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Abstract

Speaker adaptive training (SAT) is a useful technique for build-
ing speech recognition systems on non-homogeneous data.
When combining SAT with discriminative training criteria,
maximum likelihood (ML) transforms are often used for un-
supervised adaptation tasks. This is because discriminatively
estimated transforms are highly sensitive to errors in the su-
pervision hypothesis. In this paper, speaker adaptive training
based on discriminative mapping transforms (DMTs) is pro-
posed. DMTs are speaker-independent discriminative trans-
forms that are applied to ML-estimated speaker-specific trans-
forms. As DMTs are estimated during training, they are not
affected by errors in the supervision hypothesis. The proposed
method was evaluated on an English conversational telephone
speech task. It was found to significantly outperform the stan-
dard discriminative SAT schemes.
Index Terms: speech recognition, speaker adaptive training,
discriminative training and adaptation

1. Introduction
Speech recognition systems are increasingly being built with
found data such as broadcast news and conversational tele-
phone speech recordings. This data often comes from multi-
ple speakers, channel or acoustic conditions and is inherently
non-homogeneous in nature. One of the techniques to build
a speech recognition system on this non-homogeneous data is
speaker adaptive training (SAT) [1, 2]. In SAT, the speech and
speaker/environment variabilities are modelled separately. The
speech variabilities are represented by a set ofcanonical mod-
els, whereas the non-speech variabilities are usually modelled
by a set of linear transforms.

Originally, the canonical models and transforms were both
estimated using maximum likelihood (ML) criteria. However,
state-of-the-art systems use discriminative training criteria such
as minimum phone error (MPE) [3]. The use of these dis-
criminative criteria has also been investigated for estimating the
canonical models and transforms in SAT [4, 5, 6]. These dis-
criminative SAT schemes have been found to be useful for su-
pervised adaptation tasks, however, little if any gain has been
observed for unsupervised adaptation. This is because discrim-
inative transforms are highly sensitive to errors in the supervi-
sion hypothesis. An alternative approach uses ML transforms
with discriminatively estimated canonical models [5, 7]. This
scheme is applicable to both supervised and unsupervised tasks
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and has been found to yield consistent gains. However, in the
same way as discriminative training of canonical models leads
to performance gains, if discriminative transforms can bero-
bustly estimated, additional gains should be possible by using
them in a SAT framework.

In this paper, a discriminative mapping transform
(DMT) [8] based adaptive training scheme is proposed. DMTs
are speaker-independent discriminatively trained transforms
that are applied to speaker-specific ML transforms. As they
are speaker-independent, they are estimated using training data.
During recognition, these speaker-independent DMTs are ap-
plied to ML-estimated speaker-specific test-set transforms. As
the DMTs are estimated during training, they are not affected by
any errors in the supervision hypothesis. Thus they are appro-
priate for use in a SAT framework during training when error
free transcripts are available, and testing when the supervision
hypothesis may contain errors.

This paper is organised as follows: In Section 2, commonly
used speaker adaptive training techniques are reviewed. Section
3 describes the proposed DMT-based discriminative adaptive
training scheme. Experimental results from the conversational
telephone speech task are presented in Section 4. The paper is
concluded with a discussion of the results.

2. Speaker Adaptive Training
Speaker adaptive training (SAT) is a useful technique for build-
ing speech recognition systems on non-homogeneous data. In
SAT, a set of speaker transforms, as well as a set of canoni-
cal models, is trained. They are estimated in an iterative fash-
ion: first, the speaker-specific transforms are found; and then
the canonical models are updated given these transforms. Sev-
eral forms of transforms are possible for SAT [1, 2]. However,
only the transforms of the same form as maximum likelihood
linear regression (MLLR) are considered in this paper. Thus the
transform for speakers is applied to the meanµ of the model
parameters to obtain the adapted meanµ̂(s) as

µ̂
(s) = A

(s)
µ + b

(s) = W
(s)

ξ (1)

whereW(s) = [A(s)
b

(s)] is the linear transform for speaker
s andξ = [µT 1]T is the extended mean vector. The rest of
this section describes various forms of SAT implemented in this
paper. An ML-based SAT scheme is initially described. Two
forms of discriminative SAT are then detailed.

