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ABSTRACT

The majority of state-of-the-art speech recognition systems make use
of system combination. The combination approaches adopted have
traditionally been tuned to minimising Word Error Rates (WERS).
In recent years there has been growing interest in taking the output
from speech recognition systems in one language and translating it
into another. This paper investigates the use of cross-site combi-
nation approaches in terms of both WER and impact on translation
performance. In addition the stages involved in modifying the output
from a Speech-to-Text (STT) system to be suitable for translation are
described. Two source languages, Mandarin and Arabic, are recog-
nised and then translated using a phrase-based statistical machine
translation system into English. Performance of individual systems
and cross-site combination using cross-adaptation and ROVER are
given. Results show that the best STT combination scheme in terms
of WER is not necessarily the most appropriate when translating
speech.

Index Terms— Machine Translation, Speech Recognition

1. INTRODUCTION

The use of system combination approaches for speech recognition is
now common in state-of-the-art speech recognition systems. There
are two types of approaches to combining Speech-to-Text (STT)
systems. The output from one system may be used as the adapta-
tion supervision for a second system. This is referred to as cross-
adaptation. The information propagated between the two systems is
the 1-best hypothesis with associated confidence scores. The other
approach is to take multiple system hypotheses and combine them
together, for example using ROVER [1] or Confusion Network Com-
bination (CNC) [2]. Both of these types of system combination have
shown significant gains for reducing word error rates (WERs) both
individually and conjointly. The gains from these approaches are in-
creased when the cross-site combination is used, where the systems
are built at different sites. This tends to result in greater diversity
between the hypotheses than when using systems from a single site.
In this paper, the impact of the form of cross-site STT combination
scheme on speech translation is examined.

When combining multiple STT systems together for speech recog-
nition the criterion commonly minimised is WER, or in the case of
Mandarin Character Error Rate (CER). This is not necessarily the
appropriate criterion to minimise if the output of the system is to be
fed into a statistical machine translation (SMT) system. In particular
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as the majority of translation systems use phrase-based translation,
it is important to maintain phrases and appropriate word-order. The
choice of STT system combination approach for speech translation
must take this into consideration. This issue is investigated for Ara-
bic/English and Mandarin/English speech-to-text translation.

2. STT SYSTEM COMBINATION

This section briefly discusses the two forms of STT system combi-
nation considered in this work. In particular issues that may impact
the performance of SMT systems are discussed.

2.1. Hypothesis Combination

The first stage in most hypothesis combination schemes is to align
the hypotheses against some “base” hypothesis. For ROVER combi-
nation [1] this is performed by minimising the Levenshtein distance,
in CNC [2] the expected Levenshtein distance over the confusion
networks is minimised. Once the hypotheses have all been aligned
they are converted into a consensus network. The final output for
each set of arcs is then made based on a combination of voting and
confidence scores from the hypotheses. There are a number of issues
to consider if the STT output is to be used for translation:

Alignment: the first stage in combining hypotheses together is to
align the 1-best hypotheses or confusion networks against one an-
other. As this alignment process is related to minimising a WER-
like measure it can result in a number of peculiarities that may dis-
rupt translation. For example the penalty from incorrectly inserting
a word into a phrase is 1 for the recognition system. However, since
it may break a possible phrase that could be translated in its entirety,
the cost in terms of translation score may be far higher. This align-
ment issue becomes far more important the greater the difference
between the hypotheses being aligned.

Voting/Selection: the criterion used to select the output from the
consensus networks is tuned to minimise WER/CER. In contrast
for translation Translation Edit Rates (TER) [3] or BLEU [4] scores
are commonly used. As words/characters in the consensus network
are selected independently of each other (given the aligned hypothe-
ses), there are no phrase constraints imposed. Though this does not
impact WER/CER, it may impact the translation performance. For
schemes such as ROVER or CNC the selection may also make use
of word-level confidence scores. In the case of combining two sys-
tems, confidence scores must be used. As the performance difference
between STT systems increases, it becomes increasingly important
to have good confidence scores. The use of poor word confidence
estimates may result in inappropriate selections from the consensus
network, again possibly breaking phrases.



