hypothesis

However, there are some issues ....
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Belief MonitoringBelief Monitoring
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But representation
of these distributions
in a practical system
is unclear.
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POMDP Value functionsPOMDP Value functions

Consider a system with just two states and 3 actions
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POMDP value functions are hyperplanes in belief space. 
Upper surface provides defines the value function V(b).
Exact learning is iterative and effectively intractable.
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Scaling to Real SystemsScaling to Real Systems

POMDPs provide an elegant mathematical framework for modelling 
spoken dialog systems but ....

State space will be huge – direct belief monitoring is impractical.

Exact POMDP optimisation is intractable - even approximate 
POMDP optimisation is limited to a few thousand states

A solution – the Hidden Information State Dialog Model
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The Hidden Information State ModelThe Hidden Information State Model

Partition state space and compute partition beliefs not state beliefs

Represent user goals by branching-tree driven by ontology rules.  

Maintain two state spaces:  master space and summary space.
Monitor beliefs in master space, apply and optimise policies in 
summary space

Use grid-based approximations, hence finite policy table

The HIS model provides a scaleable POMDP framework for 
implementing practical spoken dialog systems.
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Structure of a HIS Dialog HypothesisStructure of a HIS Dialog Hypothesis

User action – a dialog type 
plus goal tree bindings

inform(food=Indian)

Dialog history –
grounding status of each 
tree node

restaurant : UserRequested
food : UserInformed
area : Grounded
name : Initial

User goal tree built incrementally from rules, expanded on demand
to accommodate user dialog acts

A single hypothesised information state
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HIS PartitionsHIS Partitions

Each partition represents a group of user goal states
Partitions are stored as tree structures, with nodes defined by a
task ontology
Partitions are split by incoming user dialog acts
When a partition is split, its belief is shared between the splits

Each partition represents a group of user goal states
Partitions are stored as tree structures, with nodes defined by a
task ontology
Partitions are split by incoming user dialog acts
When a partition is split, its belief is shared between the splits

entity

venue name type area

entity -> venue(name,type,area) 1.0
type -> bar(drinks,music) 0.4
type -> restaurant(food,price) 0.3

area -> (central | east | west | ....)
food -> (Italian | Chinese | ....)

Structure rules
with prior probs

Lexical/Dbase 
rules

Example ontology rules
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Partition splittingPartition splitting

Incoming dialog acts cause partitions to be extended and split in
order to match the items in the dialog act with the nodes in the tree.

Incoming dialog acts cause partitions to be extended and split in
order to match the items in the dialog act with the nodes in the tree.

entity

venue name area

entity  ->  venue(name,type,area)

type   ->   bar(drinks,music)    0.4request(bar)
User
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Master <Master <--> Summary State Mapping> Summary State Mapping

Master space is mapped into a reduced summary space:

find(venue(hotel,area=east,near=Museum))

find(venue(bar,area=east,near=Museum))

find(venue(hotel,area=east)

find(venue(hotel,area=west)

find(venue(hotel)

....etc
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The POMDP Policy and Action SelectionThe POMDP Policy and Action Selection

A set of points in summary space and their associated actions
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Policy OptimisationPolicy Optimisation

Use Q-learning with a simulated user on belief points
Start with a single belief point
Add new points as they are encountered upto some maximum

x1000
Training
Dialogs

Average
Reward



21© Steve Young, 2006

Summary of HIS Dialog Manager OperationSummary of HIS Dialog Manager Operation
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mâma
Summary Space

5. Map from 
master space -> 
summary space

6. Apply policy in
summary space

4. Form New
Hypotheses

7. Map back to 
master space



22© Steve Young, 2006

EvaluationEvaluation

The system was tested by human users in a two day study conducted 
simultaneously at Edinburgh and Cambridge.

Dialogues were deemed to be successfully completed when the 
system made a correct recommendation.

Cambridge Edinburgh Combined

# subjects 23 17 40

# dialogues 92 68 160

% WER 21.1 37.3 29.3

% completion rate 95.7 83.8 90.6

Average turns to 
completion

3.8 8.1 5.6

Work supported by the EU FP6 “TALK” Project
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Partially observable MDPs provide a natural framework for modelling
spoken dialog systems:

explicit representation of uncertainty

support for N-best ASR output

incorporates user and observation model

simple error recovery by shifting belief to alternative hypotheses

potential for on-line adaptation

The Hidden Information State system demonstrates that POMDPs
can be scaled to handle real world tasks

There are many issues to resolve e.g. effective observation and user
models, choice of summary state mapping, improved training
procedures ...

... but overall POMDPs provide an opportunity for making significant
improvements to both the design and implementation of spoken dialog 
systems.

ConclusionsConclusions
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