Bayesian Learning Approaches for Speech Recognition

Jen-Tzung Chien

National Cheng Kung University, Taiwan

Outline

- Introduction
- Bayesian Adaptation and Predictive Classification
- Bayesian Model Comparison
- Bayesian Large Margin HMMs
- Bayesian Topic Language Model
- Conclusions

Introduction

Why Bayesian?

- Certainty knowledge
 - Explicit information to learn
 - We can define proper data structure or rule for the certainty knowledge
- Different people may have different opinions for the same problem
 - We may not have a perfect rule for a problem
- Uncertainty knowledge
 - Implicit information
 - Hard to learn
- Useful information is often uncertain
- We cannot build a complete knowledge in many cases

Generalization

- How much can we trust isolated data points?
- Optimal decision surface is a line
- Optimal decision surface is still a line

- Optimal decision surface changes abruptly
- Can we integrate prior knowledge about data, confidence, or willingness to take risk?

ML, MAP and Bayesian Prediction

ML vs. Bayesian inference

Maximum Likelihood (ML)

$$\theta_{ML} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta) \qquad P(x \mid D) \approx P(x \mid \theta_{ML})$$

Maximum a Posteriori (MAP)

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg\,max}} P(\theta \mid D) = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta) P(\theta) \quad P(x \mid D) \approx P(x \mid \theta_{MAP})$$

- Bayesian Inference
 - avoid severe over-fitting problem in ML/MAP point estimates
 - allow model comparison

Predictive Distribution $P(x | D) = \int P(x | \theta) P(\theta | D) d\theta$

Bayesian inference

• Consider the learning of a parameter $\theta \in \mathbf{H}$.

Model Complexity

- Model complexity is an important issue in statistical inference
 - too simple, poor prediction
 - too complex, poor prediction (and slow on test)
- Maximum likelihood always favors more complex models
 - over-fitting
- It is usual to resort to cross validation
 - extra data is required
 - computationally expensive
- Bayesian inference is performed for model selection from training data

Evidence Framework

- Inference using ML/MAP is conditional on the model being true
- We don't know if the model is true
 - affect reliability of posterior distribution, precision, etc.
- Model selection by evidence framework
 - posterior probabilities
 - for equal priors, models are compared using the evidence
 - $-\max_{p(D|M_i)} \frac{1}{2} \frac{1}{2$

Variational Inference

- Exact marginalization over uncertainty of parameters does not exist
- Goal: approximate the posterior $P(\theta|D)$ by a *variational* distribution $q(\theta)$ for which marginalization is tractable
- Posterior related to joint $P(\theta, D)$ in marginal likelihood $P(D) = \int P(D \mid \theta) P(\theta) d\theta$
 - a good objective for model selection
- Three steps
 - 1. Choose a family of variational distributions Q(H)
 - 2. Calculate KL divergence between P and Q
 - 3. Find Q which minimizes KL(Q||P)

Automatic Speech Recognition

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} p(W|X) = \underset{W}{\operatorname{arg\,max}} p_{\Lambda}(X|W) p_{\Gamma}(W)$$

Research Topics

- Bayesian speaker adaptation
- Online adaptation
- Bayesian predictive classification
 - uncertainty decoding
- Model selection and clustering
 - evidence framework
- Bayesian large margin HMMs
- Bayesian language model
 - latent Dirichlet language model
 - latent Dirichlet segmentation

Bayesian Adaptation &Predictive Classification

Linear Regression Adaptation

Maximum Likelihood Linear Regression

Linear regression transformation

$$\hat{\lambda} = G_{\eta}(\lambda) = \{\omega_{ik}, A_{c}\mu_{ik} + b_{c}, r_{ik}\} = \{\omega_{ik}, W_{c}\xi_{ik}, r_{ik}\}$$

