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Abstract

Front-end features computed using Multi-Layer Perceptrons
(MLPs) have recently attracted much interest, but are a challenge
to scale to large networks and very large training data sets.This
paper discusses methods to reduce the training time for the gen-
eration of MLP features and their use in an ASR system using a
variety of techniques: parallel training of a set of MLPs on dif-
ferent data sub-sets; methods for computing features from by a
combination of these networks; and rapid discriminative train-
ing of HMMs using MLP-based features. The impact on MLP
frame-based accuracy using different training strategiesis dis-
cussed along with the effect on word rates from incorporating the
MLP features in various configurations into an Arabic broadcast
audio transcription system.
Index Terms: Arabic Speech Recognition, Multi-Layer Percep-
tron, Acoustic Modelling

1. Introduction
In recent years, the use of front-end features derived from Multi-
Layer Perceptrons (MLP) trained to estimate phone posterior
probabilities have received a lot of attention [1][2]. Suchfea-
tures perform well in when used in the acoustic feature vector
to augment more traditional features such as cepstra based on
perceptual linear prediction (PLP) [3]. However, trainingthe
MLPs is computationally expensive, especially if large networks
and training sets are used. Furthermore, each time the acoustic
front-end is changed the associated HMM-based acoustic mod-
els need to be re-trained with is also time consuming if discrim-
inative training is used, as is now common-place in state-of-the-
art systems. This paper investigates strategies to reduce the time
required to first train MLPs on large data sets and then to make
discriminative training of HMMs with these features more effi-
cient.

MLP training for acoustic feature extraction tends to be very
computationally expensive. It has been shown [2, 3] that MLP
performance depends on the amount of available training data.
However, for a fixed-size network, training time is roughly pro-
portional to the amount of data. For large MLPs with millions
of parameters, and hundreds of millions of training frames (hun-
dreds or thousands of hours), MLP training can require many
days or even weeks on modern multi-threaded multi-core com-
puters. This time might be reduced by a more aggressive train-
ing schedule [2] but with the risk that this will lead to poorer
performance from the final MLP. A drawback of a conventional
MLP design is that if additional training data becomes available,
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a new network needs to be trained to incorporate it. One solution
to address this training problem is to divide the training set into
N subsets, train a separate MLP on each and then combine the
outputs from these MLPs with a separate merger network. This
technique allows theN subset MLPs to be trained in parallel re-
ducing the overall latency for MLP construction by a factor of
N . Furthermore, any additional data can be dealt with by train-
ing further subset MLPs and only the merger network needs to
be retrained.

Once the MLP-based features have been derived for the en-
tire training set, new HMM-based acoustic models must be es-
timated. Assuming that discriminative training is used, asis the
case with most state-of-the-art systems, the main computational
burden is the lattice generation step [4]. To reduce the com-
putational load, lattices that have been previously generated for
an alternative front-end can be used with the assumption that the
sets of confusable hypotheses and model-level segmentations re-
main unaltered. The approach was introduced as a “rapid MLP
system build” in [6], but no detailed performance contrastswere
given. In this paper, the effect of discriminative traininglattice
mismatch is investigated.

In this paper, the various strategies for efficient MLP train-
ing and rapid acoustic model estimation are explored in the con-
text a state-of-the-art Arabic large vocabulary continuous speech
recognition (LVCSR) system developed for the DARPA GALE
project.

2. MLP subset combination
This section assumes that MLPs are to be trained on individual
subsets of the data. Issues that need to be addressed includethe
training of these subset MLPs and how these individual network
outputs should be combined.

