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Introduction



Why Bayesian?

Certainty knowledge
— Explicit information to learn

— We can define proper data structure or rule for the
certainty knowledge

Different people may have different opinions for the
same problem

— We may not have a perfect rule for a problem
Uncertainty knowledge

— Implicit information

— Hard to learn
Useful information is often uncertain

We cannot build a complete knowledge in many cases
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Generalization

e How much can we trust
Isolated data points?

e Optimal decision surface is a
line

* Optimal decision surface is
still a line

* Optimal decision surface
changes abruptly

* Can we integrate prior knowledge about data, confidence, or
willingness to take risk?
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ML, MAP and Bayesian Prediction

: Observation data
Prior
Model structure » ML, MAP & Bayesian learning

| /

Approximation to true predictive distribution
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ML vs. Bayesian inference

* Maximum Likelihood (ML)
6,, =argmaxP(D|68) P(x|D)=P(x|6,;)
0

* Maximum a Posteriori (MAP)
0,4p =argmaxP(6 | D) =argmax P(D|8)P(6) P(x|D)=P(x|6,.p)
0 0

* Bayesian Inference

— avoid severe over-fitting problem in ML/MAP point
estimates

— allow model comparison

Predictive Distribution P(x|D)=[P(x|8)P(6|D)d6
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Bayesian inference

* Consider the learning of a parameter 0L1H.

Higsx reina i i DO YA0)

High probability mass

P(D|6)P(6)

g J
Variational

6
A apreksmation

Jen-Tzung Chien




Model Complexity

* Model complexity is an important issue In statistical
Inference
— too simple, poor prediction
— too complex, poor prediction (and slow on test)
* Maximum likelihood always favors more complex
models
— over-fitting
* |t I1s usual to resort to cross validation

— extra data is required
— computationally expensive

* Bayesian inference is performed for model selection
from training data
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Evidence Framework

* Inference using ML/MAP is conditional on the model
being true

* We don’t know if the model is true
— affect reliablility of posterior distribution, precision, etc.

* Model selection by evidence framework
— posterior probabilities

— for equal pridté, | bdel® d¥e)Bdfnbared using the

evidence

—  maximiZHg| Mwer 88 M)p©@ | ¥opdfodel inference

p(D[M))
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Variational Inference

* Exact marginalization over uncertainty of parameters
does not exist

* Goal: approximate the posterior P(6|D) by a variational
distribution q(6) for which marginalization is tractable

* Posterior related to joint P(6,D) in marginal likelihood
P(D) =[P(D| 0P(6)do
— a good objective for model selection

* Three steps
1. Choose a family of variational distributions Q(H)

2. Calculate KL divergence between P and Q

3. Find Q which minimizes KL(Q||P)
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Automatic Speech Recognition

W= arg max p(W|X) = arg max p,\(X|W)pr W)
W W
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Research Topics

Bayesian speaker adaptation

Online adaptation

* Bayesian predictive classification
— uncertainty decoding

Model selection and clustering
— evidence framework

* Bayesian large margin HMMs

* Bayesian language model

— latent Dirichlet language model
— latent Dirichlet segmentation
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Bayesian Adaptation &
Predictive Classification



Linear Regression Adaptation
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Maximum Likelihood Linear Regression

* Linear regression transformation
A= G, (A) ={wy, Aty + b, ry } ={wy, Wy, ry b

* Maximum likelihood estimation

W,, =argmax p(X|[W,A)
w

1/2

01 []
where p(xt|Wc’/Jik’Zik) [ |rik| EXPH E(Xt "chik)T Iy (X, _chik)E

and  w={w} & =uil
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Quasi-Bayes Linear Regression

* ML estimate often leads to biased estimate In case
of sparse data.

* MAPLR is to estimate the regression matrix by

W, ap = argmax p(W|X,/\) = arg max p(X|W,A)p(W|¢)
W W

* In online adaptation using QBLR , we estimate the _,
regression matrix from sequentially observed

data . Atthe nth learning epoch, we perform
WSy =argmax p(W | x",A) = argmax p(X,, |W,A))p(W | x"™,)
w w

W, )pW ¢ ™)

[argmax p(X,
W
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Reproducible Prior/Posterior Pair

* Prior density of regression matrix W™ =w ()} can
be modeled by a matrix variate normal distribution
-1/2 []

485 W (@) - MOV @z W 0) - MO iyt E

p(W(n) ¢(”—1)) [ A(n—l)

hyperparameters M{" ={M" @)} , A" = diag(z™,+, 245

* Expectation function of the posterior distribution in E-
step is yielded by a new matrix variate normal
distribution with new hyperparameters.