Maximum likelihood estimation

$$W_{ML} = \underset{W}{\operatorname{arg max}} p(\mathbf{X} | W, \lambda)$$

where
$$p(\mathbf{x}_{t}|W_{c}, \mu_{ik}, \Sigma_{ik}) \propto |r_{ik}|^{1/2} \exp\left[-\frac{1}{2}(\mathbf{x}_{t} - W_{c}\xi_{ik})^{T} r_{ik}(\mathbf{x}_{t} - W_{c}\xi_{ik})\right]$$

and $W = \{W_{c}\}$ $\xi_{ik} = [1, \mu_{ik}^{T}]^{T}$

Quasi-Bayes Linear Regression

- ML estimate often leads to biased estimate in case of sparse data.
- MAPLR is to estimate the regression matrix by

$$W_{MAP} = \underset{W}{\operatorname{arg\,max}} \ p(W \big| \mathbf{X}, \lambda) = \underset{W}{\operatorname{arg\,max}} \ p(\mathbf{X} \big| W, \lambda) p(W \big| \varphi)$$

• In *online adaptation* using *QBLR*, we estimate the χ^n regression matrix from sequentially observed data . At the *n*th learning epoch, we perform $W_{QB}^{(n)} = \arg\max p(W \mid \chi^n, \lambda) = \arg\max p(\mathbf{X}_n \mid W, \lambda) p(W \mid \chi^{n-1}, \lambda)$

$$\cong \underset{W}{\operatorname{arg\,max}} p(\mathbf{X}_n | W, \lambda) p(W | \varphi^{(n-1)})$$

Reproducible Prior/Posterior Pair

• Prior density of regression matrix $W_c^{(n)} = \{W_c^{(n)}(i)\}$ can be modeled by a *matrix variate normal distribution*

$$p(W_c^{(n)} \middle| \varphi_c^{(n-1)}) \propto \left| \Delta_c^{(n-1)} \middle|^{-1/2} q \left(\sum_{i=1}^d (W_c^{(n)}(i) - M_c^{(n-1)}(i)) \Sigma_{ci}^{(n-1)-1} (W_c^{(n)}(i) - M_c^{(n-1)}(i))^T \right)$$

hyperparameters $M_c^{(n)} = \{M_c^{(n)}(i)\}$, $\Delta_c^{(n-1)} = diag(\Sigma_{c1}^{(n-1)}, \dots, \Sigma_{cd}^{(n-1)})$

• Expectation function of the posterior distribution in Estep is yielded by a new *matrix variate normal distribution* with new hyperparameters.

Bayesian Predictive Classification

• Plug-in Bayesian classifier - regression parameter $\hat{\eta}$ acts as true value to fulfill Bayes decision rule

$$\hat{W} = \underset{W}{\operatorname{arg max}} p(W | \mathbf{X}, \hat{\eta}, \lambda) = \underset{W}{\operatorname{arg max}} p(\mathbf{X} | W, \hat{\eta}, \lambda) p(W)$$

- We consider the uncertainty of regression parameters and construct a new decision rule.
- Linear Regression Bayesian predictive classifier
 (LRBPC) replace the likelihood in plug-in Bayesian
 classifier using a predictive distribution

$$p(\mathbf{X}|W,\hat{\eta},\lambda) \longrightarrow \widetilde{p}_{\eta}(\mathbf{X}|W,\lambda) = \int p(\mathbf{X}|W,\eta,\lambda) p(\eta|\varphi) d\eta$$

LRBPC

• In case of single variable linear regression, the transformation $\hat{\mu}_{ik} = W_c \xi_{ik} = \mathbf{A}_c \mu_{ik} + \mathbf{b}_c$ with $\mathbf{A}_c = \text{diag}\{a_{cl}\}$ becomes independent adaptation for each HMM mean component.

$$\hat{\mu}_{ikl} = a_{cl} \mu_{ikl} + b_{cl}$$

• *Multivariate* frame-based predictive pdf $f_{ik}(\mathbf{x}_t)$ is fulfilled by individually computing *univariate* predictive pdf

$$f_{ik}(x_{tl}) = \int p(x_{tl} \mid \theta_{cl}, \mu_{ikl}, \sigma_{ikl}^{2}) p(\theta_{cl} \mid \varphi_{cl}) d\theta_{cl}$$

$$= \int (\int p(x_{tl} \mid a_{cl}, b_{cl}, \mu_{ikl}, \sigma_{ikl}^{2}) p(a_{cl} \mid b_{cl}, \varphi_{cl}) da_{cl}) p(b_{cl} \mid \varphi_{cl}) db_{cl}$$