2.1. Maximum Likelihood SAT

In ML-based SAT with MLLR [1], both the transforms and the
canonical models are estimated using an ML criterion. The fol-
lowing iterative procedure is used:



1. Initialise canonical model set and transforms.
The ML canonical model set,λml, is initialised us-
ing the ML speaker-independent (SI) models, and
speaker-specific transformsW(s)

ml
for speaker s as

A
(s)
ml

= I,b
(s)
ml

= 0, whereI is an identity matrix.

2. Estimate transforms for each speaker.
MLLR [9] transformsW(s)

ml
for each speakers are found

using

W
(s)
ml

= arg max
W

n

log p(O(s)|H(s);W, λml)
o

(2)

whereO
(s) andH(s) are the observations and supervi-

sion for the adaptation data for speakers, respectively
and λml is the current canonical model set. Expecta-
tion maximisation (EM), which is an iterative scheme, is
used to estimate the transform parameters. In this work,
a single iteration of EM is used given the current speaker
transform and canonical models.

3. Update model parameters.
Given the set of estimated transforms, the model param-
eters are updated by maximising the log-likelihood over
the training data from all speakers,

λml = arg max
λ

(

S
X

s=1

log p(O(s)|H(s);W
(s)
ml

, λ)

)

(3)

whereS is the total number of speakers in the training
data set. Again, a single iteration of EM estimation is
used to update the model parameters.

4. Go to step (2) unless converged.

Canonical models estimated with SAT cannot be directly
used for recognition. As unsupervised adaptation is being used
in this work, an initial supervision hypothesis must be obtained.
An SI model is often used for this purpose, trained with the
same criterion as the SAT system being investigated1. Given
this hypothesis, test-set speaker transforms are estimated in a
similar fashion to the training procedure above, except that the
model update stage in step (2) is omitted.

2.2. Discriminative SAT

The above ML-SAT approach has been found to yield gains over
ML-SI systems. However state-of-the-art systems are com-
monly built using discriminative training criteria. A major con-
cern with using discriminative criteria to estimate linear trans-
forms is that the process is not robust to errors in the supervision
hypothesis. This has led to two different forms of discriminative
SAT (DSAT) being used. One based on ML speaker-specific
transforms, the other on discriminatively estimated transforms.
The implementations of both used in this paper are given below.
MPE [3] is the form of the discriminative training criterion used
in this work.

2.2.1. MLLR-based DSAT

This section describes the most commonly used form of DSAT
for unsupervised adaptation tasks [5, 7]. In this approach, ML-
based transforms are used in conjunction with the discrimina-
tively trained models. During training, the ML-SAT scheme is
initially run. A final set of speaker-specific MLLR transforms

1Hence, the discriminative SAT experiments described in the paper
use an MPE-SI model to generate the supervision hypothesis.

is estimated using the final ML canonical model set. These
transforms are fixed and used for all subsequent discriminative
canonical model updates. Thus in this scheme, the models are
discriminatively updated, whereas the transforms use an ML
criterion. As ML-based speaker-specific transforms are used,
they should be relatively robust to errors in the supervision hy-
pothesis

Once the transforms for each speaker are estimated, the set
of canonical models are updated using the MPE criterion. The
ML-SAT canonical models are used for initialisation. This may
be expressed as

λd = arg min
λ

(

X

s,H

P (H|O(s);W
(s)
ml

, λ)L(H,H(s))

)

(4)

whereP (H|O(s);W
(s)
ml

, λ) is the posterior probability of hy-
pothesisH for the given observation and transform for speaker
s, andL(H,H(s)) is the phone-level loss function ofH for the
given supervisionH(s). The details of the canonical model es-
timation are described in [6].

The testing procedure has the same starting point as the
ML-SAT scheme. The ML-SAT test procedure is first run to
obtain initial ML speaker transforms. Additional ML-based
transform estimations are then run using the final MPE-trained
canonical models. In this work, two iterations were used; fur-
ther iterations were found to yield no additional gains.