2.1. Parallel training of subset MLPs

In the parallel training stage, the training data has been divided
into N sets andN − 1 of these sets are used to train subset
MLPs. The remaining one set of data is used for training the
merger network. In this paper, 4-layer MLPs, with the MLP fea-
tures generated at a ‘bottleneck’ layer [7], were used. The use of
features generated at an intermediate bottleneck layer hasseveral
advantages over using posteriors at the MLP output. In particu-
lar, such features remove the need for an additional dimensional-
ity reduction step. Furthermore, the merger network can take as
input the outputs from the bottleneck layer from each of the sub-
set MLPs. The data is partitioned using a random selection into
N chunks. In this work a total of 1350 hours of Arabic acous-
tic data was available. It was divided into six sets of 200 hours
each for MLP training, leaving 150 hours for the training of the
merger network. All of subset MLPs are trained by wLP-TRAP



input feature used in [3][6]. Frame accuracies are given foreach
of the 200 hours subset MLPs in Table 1 and all subset networks
give similar results.

Figure 1: Configuration of the combination MLP.

2.2. Merger network to combine MLP outputs

Once the subset MLPs have been trained, the merger network
must be designed. Since bottleneck features will be used as the
input, it is convenient to use another MLP to combine these sets
of features.

There are several options for designing the merger MLP in-
cluding the level of complexity and the number of hidden layers.
In preliminary experiments, it was found that using a 4-layer bot-
tleneck merger network was unnecessary and didn’t outperform
a much simpler 3-layer merger MLP, where the hidden layer is
again a bottleneck structure. The size of the input layer of merger
MLP depends on the number of subset MLPs and the size of
their bottleneck layers. The size of the second bottleneck layer
will determine the final number of MLP features and the third
layer corresponds to the number of phones since the networks
are trained to estimate phone posterior probabilities. This sim-
ple network can be trained very rapidly in comparison with the
other networks in the system. Figure 1 presents the overall net-
work structure for the combination network.

2.3. Selecting bottleneck output as input of merger

In order to train the merger network, an appropriate output of
subset MLPs must be selected as input of merger network. As
briefly mentioned subsection 2.1, taking bottleneck outputs as
input of merger network has an advantage over phone posterior
outputs in terms of dimensionality reduction. In this paper, one
further option for selecting the bottleneck output is explored in
which the bottleneck output from either before or after the sig-
moid activation function is used. If the output is taken before
the sigmoid, it is passed, after mean and variance normalisa-
tion, to the merger network (‘Lin Output Merger’, LOM). In this
case, the inputs to the merger network are unbounded, and it was
found to lead to some features with relatively small variances
within the HMM acoustic models. The alternative to to take bot-
tleneck outputs after the sigmoid activation functions from the
subset MLPs (‘Sig Output Merger’, SOM). In this case no mean
and variance normalisation is performed as these features are
already bounded between zero and one. These sigmoid output
features make training of merger network simple and perhaps
handle outliers better than the LOM approach.

MLP config. Training data Train Acc. Test Acc.

1350hr 69.51% 65.61%
1350hrbig 71.37% 67.57%
200hr set #1 68.77% 63.92%
200hr set #2 68.54% 63.66%

Bottleneck 200hr set #3 68.69% 63.86%
200hr set #4 68.74% 63.91%
200hr set #5 68.53% 63.71%
200hr set #6 68.33% 63.32%

LOM 150hr 68.86% 65.42%
SOM 150hr 69.57% 66.09%

Table 1: Frame accuracies for the 1350 hours, 200 hours MLPs,
and for the merger MLPs of the combination networks.

2.4. Evaluation of MLP frame accuracies

Table 1 contrasts a single MLP network trained on 1350 hours of
audio with the 6 subset MLPs each trained on 200 hours of data.
All these networks had 475 features in the input layer, 3500 hid-
den nodes, a bottleneck layer with 26 features. A further single
MLP ‘1350hr big’ was trained with double the size of hidden
layer (7000 nodes). The 200hr networks have an approximately
1.8% lower frame accuracy than the 1350hr network. How-
ever, combining the 200hr networks reduces the performance
gap. Though the LOM configuration still performs 0.1% ab-
solute poorer than the 1350hr network, the SOM configuration
outperforms the 1350hr network by 0.5% in absolute frame ac-
curacy. As the SOM performs better than the LOM network
the LOM is not further used for this work. Finally, comparing
the 1350hrbig network with the SOM network, an additional
gain of approximately 1.5% in absolute testset frame accuracy is
found.