Jen-Tzung Chien




Bayesian Predictive Classification

* Plug-in Bayesian classifier - regression parameter 1
acts as true value to fulfill Bayes decision rule

W = arg max p(W|X,ﬁ,A) = arg max p(X|W,ﬁ,A)p(W)
W W

* We consider the uncertainty of regression parameters
and construct a new decision rule.

* Linear Regression Bayesian predictive classifier
(LRBPC) - replace the likelihood in plug-in Bayesian
classifier using a predictive distribution

W,i],A) b D (X w,n,A)p@|¢)dn

p(X W,A)=[pX
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LRBPC

* In case of single variable linear regression, the
transformation [ =W, = Aty +b, with A, =diag{a,}
becomes independent adaptation for each HMM
mean component.

Uiy =agqly +by

* Multivariate frame-based predictive pdf fx(x,) is
fulfilled by individually computing univariate
predictive pdf

fix (X)) = [ P(xy | gcl’:uikl’o-iil)p(9d|¢cl)d9cl
- I(IP(th | a5 b s iy s O-i%d )p(a, |bcl ,@)da,)p(b, |¢c1 )db,,
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Frame-Based Predictive PDF

* Prior density of 8, =[a,,b,]" is defined by a joint Gaussian

pdf
g(ecl ‘¢cl) - g(acl sy Yl ‘¢cl (m9 ’ ZB N ))
-1/2
1 Ho,, 0 . Og? ', -m, Nis
aclbcl —_ ag clbc cl
2 poi |8 2 2 EXPD_E ag mad bcl mb [ 2 U %} [D
n ?aclbcl chl a Bjaclbcl b E [H

* Predictive pdf fi(x:)is derived as a Gaussian distribution of X
with new mean and new variance given by

fy =mg Hygtm, <= Affine function

2 4
U o
0, Ub, % 2 —> Mg 5t Hig %ad 2 Oin
bl H bcl H
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BAYESIAN
MODEL COMPARISON

An Evidence Framework For Bayesian
Learning of Continuous-Density Hidden
Markov Models, ICASSP 2009



Motivation

* The ill-posed conditions severely hamper the trained
HMMSs to recognize test data robustly.

* In an evidence framework, we build the regularized
HMMs with given finite data, hence more robust
recognition performance.

* In this study, we

— apply evidence framework to exponential family
distribution estimation.

— extend it to estimating CDHMMSs with naturally built-
In model uncertainty.
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Evidence Framework

* Notations
— Il hyperparameter of the model
— {Ai} . distribution parameters
—{D.} : set of training data

* Model evidence is used as the objective function
n =argmax p(D,,...,D | 1)

n

K
= arg max ﬂfp(D,- | A p(A; [n)dA;
n o i=l
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Graphical Representation
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EM Solution

» Key idea: treat A, as hidden variable.
* E-Step:

K
QM.n")=Y [p(A D7)l p(D, A, 7)dA
i=1

* M-Step: find the solutions to all hyperparameters in
the exponential family.
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Exponential Family & Conjugate Prior

* Exponential family
p(x; | A)= h(xi)g(Ai)EXP[AiTU(Xi)]

;U(X)

e Sufficient statistics

* Conjugate prior

P(A; | Xoovo) = f(Xo>Vo)g(A)™ eXP(VoA;TrXO)
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Bayesian Learning

* Using two properties
— with conjugate prior, the posterior can have the
same functional form as its prior.

— D, is conditionally independent of 17, given A, (D; On; | A)
we get =

K
Qn,n™) = ZJ'P(/\i |77)In p(A; 1m)dA, +C
=1
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EM Steps for Bayesian Learning

* E-step N
Vi +V
¥ = Zl):i:lu(xri\,ln) Vo Xo
Vi
* M-step

<A,1H\g(A)D,7 %Z A’lnlg(A)]>r”"lold
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Concavity Analysis

* The auxiliary function Q(n7,7°) is concave = we can
obtain its global optimum in the M-step.

* In general, the objective function F (the evidence) is
not concave.

F(@)=p(D,;..., D¢ |1)

* Good news: [°F is proportional to ) ;1covz —cov, }
(Note: posterior is usually sharper than its prior)
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Variational Inference

* We could hardly evaluate the joint posterior
distribution of hidden variables.
— For example, when training Bayesian HMMs
empirically, we need to evaluate p(A,s|D) inthe

E-Step. where A is the HMM parameters and s is
the state sequence.