2.2. Cross Adaptation

The vast majority of STT systems make use of an adaptation stage,
normally based on linear transformations such as MLLR or CM-
LLR. To estimate these transforms an initial hypothesis is required.
Normally this is obtained from an initial unadapted recognition run.
However in cross-adaptation it is obtained from the output of an-
other STT system, which may itself have made use of adaptation.
Provided the adaptation transforms are not overly tuned to the adap-
tation supervision, gains are possible provided the errors in the su-
pervision differ from those of the system to be adapted.

In terms of STT combination for translation, cross-adaptation
may be viewed as a “safe” option. The system output does not in-
volve the combination of two highly diverse systems. Note that there
is still a level of hypothesis combination internal to each individ-
ual STT system described in this paper. However, in contrast to the
cross-site hypothesis combination, the within-site hypotheses tend to
be more consistent so shouldn’t be severely impacted by the issues
described in section 2.1'.

3. STT POST PROCESSING

In processing data such as Broadcast News (BN) or Broadcast Con-
versations (BCs) for an STT system, the first stage is to segment the
data into homogeneous blocks, or turns. Each block should consist
of data belonging to an individual speaker in a particular acoustic en-
vironment. However, SMT systems are trained on text data, where
individual sentences are aligned with each other and the punctuation
is provided. It is therefore necessary to post-process the STT output
so that “sentence-like” segments with punctuation are passed to the
translation system. In this work different post-processing pipelines
were applied to the Arabic and Mandarin data.

The Arabic STT output, whether generated by a stand-alone sys-
tem or by combining multiple system outputs, was first divided into
segments based on BBN’s acoustic segmentation. This segmenta-
tion starts by detecting speaker turns in the audio, and then divides
long speaker turns into shorter segments by splitting on pauses of
significant duration (0.3 sec minimum). The resulting segments are
about 10 sec long on average. The acoustic segmentation is further
refined based on a Hidden-Event Language Model (HELM) [5], a
Kneser-Ney (KN) smoothed 4-gram trained on 850M words of Ara-
bic news. The HELM integrates pause duration as observation into
the HMM search, and makes use of a bias to insert boundaries at a
high rate, then boundaries of low posterior probability are removed
while constraining the maximum sentence length to 51 words.

For the Mandarin system the post-processing consisted of a two-
stage process. First a simple silent splitting process based on the
inter-word silence gaps was performed. The data was split at si-
lences of greater than 0.9 seconds. In addition a maximum segment
length of 20 seconds was imposed by splitting longer segments at
the longest inter-word gap. A HELM was then used to further split
the segments.

In addition to adding sentence boundaries and sentence end punc-
tuation, both STT outputs had a reverse number mapping applied.
STT systems are built on acoustic data where numbers are in their
spoken form. However, translation systems are built on text data,
where numbers are normally written in digit form. Language specific
number mappings were generated, and applied prior to translation.

'In preliminary evaluation on the Mandarin, there was a slight advantage
in combining, using CNC, multiple branches from within the CU system.

4. RESULTS

The experiments described in this section made use of STT systems
built at three different sites, BBN, Cambridge University (CU) and
LIMSI. The final, sentence boundary marked, STT output was trans-
lated using an SMT system developed at BBN.