For both acoustic model training and decoding, the data
needs to be fed-forward through the MLPs. For the combina-
tion networks, this is computationally more expensive thanfor
the single network. However, the computational load of thisfor-
ward pass is quite small compared with either training the net-
works or to decoding. The parallel network build reduced the
elapsed training time from 288 hours for a 3500 hidden node
MLP, 720 hours for the larger 7000 hidden node network to a to-
tal of 60 hours (including data feed-forwarding) for training the
subset MLPs and the combination network.

3. Rapid MLP system build
State-of-the-art LVCSR systems typically make use of discrim-
inative training schemes such as Minimum Phone Error (MPE)
training [5], and these often use lattices as a compact represen-
tation of all possible competing paths. The lattice paths will de-
pend on the form of the acoustic models being used. Chang-
ing the acoustic front-end may change the set of paths, and may
therefore have a significant impact on discriminative training
methods. Incorporating MLP-features at the acoustic front-end
should require new lattices. However, this is computationally
expensive as thousand of hours of training data might be usedin
a large system.

To address this, a ‘fast’ build was proposed in [6]. The MLP
features were constrained to share as much of the standard PLP-
feature configuration as possible. The acoustic models, which
used PLP+MLP-features or pure MLP-features, used the same
decision tree and linear feature-transform as the underlying PLP-
system. As a starting pointsingle-pass retraining (SPR) from
the standard PLP-system to the PLP+MLP-system was used to
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Figure 2: Normalised expected phone accuracies for different
MPE training schedules.

make the lattices more appropriate. For the discriminativetrain-
ing stage, the PLP+MLP-system share lattices from the PLP-
system. The main training steps are described in [6].

The ‘fast’ system performance was compared to ‘semi-fast’
and ‘rebuild’ approaches. In case of the ‘semi-fast’ system, the
original lattices were re-phonemarked; in the ‘rebuild’ case they
were rebuilt from scratch. The PLP+MLP1350hr front-end and
the ‘unadapted’ decoding configuration were used (see Section
4.1). To permit a fast turn-around cycle, the training data for the
acoustic models was reduced to 180 hours.

Figure 2 shows a significant improvement in terms of nor-
malised expected phone accuracy, as computed for the MPE
objective function, for the PLP+MLP systems compared to the
standard PLP system. However, the difference between the
PLP+MLP-systems is small.

System WER
Training Front End Lattices dev07 dev08

MPE PLP Original 20.5 22.8
PLP+MLP1350hr Fast 17.7 20.0

Semi-fast 17.7 19.9
Rebuild 17.7 19.9

Table 2: Contrast of the ‘fast’, ‘semi-fast’, and ‘rebuild’training
procedures, (WER in %).

Table 2 shows that all three systems achieve nearly identical
performance. This indicates that the mismatch in the front-end
between the models used for lattice generation and for modelre-
estimation doesn’t harm the final model quality. Therefore,for
all further experiments the ‘fast’ system build was used to build
PLP+MLP models.

4. Experiments
4.1. System Description

Graphemic and phonetic systems based on the 36 graphemes
and 39 phonemes (including 3 short-vowels) were built as base-
line Arabic PLP-based acoustic systems [8]. These used a 39-
dimensional PLP-based front-end that was derived using 13-
dimensional PLP, including the Cepstra with first, second and
third delta parameters followed by an HLDA projection from
52-dimensions down to 39-dimensions. Cepstral mean normal-
isation was applied. The baseline system used approximately
1500 hours of acoustic training data. Cross-word decision-tree
state-clustered triphones were built with about 9000 states and

an average of 36 components per state. MPE was used for dis-
criminative training. Both gender-independent (GI) and gender-
dependent (GD) models were then constructed for evaluating
cross-adaptation performance.