2.2.2. DLT-based DSAT

As previously mentioned, it is possible to estimate both the
transforms and the canonical models using discriminative cri-
teria. Again for training, the ML-SAT scheme is initially run
and a set of ML speaker transforms estimated using the final ML
canonical models. Starting with these ML canonical models and
speaker transforms, steps (2) to (4) of the ML-based scheme are
repeated. However, the transforms are now estimated using the
MPE criterion,

W
(s)
d

= arg min
W

(

X

H

P (H|O(s);W, λd)L(H,H(s))

)

. (5)

Transforms estimated in this fashion will be referred to as dis-
criminative linear transforms (DLTs). For additional informa-
tion about DLT estimation see [6]. The canonical model param-
eters are estimated using Equation 4 except that the ML speaker
transforms are replaced by the DLTs.

The testing procedure again uses the ML-SAT testing to get
initial MLLR speaker transforms. A modified version of the
DLT-SAT training procedure is then run, omitting the model-
update stage. This yields a set of speaker-specific test-set DLTs,
which are then used for recognition.

As previously discussed, discriminative transforms are sen-
sitive to errors in the supervision hypothesis. During training,
the DLTs are estimated using the reference transcripts, so there
are no supervision errors. If used in a supervised adaptation
mode, DLTs can be robustly estimated and reductions in the er-
ror rate are obtained [6]. However, this is not the case for unsu-
pervised adaptation. To reduce the impact of hypothesis errors,
it is possible to use confidence scores and lattice-based adap-
tation as described in [6, 8]. Though these approaches yield
slightly greater robustness to hypothesis errors, the improve-
ments over MLLR-based DSAT are still normally small.



3. DMT-based DSAT
Recently, discriminative mapping transforms (DMTs) [8] have
been proposed for estimating discriminative transforms. A
DMT is a discriminatively estimated speaker-independent trans-
form based on speaker-specific ML transforms. As DMTs are
speaker-independent, the same transforms can be used for the
training and test data. There is no need to estimate speaker-
specific discriminative transforms on the test data. Thus the sen-
sitivity to errors in the supervision hypothesis that has a severe
impact on the performance of DLTs for unsupervised adapta-
tion should not be a problem. In this section, the theory behind
DMTs is discussed. This is followed by a description of how
DMTs can be used for discriminative adaptive training.

A general form of the DMT [8] may be expressed as

vec(W(s)
d

) = Hdvec(W(s)
ml

) + cd (6)

whereW
(s)
d

is the final discriminative-like speaker transform,
Hd andcd are the speaker-independent parameters of the DMT
andW

(s)
ml

is the speaker-specific ML-transform. The operator
‘vec()’ maps a matrix to a vector. In this work, a simpler form
of DMT is used whereHd is restricted to be block-diagonal
with each block being tied andcd is restricted to yield a bias
on the mean. In this case, the final adapted mean obtained us-
ing MLLR-based DMT adaptation (MLLR+DMT) may be ex-
pressed as

µ̂
(s) = Adµ̂

(s)
ml

+ bd = Wdξ̂
(s)

ml
(7)

whereξ̂
(s)

ml
= [µ̂

(s)T
ml

1]T , andWd = [Ad bd] is the DMT
transform. The transformed meanµ̂

(s)
ml

= W
(s)
ml

ξ is the MLLR
adapted mean with transformW(s)

ml
estimated by maximising

likelihood as given in Equation 2.
The parameters of the DMT are estimated by using

Wd=arg min
W

(

X
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P (H|O(s);W,W
(s)
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, λd)L(H,H(s))

)

. (8)

This form of optimisation is related to the DLT optimisation in
Equation 5. The parameter estimation for the DMT turns into
a slightly modified version of DLT transform estimation [8]. In
the same way as MLLR, DMTs can make use of multiple re-
gression classes. An interesting aspect of DMTs is that the num-
ber of transform parameters can be made very large compared
to the number used for speaker-specific linear transforms. This
is because the parameters of the DMT are estimated using all
the acoustic model training data, rather than just the data asso-
ciated with a specific speaker. In this work, a thousand speaker-
independent DMT transforms are used, compared to two (one
speaker and one silence) for MLLR and DLT. DMTs have pre-
viously been applied to both discriminatively trained SI models
and the MLLR-based DSAT models described in Section 2. The
rest of this section describes how DMT-based DSAT can be im-
plemented.