Frame-Based Predictive PDF

• Prior density of $\theta_{cl} = [a_{cl}, b_{cl}]^T$ is defined by a *joint Gaussian* pdf

$$g(\theta_{cl}|\varphi_{cl}) = g(a_{cl}, b_{cl}|\varphi_{cl} = (\mathbf{m}_{\theta_{cl}}, \Sigma_{\theta_{cl}}))$$

$$= \frac{1}{2\pi} \begin{bmatrix} \sigma_{a_{cl}}^2 & \sigma_{a_{cl}b_{cl}}^2 \\ \sigma_{a_{cl}b_{cl}}^2 & \sigma_{b_{cl}}^2 \end{bmatrix}^{-1/2} \exp \left\{ -\frac{1}{2} \left[a_{cl} - m_{a_{cl}} b_{cl} - m_{b_{cl}} \right] \begin{bmatrix} \sigma_{a_{cl}}^2 & \sigma_{a_{cl}b_{cl}}^2 \\ \sigma_{a_{cl}b_{cl}}^2 & \sigma_{b_{cl}}^2 \end{bmatrix}^{-1} \begin{bmatrix} a_{cl} - m_{a_{cl}} b_{cl} - m_{b_{cl}} b_{cl} \end{bmatrix} \right\}$$

• Predictive pdf $f_{ik}(x_{tl})$ is derived as a *Gaussian distribution* of x_{tl} with new mean and new variance given by

$$\hat{\mu}_{x_l} = m_{a_{cl}} \mu_{ikl} + m_{b_{cl}}$$
 Affine function

$$\hat{\sigma}_{x_{l}}^{2} = \sigma_{b_{cl}}^{2} \left(1 + \frac{\sigma_{a_{cl}b_{cl}}^{2}}{\sigma_{b_{cl}}^{2}} \mu_{ikl} \right)^{2} + \mu_{ikl}^{2} \left(\sigma_{a_{cl}}^{2} - \frac{\sigma_{a_{cl}b_{cl}}^{4}}{\sigma_{b_{cl}}^{2}} \right) + \sigma_{ikl}^{2}$$

BAYESIAN MODEL COMPARISON

An Evidence Framework For Bayesian Learning of Continuous-Density Hidden Markov Models, ICASSP 2009

Motivation

- The ill-posed conditions severely hamper the trained HMMs to recognize test data robustly.
- In an evidence framework, we build the regularized HMMs with given finite data, hence more robust recognition performance.
- In this study, we
 - apply evidence framework to exponential family distribution estimation.
 - extend it to estimating CDHMMs with naturally builtin model *uncertainty*.

Evidence Framework

- Notations
 - η : hyperparameter of the model
 - $-\{\lambda_i\}$: distribution parameters
 - $-\{D_i\}$: set of training data
- Model evidence is used as the objective function

$$\hat{\eta} = \underset{\eta}{\operatorname{arg max}} p(D_1, \dots, D_K \mid \eta)$$

$$= \underset{\eta}{\operatorname{arg max}} \prod_{i=1}^K \int p(D_i \mid \lambda_i) p(\lambda_i \mid \eta) d\lambda_i$$

Graphical Representation

EM Solution

- Key idea: treat λ_i as *hidden* variable.
- E-Step:

$$Q(\eta, \eta^{old}) = \sum_{i=1}^{K} \int p(\lambda_i \mid D_{i,\eta}^{old}) \ln p(D_{i,\lambda_i} \mid \eta) d\lambda_i$$

 M-Step: find the solutions to all hyperparameters in the exponential family.

Exponential Family & Conjugate Prior

Exponential family

$$p(x_i \mid \lambda_i) = h(x_i)g(\lambda_i) \exp[\lambda_i^T u(x_i)]$$

Sufficient statistics

$$\sum_{x\in D}u(x)$$

Conjugate prior

$$p(\lambda_i \mid \chi_0, v_0) = f(\chi_0, v_0) g(\lambda_i)^{v_0} \exp(v_0 \lambda_i^T \chi_0)$$

Bayesian Learning

- Using two properties
 - with conjugate prior, the posterior can have the same functional form as its prior.
 - D_i is *conditionally independent* of η_i given λ_i ($D_i \perp \eta_i \mid \lambda_i$) we get ⇒

$$Q(\eta, \eta^{old}) = \sum_{i=1}^{K} \int p(\lambda_i \mid \widetilde{\eta}_i^{old}) \ln p(\lambda_i \mid \eta) d\lambda_i + C$$