Two decoding configurations are used, ‘unadapted’ and
‘adapted’. ‘Unadapted’ is a simple 1-pass with a trigram LM and
no acoustic model adaptation. ‘Adapted’ is a 3-pass decoding
(P3). The first two passes implement lattice generation and lat-
tice rescoring with a four-gram LM. Pass three performs acous-
tic lattice rescoring, applying constrained Maximum Likelihood
Linear Regression (MLLR) followed by lattice-MLLR and Con-
fusion Network (CN) decoding. Further details on the training
and decoding configuration can be found in [9].

Four different network configurations are investigated: the
single bottleneck MLP trained on 1350 hours data (MLP1350hr),
a 200 hours subset MLP (MLP200hr)1 the double-sized hidden
layer bottleneck MLP trained on 1350 hours data(MLP1350hr big)
and the 1350 hours network combination configurations with the
sigmoid output merger (MLPSOM).

The system performance was evaluated on three testsets
dev07 (2.58 hours), dev08 (3.04 hours) and a set not used for
development eval072 (2.85 hours). All testsets consist of Broad-
cast News/Conversation style data. The LM was trained using
approximately 1G words. 24 source-specific components (4 STT
acoustic data sets, 6 newswire sources, and 14 webdata sets)are
built and merged. Out-of-vocabulary (OOV) rates for the 350k
wordlist and the testsets are approximately 1.2%.

4.2. Unadapted decoding results

In a first test series the use of MLP features is evaluated within
the ‘unadapted’ decoding setup applying ML and MPE trained
acoustic models. Table 3 gives results comparing a PLP based
system with four PLP+MLP systems and a pure MLP system.

On the ML stage all PLP+MLP systems exhibit reductions
in WER of 11.3%-16.7% relative compared to the PLP system.
PLP+MLP1350hr outperforms PLP+MLP200hr but is itself outper-
formed by PLP+MLPSOM and PLP+MLP1350hr big. This indicates
that an improved system performance can be obtained by apply-
ing more network parameters and by using more acoustic data
for network training.

System
WER

dev07 eval07 dev08

ML

PLP 21.1 22.9 25.1
MLP1350hr 20.2 21.2 22.6
PLP+MLP200hr 18.7 20.1 21.6
PLP+MLP1350hr 18.6 19.8 21.2
PLP+MLP1350hr big 18.0 19.5 20.9
PLP+MLPSOM 18.2 19.2 20.9

MPE

PLP 15.8 17.7 18.8
MLP1350hr 16.7 18.0 18.9
PLP+MLP200hr 14.7 15.7 16.9
PLP+MLP1350hr 14.6 15.7 16.8
PLP+MLP1350hr big 14.1 15.7 16.4
PLP+MLPSOM 14.1 15.6 16.6

Table 3: Contrast of the PLP, MLP, and the PLP-MLP front-ends
for ‘unadapted’ decoding using graphemic models, (WER in %).

In the case of MPE trained models similar patterns to ML train-
ing are found, although the gains with respect to the PLP case

1The best performing 200 hours subsets MLPs.
2The GALEeval07 non-sequestered testset version is used.



were reduced to 6.9%-11.3% relative. This reduction is at-
tributed to the fact that MLP features already exploit a discrimi-
native parameter estimation scheme. This reasoning is supported
by comparing the pure PLP and MLP systems in the ML and in
the MPE case. In the ML case MLP1350hr outperforms PLP, but
in the MPE case PLP performs better than MLP1350hr . Thus,
MPE training on a PLP system is more efficient than in the MLP
case.

In summary, in case of unadapted decoding a clear advan-
tage for the PLP+MLPSOM system is found. Performing as well
as the most advanced single network system, its modular design
facilitates the network build process significantly while greatly
reducing the training costs.

4.3. Adaptation and System Combination

The first two blocks of Table 4 give P3 adapted decoding re-
sults. For lattice generation, a graphemic standard PLP system
is used. Pass 3 decoding performs lattice adaptation to the vari-
ous PLP+MLP, MLP, and PLP systems. All passes apply MPE
trained models.