The starting point for training a DMT-based DSAT system
is the same as the other DSAT approaches, the ML-SAT models
and transforms are used. A final set of speaker-specific MLLR
transforms is estimated and used as the initial set of speaker-
specific transforms for the DMT build. In the same fashion
as the DLT-based DSAT scheme, steps (2) to (4) of the ML-
SAT scheme are repeated, where step (2) is replaced by an
MLLR+DMT transform estimation and step (3) by a discrim-
inative canonical model update.

Rather than using Equation 5, the transform estimation con-
sists of two stages. First, given the current DMTs and speaker-
specific MLLR transforms, the set of MLLR transforms is esti-
mated using Equation 2. Given this new set of MLLR trans-
forms and the current DMT, a new DMT is estimated using
Equation 8.

The DMT-based DSAT canonical model is estimated using

λd =arg min
λ

(

X

s,H

P (H|O(s);Wd,W
(s)
ml

, λ)L(H,H(s))

)

.(9)

Using Equation 7, it is possible to combine the effects of the
DMT and MLLR transform into a single linear transform of
the means. Thus the standard MPE canonical model estima-
tion schemes can be used. After the final canonical model up-
date, additional iterations of MLLR and DLT estimation are per-
formed. As all the available training data is used to estimate the
DMT, it is possible to run more iterations of parameter estima-
tion than, for example, the DLT-based scheme. In this work
three additional iterations are used.

During the recognition stage, the procedure for estimat-
ing the test-set speaker transforms is similar to the DLT-based
DSAT scheme. Rather than estimating a new DLT at each it-
eration, a new MLLR transform is estimated using the cur-
rent canonical models and MLLR+DMT for that iteration. The
DMT used is the one obtained during training, at the equivalent
iteration.

4. Experimental Results
The evaluation experiments were conducted on a large vocabu-
lary English conversational telephone speech (CTS) task. The
acoustic training data consisted of about 296 hours of speech
from 5446 speakers. It was taken from LDC Callhome En-
glish (che), Switchboard (Swbd) and Switchboard-Cellular
(swCell) corpora. Theeval03 test-set was used for eval-
uation. It consists of about 6 hours of data from 144 speakers,
taken fromSwbd andFisher corpora. The speech data was
parameterised using 12 PLP Cepstral coefficients plus the0th
order (C0) coefficient. First, second and third derivatives were
also appended. An heteroscedastic linear discriminant analy-
sis transform was used to project this 52-dimensional feature-
vector down to 39 dimensions. Speaker-level Cepstral mean
and variance as well as a vocal track length normalisation was
applied to the features. All HMM systems were based on state-
clustered triphones with 6k distinct states. Each speech state
had an average of 16 Gaussian components (32 Gaussian com-
ponents for the silence models). The MPE criterion was used
to estimate the discriminative acoustic models, the DLTs and
DMTs. A trigram language model trained on 1044M words and
a 58k words multiple pronunciation dictionary were used for
decoding. Where significant differences in the performance are
mentioned, this was assessed using the NIST pair-wised signif-
icance tests.

The ML-SAT and DSAT models were built using four iter-
ations of ML training and then for the DSAT systems four MPE
training iterations. MLLR-style adaptation (a linear transform
of the means) was used in all experiments. All speaker-specific
transforms used two base classes: one for speech and another
for silence. For the DMT, 1000 regression base classes were
used. As the CTS task is an unsupervised adaptation task, an
initial hypothesis is required. This was obtained from an MPE-
trained SI model and had a word error rate (WER) of 29.2%.



#iter DSAT Transform
MLLR MLLR+DMT DLT

0 0.783 0.803 0.821
1 0.817 0.840 0.863
2 0.836 0.861 0.887
3 0.848 0.874 0.902

Table 1: Expected phone correctness (one minus normalised
MPE criterion) for different DSAT schemes during training

Table 1 shows the expected phone correctness (one minus
normalised MPE criterion) for each of the DSAT schemes. At
each iteration, the criterion value was obtained during the up-
date of the model parameters. Thus the zeroth iteration shows
the criterion after applying an MLLR, MLLR+DMT, or DLT to
the final ML-SAT acoustic models. All schemes show an in-
crease in the correctness as the number of iterations increases.
The lowest correctness value was obtained with the MLLR-
based DSAT scheme. Using a MLLR+DMT during adaptive
training shows consistent gains. However, the largest correct-
ness values were obtained with the DLTs. This indicates that the
DLTs perform better on the training data than the other schemes.