* Computationally feasible approach is to select a
proper q(A,s) to approximate p(A,s|D) .
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Variational Bayesian

 Factorization assumption: q(A,s) =qg(A)q(s)
« We can get a new lower bound of the log marginal likelihood

(A,s,D|m) )
q(A)q(s)

F,(q(A).q(s) = [T q(A)q(s)In ¥

e It can be iteratively optimized

qneW(/\) [] exp < In p(D,S | /\) >qozd(s)

g™ (s)UJexp<Inp(D,s|A) > o 4

« We have the closed-form solutions to TN 1 T
CDHMM case. q(A) g7 (s)
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Evidence Framework for CDHMM Training

iteration loop:
variational E-step:
conduct Baum-welch on the training set, by using expected

log likelihoods nstead of Gaussian probabilities, and
collect statistics, 7;,7i(0),7i(0o")

variational M-step:

maximum evidence E-step:

calculate 79 for all the CDHMM parameters
maximum evidence M-step:

"W with the expectation equation

solve n

while the evidence gap 1s larger than a threshold
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Optimization Procedure

2

Log-Marginal-likelihood!

*

KL(q|[p)

Log-Marginal-likelihood
*‘

Log-Marginal-likelihood

KL(g||p

Hyper-parameter-estimate

New--lﬂwg* bhound

KL(q|p VBEM-Stepi
i

L---------------------------------------------------

maximum-evidence-EM

New-lower-bound

Lower- hgil nd

VB-Baum-Welch
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Experimental Results on AURORA2
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Figure 1. Recognition accuracy of Figure 2: Recognition accuracy of
model trained with different sized model trained with different sized
clean training data multi-conditional training data
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BAYESIAN LARGE MARGIN HMMS

Bayesian Large Margin Hidden Markov Models for
Speech Recognition, ICASSP 2009



History of HMM Training

2007

2005 2006

A}
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Vapnik’s Risk Bound

Al \al
R(A)S Ropy(N) + | = VG, %Ogﬁvcdlm % log

L]

e \We should minimize the empirical risk as well as the
generalization error.

® Increasing number of parameters suffers from over-fitting
problem. Model generalization is degraded.

e \V/C dimension is closely related to the number of parameters
and can be reduced by increasing the margin.
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Motivation

* Generalization problem in SVM was tackled due to
the sparse learning and VC dimension.

* The static LM-HMM parameters are not well fitted to
the unknown variations in test environments.

* Bayesian large margin (BLM) classifier is presented
to build the BLM-HMMs.

* We improve model generalization via Bayesian
learning and cope with the uncertainty in large
margin classifier.

* Speech recognition system has the capabilities of
model selection and model adaptation.
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Large Margin Classifier

e Support Vector I\/Iachines (SVMs)
min Q(w) = —{\Mﬁq C Z C is a trade-off

§HB;@EH9 i w Bk, 4:9)31 &4 =1y N

Hard Margin Soft Margin




Large Margin Estimation

W = argmvgx pW|X)= argmurjlx p(X |W,A)p(W)

e Discriminant function & separation margin for an utterance

dpy(X;,A) =log p(X; MW)‘W max log p(X; |AWJ«)

iUQyy, j#i

e Support token set

Correctly Classified
Pu =X | X U Danc Utterances

e Objective: maximize the minimum margin of support tokens

A =argmax min d; (X, A
LM g X e im (X, A)
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Soft Margin Estimation

e Separation measure for an utterance

D ]
M(X)——Zl (1k| W)DI( lkDF)

HP( 1k|A )H
® Hinge error loss function
—dgy (X)), if p—dg, (X;)>0
(0 —dsm(X;))+ :55? sm(Xo), 1 £ .SM( )
, otherwise

e Objective function

N

LSM(/\):A+% (,O_dsM(Xi))+

1=

A1
= NZ(p dey (X)) 1(X, OU)

Jen-Tzung Chien




Bayesian Large Margin Estimation

e From Bayesian viewpoint, the model uncertainty is
considered in expressing the separation margin.

® The uncertainty is characterized by a prior density.