The BBN translation engine employs statistical phrase-based trans-
lation models, with a decoding strategy similar to [6]. Phrase transla-

tions are extracted from word alignments obtained by running GIZA++ [7]

on a bilingual parallel training corpus (139M words of Arabic/English
and 223M words of Chinese/English). A significant portion of the
phrase translations are generalized through the use of part of speech
classes, for improved performance on unseen data. Both forward
and backward phrase translation probabilities are estimated and used
in decoding along with a pruned trigram English LM, a penalty for
phrase reordering, a phrase segmentation score, and a word inser-
tion penalty. These scores are combined in log-linear fashion, with
weights estimated discriminatively, on held-out BN and BC data in
order to minimize overall TER [3]. The output of the decoding pro-
cess is an N-best list of unique translation hypotheses, which is sub-
sequently rescored using an unpruned, KN smoothed 5-gram English
LM. This LM is trained on more than 5B words of text, consisting
of the Gigaword corpus, archives downloaded from news web sites,
and other news and conversational web data. The majority of the
data used for training the SMT system was text, not speech. The
translation systems is thus not ideally matched to translating speech.
However, it should be more closely matched in style to BN data,
rather than the more conversational BC data.

As the translation systems were tuned for TER, translation per-
formance is assessed in this work in terms of TER. Note, the same
general trends were observed with BLEU, though the differences be-
tween the systems were reduced. For these experiments only a single
translation reference was available.

4.1. Arabic

Two STT systems, from BBN and LIMSI, were evaluated both stand-
alone and in combination. The individual system descriptions are
below.

LIMSI: The LIMSI Arabic STT system used in the GALE’06 eval-
uation uses the same basic modeling and decoding strategy as de-
scribed in [8]. Word recognition is performed in three passes, where
each decoding pass generates a word lattice with cross-word, position-
dependent, gender-dependent Acoustic Models (AMs), followed by
consensus [9] decoding with 4-gram and pronunciation probabili-
ties. Unsupervised AM adaptation is performed for each segment
cluster using the CMLLR and MLLR techniques and relies on a tree
organization of the tied states to create the regression classes as a
function of the available data. Different combinations of automatic
segmentations (GMM or BIC based), acoustic models and language
models are used in the different passes [10]. The acoustic models are
MLLT-SAT trained on 1044 hours of data. Short vowels are modeled
explicitly in the system and a generic vowel was introduced to en-
able training on non-vocalized data. A small model set with 5.1k tied
states (64 Gaussians per state) is used in the first pass. Later passes
use models covering 27.4k phone contexts with 11.5k tied states. N-
gram language models were trained on a total 852M words of texts
including transcripts of the audio data. The 4-gram model is interpo-
lated with a neural network language model trained on the acoustic
transcriptions and a subset of the text data, and used to rescore the
lattices after the last two passes.

BBN: The BBN Arabic STT system uses a similar modeling and



search strategy as described in [11]. The multi-pass recognizer first
does a fast match of the data to produce scores for numerous word
endings (word graphs) using a coarse state-tied mixture acoustic
model (AM) and a bigram language model (LM). Next, a state-
clustered tied-mixture (SCTM) AM and a trigram LM are used to
decode the word graphs to produce lattices. The lattices are then
rescored using a cross-word SCTM AM and a 4- gram LM. The best
path of the rescored lattice is the recognition results. The decoding
process is repeated two (or three) times with speaker-independent
AMs used in the first stage while subsequent decoding stages use
speaker-adaptively-trained AMs. All AMs were trained on about
1300 hours of speech data with the largest model having about 6k
states and 800k Gaussians. All LMs were estimated based on a train-
ing corpus of almost 1 billion words.

Cross-adaptation in Arabic was run in both directions as neither
of the systems was clearly better than the other on all the data. For
both directions of cross-adaptation, no use was made of adaptation
supervision confidence scores.

Two test sets were used: bnad06, consisting of about 3 hours
of BN data, collected in November 2005 and January 2006; and
bcad06 comprised of about 3 hours of BC data, collected in the
same epoch.