Training Transform Supervision
Scheme Training Testing ref hyp

SI (hyp) — — — 29.2

SI — MLLR 24.3 27.0
MLLR MLLR 23.6 26.4

DSAT DLT DLT 18.4 28.1
MLLR+DMT MLLR+DMT 22.5 25.3

Table 2: Comparison of WER% of different DSAT schemes

The recognition performance on theeval03 test-set for
the various schemes is shown in Table 2. All systems used ei-
ther the hypothesis from an MPE SI system, labelledhyp in
the table, or the reference transcriptions,ref. Using MLLR
adaptation on the SI system with the hypothesis shows large
gains in performance, a reduction in WER of 2.2% absolute.
MLLR-based DSAT gave an additional 0.6% absolute reduc-
tion in WER using the hypothesis. If the reference was used to
estimate the transform instead, additional consistent gains are
observed with both systems compared to using the hypothe-
sis. The most striking result is the difference in performance
of the DLT-based system, between using the reference or the
hypothesis for the supervision. Using the reference, the DLT-
based system yielded the best performance, whereas it had the
worst performance among all DSAT schemes when using the
hypothesis. This illustrates the sensitivity of DLTs to errors in
the hypothesis. On the other hand, the DMT-based DSAT gave
the best performance when using the hypothesis. A statistically
significant 1.1% absolute gain over the MLLR-based, standard,
DSAT approach was obtained.

Training Transform Supervision
Scheme Training Testing hyp

SI — MLLR+DMT 26.2
MLLR 25.6

DSAT DLT MLLR+DMT 25.6
MLLR+DMT 25.3

Table 3: Comparison of WER% of different DSAT models with
MLLR+DMT as testing transforms

From Table 2, using MLLR+DMT appears to be a good

candidate for test-set adaptation. Therefore, the use of
MLLR+DMT as a testing transform with other DSAT models
was investigated. Table 3 shows the performance of the various
DSAT schemes (and the MPE-SI model) using MLLR+DMT
for test-set adaptation. As previously observed in [8], using
DMTs in addition to MLLR yields a gain of about 0.8% ab-
solute for both the MPE-SI model and the MLLR-based DSAT
model compared to MLLR. However, the performance of both
systems is still significantly worse than the DMT-based DSAT
system. Using MLLR+DMT with the DLT-based DSAT system
shows large gains over using the DLT as the test-set transform.
Despite the DLT-based DSAT system having the best criterion
on the training data, it is still significantly worse than the DMT-
based DSAT system even with the robust MLLR+DMT test-set
transform. This is felt to be because of the inconsistency be-
tween the training transforms, DLT, and the test-set transforms,
MLLR+DMT.

5. Conclusion
This paper has presented a speaker adaptive training scheme
based on discriminative mapping transforms (DMTs). DMTs
are discriminatively trained speaker-independent transforms
that are estimated during training based on maximum likeli-
hood speaker-specific transforms. As the DMTs are speaker-
independent, the same transforms can be used during recogni-
tion. Thus despite being discriminative in nature, they are not
highly sensitive to the hypothesis errors, which is a known prob-
lem for discriminative linear transforms. This means they are
useful for both supervised and unsupervised adaptation tasks. In
this paper, DMTs with speaker-specific MLLR transforms are
used in a discriminative speaker adaptive training framework.
Update formulae for both the canonical models and DMT trans-
forms are discussed. They may be implemented as simple mod-
ifications to the standard MLLR-based DSAT scheme and the
DLT estimation. DMT-based adaptive training was evaluated on
a large vocabulary English conversation telephone speech task,
which is an unsupervised adaptation task. DMT-based adap-
tive training was found to significantly outperform standard ap-
proaches to discriminative speaker adaptive training.
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