® Posterior separation margin is yielded by
exp|[log P(/\Wj | X;) —log p(Ay | X;)]

X;0Wp 0 W, 0Qy,, j2i
® Variational Baﬁ/esian Is applied to approximate the true
w

distribution P(4w | X) by using a variational distribution
a(Ay | X)) /B-EM algorithm is performed.
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Variational Inference

e Variational distribution is estimated through
maximization of a lower bound of logarithm of
marginal likelihood

log p(X) = logjz p(X,S,L|Ay)p(Ay)dAy,
S,L

= S,L,A, | X)I
IZQ( w | X)log oS, L, A, | X)

S,L

p(X,S,L|1Ay)p(A)H
= [aAy |X)§Zog O 1S
Z q(S; X).

S.L e .
variational distributions

Jen-Tzung Chien
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LM-HMM Parameters and Their Priors

e LM-HMM model parameters {m,a;,, W, (Up Ty )}

e We specify the prior of probability parameter to be Dirichlet density
and the prior of Gaussian mean and precision to be a normal-

Wishart density
_ (a, —d)/2
p(luzk’ ik |m1k’T1k’alk’ lk) | | '
0 T, 0 01

XeXpD__(/'lzk _mlk) rlk (lulk lk)[PXpH_tr(ulkrlk)%
L

wherer, >0, a, >d-1, u, is dx1 vector,

Uy isa dxd positive definite matrix.

a Hvnernarameter< in | M-HMM<

{wi:(pzm:¢ik’ mik’ z—ik’a’ik”“lik}
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Graphical Representation

mixture weight

e BLM-HMM mean vector

initial state probability}) C)\‘

precision matrix

transition probability

e VVariational BLM-HMM
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Variational Distribution

e \/B posterior distributions q(A1X) and q(S,L|X) are
alternatively estimated
q(A 1 X) 0 p(A H@;, @ By s My T, Ay Uy 1)

X p({ > 1y 3 [ {m le lk})
where gty ik}|X) | p({:uik’ Py} [ Ay, T, O Uy 1)

XexpD S(&xlog pCx, | lk)g

k SHWerw
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Relation to SVM Objective Function

e \We make the approximation
q(s, =i,1, =k|x;) Oexp({=dg v (X)) = exp(=¢,)

where [b]l, =b if b>0and [b], =0 if b<O .

e Substitute this approximate probability into
~log q(S, L,y 1y | X;), we obtain

Y

~ T. ~ ~ ~
—logq(S, L, ty.,ry | X;) = ?k(:uik _mik)Trik(:uik —my )+ th + constant

t

Negative Class Margin - gym of Errors
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Comparison

MCE LME SME BLME
Generalization O O OO
Separation Utterance Utterance LLR with Log Posterior
Measure LLR LLR frame Ratio with
selection frame
selection
Parameters All Mean Mean Mean &
Parameters Precision
Parameter GPD GPD GPD Closed form
Solution
Model [ [] [] O
Comparison &
Adaptation
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Experimental Results on TIMIT

Phone Error Rates (%)

40

SRR

K=8

Number of Mixture Components

B ML
B \VICE
N\ LM

OSSO0
SR
KRR
B

K=16
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Bayesian Topic Language Model

Latent Dirichlet Language Model for Speech
Recognition, IEEE SLT Workshop 2008



N-Grams

T T )
Pr(W) = Pr(wy,...,wr) =[] Pr(wi|w1,w2,...,wi_1) U P1r(wl-‘w;:,%,+1
=1 i=1

Two important issues:

* Data sparseness problem

— Model smoothing
* Backoff method
* Continuous space LM

* [nsufficient long-distance regularity

— Topic information
* Probabilistic latent semantic analysis (PLSA)
* Latent Dirichlet allocation (LDA)
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Probabilistic LSA LM [Gildea & Hofmann,1999]

* Document probability
p(w|d) = p(WIk)|p(k|d)
/ \
Topic-dependent unigrams Document-dependent
topic mixture weight

* Online EM algorithm was used.

1 p(wiy [K)pk | w™) i
+1Z_1P(W-1|J)p(1|w1 ) l+1

p(k|w )= p(k|w; %)

ZW,d Nwdp(k | d)

ZW,d Nwd

p(k|w) = p(k) =
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Latent Dirichlet Allocation [Blei et al., 2003]

* To improve the generalization to unseen documents,
a Dirichlet prior is used to model the topic
distribution.