System WER%

Y bnad06 | bcad06
BBN 18.9 29.4
LIMSI 19.7 28.8
LIMSI—-BBN 18.3 28.9
BBN—LIMSI 18.4 27.6
[BBNGLIMSI [ 177 | 274 |

Table 1. STT performance (WER %) comparing base-
line, cross-adaptation (LIMSI—BBN) and ROVER combination
(BBN®LIMSI)

Table 1 shows the performance of the individual systems, cross-
adaptation in both directions, and ROVER combination. For the
BN test set, cross-adaptation in either direction gave gains of about
0.5% absolute over the best individual system. The use of ROVER
combination gave an additional 0.6-0.7% absolute gain over cross-
adaptation. On the BC data the use of cross-adaptation LIMSI—BBN
yielded a slight degradation in performance. Again the best perform-
ing system in terms of WER was ROVER on BC data.

bnad06 bcad06
System - :
Ic | mix Ic | mix
BBN 62.20 | 64.57 || 67.86 | 69.80
LIMSI 62.57 | 64.83 || 67.23 | 69.22
LIMSI—BBN || 62.13 | 64.57 || 67.78 | 69.83
BBN—LIMSI || 61.89 | 64.27 || 67.14 | 69.20

BBNGLIMSI [ 62.18 | 64.43 [ 67.02 | 69.16 |

Table 2. Lower-cased (Ic) and mixed (mix) TER (%) perfor-
mance of baseline, cross-adaptation (LIMSI—-BBN) and ROVER
(BBN@LIMSI)

Table 2 shows the TER scores, both lower-cased and mixed, for
the STT system outputs from Table 1. For the BN data, though

the lowest WER was obtained with ROVER combination, the low-
est TER score was with the BBN—LIMSI cross-adaptation system.
Though the BBN and BBN@GLIMSI systems differed by 1.2% ab-
solute in WER there was minimal difference in TER. Worse trans-
lation performance is observed on the BC data compared to the BN
data. This is expected as this data is both harder, being more con-
versational in style, and there is less well represented in the training
data for the translation system. On this data, there is little difference
in translation performance between the LIMSI, BBN—LIMSI and
BBN@LIMSI STT configurations, despite a difference of over 1.0%
absolute in terms of WER.

4.2. Mandarin

Two STT systems were constructed and combined for the Mandarin
BN and BC transcription tasks. Both systems were trained on around
503 hours of acoustic data, 156 hours of BC data and 347 hours of
BN data. The language models for each of the systems were trained
on over a billion words of text data, which included the acoustic
data transcriptions, broadcast transcriptions and news-wire data. The
details of the two system are summarised below.

BBN:The underlying technologies of the BBN Mandarin STT sys-
tem are essentially the same as those used in the Arabic STT systems
described above. In addition, pitch features are used to accommo-
date the fonal phonemes existing in Mandarin (as described in detail
in [12]).

CU: The overall structure of the CU system was similar to that de-
scribed in [13]. This comprises an initial lattice generation stage
followed by lattice rescoring with a 4-gram language model and
adapted acoustic models. In this work two forms of acoustic mod-
els were combined. Both systems were based on PLP with 1st, 2nd
and third derivatives using HLDA to project to 39 dimensions with
CMN and Gaussianisation. The first was a gender-dependent sys-
tem, the second used speaker adaptive training. Initially standard 1-
best adaptation was performed followed by lattice-based adaptation
with multiple speech baseclasses. The two models were combined
using CNC.

For cross adaptation the BBN output was used as the supervision
to adapt the models in the lattice rescoring stage of the CU system.
Rather than using lattice-based adaptation, confidence-based adapta-
tion using the confidence level scores from the BBN system was run.
In Mandarin there is an additional problem that must be considered.
Most Mandarin STT systems use language models based on words.
However the majority of text is not split into words, but consists
of sequences of characters. Thus the first stage in training a Man-
darin STT system is to run a character-to-word (C2W) segmenter on
the training text. Though both the BBN and CU STT systems used
the same algorithm, a longest first match, different multi-character
word-lists were used. Thus the C2W segmentations differed. In
terms of hypotheses combination there are two possible levels to op-
erate at. First the systems may be combined at the character level,
which may make any alignment problems more severe, but is con-
sistent with the STT CER criterion. Alternatively they may be com-
bined at the word level. This requires resegmenting the outputs to
be consistent, which may yield strange word sequences for errorful
hypotheses. Both forms are investigated in this section.