As in the unadapted case, the standard PLP systems are out-
performed by the PLP+MLP systems. Reductions in relative
WER of 4.5%-8.1% in the graphemic case and of 0.7%-2.6% in
the phonetic case are found. The larger gains in the graphemic
case are attributed to the MLP features which are trained on
phonetic targets, therefore enhancing the graphemic systems by
implicit graphemic knowledge. However, in contrast to the un-
adapted case PLP+MLP1350hr big outperforms PLP+MLPSOM

In a 2-way Confusion Network Combination (CNC) experi-
ment (first CNC block of Table 4) it is investigated whether the
PLP+MLP front-end combination can further be improved by
additional CNC with the PLP system. These setups are further
compared to a straight forward CNC of the pure PLP and MLP
systems. Comparing G3a⊕G3f to G3f only shows that the ad-
ditional CNC with the pure PLP system gives gains of 0.1%-
0.3% in absolute WER. Comparing G3a⊕G3e with G3a⊕G3f
confirms the necessity to combine the features at the front end,
as this gives gains of up to 0.2% in absolute WER.

In case of 2-way combination of the graphemic PLP and
PLP+MLP systems with their phonetic counterparts (second
CNC block of Table 4), the pure PLP combination (G3a⊕V3a) is
always outperformed by the PLP+MLP combinations. The best
performance is obtained by the PLP+MLP1350hr big combina-
tion (G3c⊕V3c). Combining the two PLP+MLPSOM (G3d⊕V3d)
does not give any improvements over combining the pure PLP
systems.

Finally, 4-way CNC is performed by combining the two
standard PLP branches, G3a and V3a with two corresponding
PLP+MLP branches. The results (third CNC block of Table 4),
indicates no significant difference between these three systems.
Furthermore, the best 4-way result (G3a⊕V3a⊕G3c⊕V3c) is
only marginally better than the best 2-way result (G3c⊕V3c).
However, it is remarkable that the use of the PLP+MLP200hr

front-end (G3b⊕V3b) results in a nearly as good performance as
the use of one of the more sophisticated PLP+MLP front-ends.

5. Conclusions
It has been shown that training sets of MLPs on data subsets and
merging the outputs can be effective. The use of MLP features
derived in this way can provide an reduction in WER as well as
efficiency in training complex MLPs with very large amounts of
data. However, when used with complex adaptation, final WER

System
WER

dev07 eval07 dev08

G3a PLP 13.5 14.3 15.4
G3b PLP+MLP200hr 12.7 13.4 14.7
G3c PLP+MLP1350hr big 12.4 13.3 14.4
G3d PLP+MLPSOM 12.9 13.5 14.7
G3e MLP1350hr 14.1 14.7 15.7
G3f PLP+MLP1350hr 12.5 13.6 14.6
V3a PLP 11.4 12.8 13.9
V3b PLP+MLP200hr 11.2 12.5 13.6
V3c PLP+MLP1350hr big 11.0 12.3 13.6
V3d PLP+MLPSOM 11.4 12.5 13.8

CNC

G3a⊕G3e 12.6 13.4 14.5
G3a⊕G3f 12.4 13.3 14.5
G3a⊕V3a 11.0 12.4 12.9
G3b⊕V3b 10.9 11.9 12.9
G3c⊕V3c 10.5 11.7 12.7
G3d⊕V3d 11.0 12.0 13.1
G3a⊕V3a⊕G3b⊕V3b 10.6 11.8 12.6
G3a⊕V3a⊕G3c⊕V3c 10.6 11.6 12.5
G3a⊕V3a⊕G3d⊕V3d 10.6 11.6 12.6

Table 4: Contrast of the PLP, MLP, and the PLP-MLP front-ends
for ‘adapted’ P3 and CNC decoding, (WER in %).

reductions were not obtained. A number of system combination
experiments explored how HMMs using MLP features could be
combined with PLP-based systems. The best overall system for
Arabic speech recognition was a 4-way CN combination of sys-
tems with acoustic models with either PLP-based or PLP+MLP-
based features and either graphemic or phonetic models.
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