* Document probability

N K

p(w|a,B) =Ip(9 o] > p(k, 18)p(w, | k,,B)d0

n=1 k,=1

* Variational Bayesian EM (VB-EM) algorithm is
applied for parameter estimation.
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LDA LM Adaptation [ram and Schuitz, 2005, 2006)

* Estimation of topic probability using VB-EM
— from historical words
— from transcription of a whole sentence

> Topic prediction—\

* Interpolation or unigram scaling method were
applied for language model adaptation.

pwwm%m«wum))i@é?@(m
P —gram w

Jen-Tzung Chien




Direct Topic Model for ASR

* Document-level topic model (PLSA, LDA)
— bag-of-words scheme
— document clustering
— Indirect model for speech recognition

* N-gram-level topic model (LDLM)
— word orders are considered.
— history clustering
— direct model for speech recognition
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Model Construction

* Topic model is directly built from n-gram events.

* LDLM acts as a new Bayesian topic language model
In which the prior density of the topic variable is
Involved.

H: number of histories in the training data
N,: number of words following the history
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History Representation

* The n-1 historical words w;_,., are represented by an (n-1)v x1
vector.

Wicnt1 Wi-ns2z = = = Wi
ol1]o0 ollo] o] o 1 N NE =
hi™! Linear classifier
Y | I IS used here
i— i—1 Tyl
gk(h;—iﬂ) 9k (h:'—n+1) —dy h;—n+]_

Prediction of topic probabilities p(k|hi7...)
(Linear or non-linear classifier)

4

Prior density of topic mixture
0=[6),,6c]" ~ Dir(g(hiZ,.,))
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Latent Dirichlet Language Model

* Probabllity of an n-gram event

K
p(w; |hiZ,.,A,B) = ,Z p(w: | k;,B) jp(e |hiZ,.,A)p(k; |0) d0
=1

Ty i-1
ah;_

K
- Bix ) .
; ZK a‘hi!

j=1 i—n+1

* LDLM performed the unsupervised learning and found the
classes or latent topics through the VB-EM procedure.
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Variational Inference

e Likelihood function of a data set D
log p(D|A,B) = Z log p(w, |h§:}7+l,A,|3)

(w;,h{—hy)OD

E 1 [Ny K 0 E
= Z logCf p(®hiZ.0, AY] ] > p(wi [ ki, B)p(k; |0)LIOC
h:’:n+1 i=1 kizl E E

* True posterior probability )

P |h 7, AT p(wi 1K, B)p(K; 10)
p8.k, |Wh,h§jl+1,A, B) = i=1

K

[POIN MY, P KBy ol |00

k=1

e Variational distribution

Ny,
a®.k, [v,,0,) Ha® v, Y[k |}
— =l —
Dirichlet Multinomial
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VB-E Step

* Lower bound of log marginal likelihood

L(A,B;V,9) = hZ {E,[log p(8 |h{_,,,, A)]+ E,[log p(k,, |0)]
+ E, [log p(w), Ihiiil,:lkh,li)]—Eq[log q®|y,)]-E llogqk, |@,)1}
* VB-E step (updating of variational parameters)
Vo =achis + 3 0 @

A~ By exp[W (Vi) — LP(ZI-(ZI Vhi)]
% T J
H S K Brexpl¥(y) - WS Ly )]
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VB-M Step

* Updating of model parameters
— word probabillities in different topics

A _ Z 2_1%11(5( v? 1
Z _12 nel _1%”{5(

— gradient function for updating transformation matrix
0., L(A,8:1,9)

K l_ 1— i—-
= Z [LP(ZJ.=1 ns1) ~ W(agh o) TP W)~ LP(Z Vi, 1)1t -
h:':n+1
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WER with Different Sizes of Training Data

Size of Training Data

6M 12M 18M 38M

Baseline 39.19 () 21.25 (-) 15.79 (-) 12.89 (-)
LM

Cache LM | 38.13(2.1) | 2092 (1.6) | 1556 (1.5) | 12.74 (1.4)

PLSALM | 35.96(8.2) | 19.77 (7.0) | 14.96 (5.2) | 12.33 (4.5)

LDALM | 38.86(8.5) | 19.67(7.4) | 14.73(6.7) | 12.16 (5.7)
LDLM 35.91(8.4) | 19.59 (7.8) | 14.61(7.5) | 11.96 (7.2)

Cache 34.15 (12.9) | 19.32(9.1) | 14.47 (8.4) | 11.91 (7.6)

LDLM
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WER Using Different Vocabularies