Two test sets were used to evaluate the performance of the sys-
tems. The first, bnmdev06, comprises 3.6 hours of BN data. This
was taken from 12 shows and included the RT04f Mandarin evalu-
ation test set and the mainland shows from the 2003 evaluation test
set. The first half of this test set was used for tuning the translation



system, so results are only quoted on 1.8 hours set referred to as
bnmd06. bcmdr06 consists of snippets from a range of BC shows
yielding a total of 0.31 hours of data.

System Comb. CER%
level bnmd06 [ bcmdr06
CuU o 8.0 21.8
BBN 8.6 23.9
| BBN—CU [ — H 7.5 [ 20.7 ‘
char 7.1 21.3
CUSBBN word 7.8 214

Table 3. STT performance (CER %) comparing baseline, cross-
adaptation (BBN—CU) and ROVER combination (CUS®BBN)

Table 3 shows the performance in terms of character error rate
(CER) of the various systems. The CU baseline system is approx-
imately 6-7% relative better than the BBN system on both BN and
BC data. However by using the BBN system output for supervision
in cross-adaptation the CER was further reduced by 0.5% absolute,
7% relative, on the BN data and 1.1% absolute, 5% relative, on the
BC data. The best CER performance was obtained using charac-
ter level ROVER combination. The C2W resegmentation associated
with the word-level ROVER appears to have had an impact in terms
of CER, degrading performance by 0.7% absolute on BN and 0.1%
on BC compared to character-level ROVER.

Syt Comb. bnmd06 bcmdr06
ystem level Ic [ mix Ic [ mix
[CU [ — ] 6794 | 70.00 || 75.00 | 76.94 |
[BBN—CU | — || 67.28 | 6933 || 7451 | 76,58 |

char 67.41 | 69.50 75.19 | 77.07
CUSBBN | rd || 67.60 | 69.74 || 75.47 | 77.37

Table 4. Lower-cased (Ic) and mixed (mix) TER (%) performance
of baseline, cross-adaptation (BBN—CU) and ROVER (CU&BBN)

Table 4 shows the lower-cased and mixed TER scores for the
CU and combined systems from table 3. For the BN data, in com-
mon with the Arabic system, cross-adaptation outperformed ROVER
combination (at the character level) despite having a higher CER.
As previously discussed the alignment issues may be more severe
for character level ROVER than word-level combination. For the
BC data, where the lowest CER system used cross-adaptation, the
lowest TER was also the cross-adapted system.

5. CONCLUSIONS

STT system combination is a standard approach in state-of-the-art
speech recognition systems. Typically these combination approaches
are tuned to minimising WER, or CER. If the output of the STT pro-
cess is to be translated then the appropriate metric to consider is
the translation performance. This paper has examined the impact
of the form of STT system combination has on the translation per-
formance. Two forms of STT system combination were examined,
cross-adaptation and ROVER hypotheses combination. The perfor-
mance of speech translation was examined in two different language
pairs, first Arabic/English, second Mandarin/English. For each lan-
guage pair both BN and BC data was recognised and translated.

For the BN data ROVER system combination was found to yield
the lowest error rate for the STT systems in both Mandarin and Ara-
bic. However this “better” STT output was not reflected in improved
translation performance. This may indicate that some of the align-
ment issues discussed in section 2 are impacting the phrase-based
translation system. Unfortunately given the current performance of
the translation system it is hard to clearly identify regions where this
is occurring. For the BC data the trends are less. This may be due to
overall higher error rates and the lack of appropriate training data for
the MT system. Overall, though ROVER combination usually gave
the lowest error, the use of cross-adaptation was generally found to
be a safer STT combination scheme for translation.
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