Trigram E== Cache LM

6.0 - - 13.0
[ITTT NNLM
| | BN Topic Mixture LM % 1108
>81| E==PLSA LM | 1
m LDA LM [Tam and Schultz 05] E 4126
5.6 4 | BEEEHl LDA LM [Tam and Schultz 06] —] ]
- 1| Il LDLM B Cache LDLM — s 4124
X 5.4 4 ] — i X
g A — — ~
8 — — — —H 12.2 8
© 52- = = =IIN=Z ] w
= EIINE H | INE {120 5
= — — - — - =
= 5.0 - —] — . = 5
- - = — — 4118 5
— — — — — T
Z 48- — | INE | INE {116 3
4.6 - — | INE =IN= {114
T AN VENE G T
5K 20K

Vocabulary Size
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Bayesian Topic Language Model

Nonstationary Latent Dirichlet Allocation for Speech
Recognition, INTERSPEECH 2009



Motivation

* Words in a document should be non-stationary.
— The style of the same words is varied in different segments.

p(y)

— =

p(w) "
modeli

—

p(w) w

Language model
adaptation

|

* Nonstationary LDA: Speech

Jointly explore topic regularities and segmentation boundaries recognition
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New Speech Recognition

W = arg max p(W|X) = arg max p,\(X|Wj

w

w

p composite

W)

~ Pn-gram (W)
\ ptopic (W)
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Model Construction

* Generation process of a document

1. Choose a topic mixture vectorOa Dir( )
p(w@B#®Ar ,egch of the N words w, :

o R S .

s n=l z,=1
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Model Inference

* Marginal likelihood is intractable.
— variational inference

* True posterior p8,z,s|w,,a,B, 1, A) s approximated by the
variational distribution

%J(Zn | dn)gﬁ(sl | dl)%(sn | et dn)E
/

Dirichlet Multinomial

* Lower bound of log marginal likelihood is calculated by

D
L(a,B,m,A;Y,9,p) = P {<log p(8¢z§ >, +<logp( | )>_

d=1

<log p(w, |z,5,B) >, +<log p(skA, )>,
—<logq(®yzq9p>, —<logq( | ,)>, —<logq( | ,)>,}
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Variational Viterbi Decoding

* The best state sequence S, of a document wW,is
obtained by

Sare max S( p,w, sarA B)
= arg mSaX < lOg{P(Wd |Z959B)p(S7IIA’ )} >CI(Z)
=argmax {log p(swA, )+ <logw( gzls B, ) >}

N, N,
= arg max %g 77;1 t Qog as S + ngnlmg bsgnm g
S = n=1°n n

n=1 %=1

new output probability
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Viterbi VB-EM Procedure

<>
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NLDA for Speech Recognition

e Using the best state sequence s and the estimated
variational parameter v for test document, we calculate
NLDA unigram and use it for language model adaptation.

K
p;(w) =J'Z p(w|k,s,B)p(k|0)p(6|a)dd
=1

. K S b
A R — “skw’k
:J.Zb§kw0kq(0k | ,)d6, = Zb§kqu[9k V= ”
= =1 Zleyj

B 50| h) = AP,y (W) +(1=A)ps (W)
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Experimental Results on WSJ

* NLDA for calculating sentence probability

— —)

* Relax the limitation of starting and ending states
when searching the best state sequence.

* Comparison of perplexities and WERS

Baseline LDA NLDA
Perplexity 46.6 45.1 43.3
WER (%) 5.38 5.17 5.14
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Conclusions

* Online adaptation was performed to continuously learn the
unknown variations in speech recognition.

* Adopting conjugate prior was feasible to obtain the closed-
form solution and perform the hyperparameter evolution.

* Robustness of a decision rule was strengthened by applying
BPC decision rule. lll-posed problem is tackled.

* We applied the evidence framework to HMM training, which
automatically learnt the priors and their posteriors from data.

* Bayesian sparse learning was performed to establish the
regularized large margin HMMSs.
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Conclusions

* A latent Dirichlet language model was developed for
Bayesian topic modeling in n-gram level rather than in
document level.

* A Markov chain was embedded in NLDA to characterize the
temporal word variations in a document. Document
segmentation was performed.

* A new NLDA document model was built for language model
adaptation.

* Bayesian learning approaches are not only feasible to
speech recognition but also to other pattern recognition
applications.
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Future Works

* We are extending the evidence framework for construction
of different probabilistic models with/without latent variables.

* We are developing kernel method for Bayesian large
margin HMMs. The evidence framework will be further
developed for higher level inference.

* A Bayesian topic cache language model will be constructed.

* Conduct extensive experiments on a large-scale corpora
consisting of spoken documents.

* Apply NLDA for spoken document retrieval and
summarization.
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Thank You!
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