EM Steps for Bayesian Learning

E-step

$$\widetilde{v}_i = v_0 + \gamma_i$$

$$\widetilde{\chi}_i = \frac{\sum_{n=1}^{\gamma_i} u(x_{i,n}) + v_0 \chi_0}{\widetilde{v}_i}$$

M-step

$$\langle \lambda, \ln[g(\lambda)] \rangle_{\eta^{new}} = \frac{1}{K} \sum_{i=1}^{K} \langle \lambda, \ln[g(\lambda)] \rangle_{\widetilde{\eta}_{i}^{old}}$$

Concavity Analysis

- The auxiliary function $Q(\eta, \eta^{old})$ is *concave* \Rightarrow we can obtain its global optimum in the M-step.
- In general, the objective function F (the evidence) is not concave.

$$F(\eta) = p(D_1, \dots, D_K \mid \eta)$$

• Good news: $\nabla^2 F$ is proportional to $\sum_i \{\cos_{\widetilde{\eta}_i} - \cos_{\eta}\}$ (Note: posterior is usually sharper than its prior)

Variational Inference

- We could hardly evaluate the joint posterior distribution of hidden variables.
 - For example, when training Bayesian HMMs empirically, we need to evaluate $p(\lambda, s \mid D)$ in the E-Step. where λ is the HMM parameters and s is the state sequence.
- Computationally feasible approach is to select a proper $q(\lambda, s)$ to approximate $p(\lambda, s | D)$.

Variational Bayesian

- Factorization assumption: $q(\lambda, s) = q(\lambda)q(s)$
- We can get a new lower bound of the log marginal likelihood

$$F_m(q(\lambda), q(s)) = \int \sum_{s} q(\lambda)q(s) \ln \frac{p(\lambda, s, D \mid m)}{q(\lambda)q(s)} d\lambda$$

It can be iteratively optimized

$$q^{new}(\lambda) \propto \exp < \ln p(D, s \mid \lambda) >_{q^{old}(s)}$$

 $q^{new}(s) \propto \exp < \ln p(D, s \mid \lambda) >_{q^{old}(\lambda)}$

• We have the closed-form solutions to CDHMM case. , $q^{new}(\lambda)$ in $q^{new}(s)$

Evidence Framework for CDHMM Training

iteration loop:
variational E-step:
conduct Baum-welch on the training set, by using expected
log likelihoods instead of Gaussian probabilities, and
collect statistics, $\gamma_i, \gamma_i(\boldsymbol{o}), \gamma_i(\boldsymbol{o}\boldsymbol{o}^\top)$
variational M-step:
maximum evidence E-step:
calculate $\tilde{\eta}_i^{ ext{old}}$ for all the CDHMM parameters
maximum evidence M-step:
solve η^{new} with the expectation equation
while the evidence gap is larger than a threshold

Optimization Procedure

Experimental Results on AURORA2

Figure 1: Recognition accuracy of model trained with different sized clean training data

Figure 2: Recognition accuracy of model trained with different sized multi-conditional training data

BAYESIAN LARGE MARGIN HMMS

Bayesian Large Margin Hidden Markov Models for Speech Recognition, ICASSP 2009

History of HMM Training

Vapnik's Risk Bound

$$R(\Lambda) \leq R_{emp}(\Lambda) + \sqrt{\frac{1}{N} \left(VC_{dim} \cdot \left(log \left(\frac{tN}{VC_{dim}} \right) + 1 \right) - log \left(\frac{\delta}{t} \right) \right)}$$

- We should minimize the empirical risk as well as the generalization error.
- Increasing number of parameters suffers from over-fitting problem. Model generalization is degraded.
- VC dimension is closely related to the number of parameters and can be reduced by increasing the margin.

Motivation

- Generalization problem in SVM was tackled due to the sparse learning and VC dimension.
- The static LM-HMM parameters are not well fitted to the unknown variations in test environments.
- Bayesian large margin (BLM) classifier is presented to build the BLM-HMMs.
- We improve model generalization via Bayesian learning and cope with the uncertainty in large margin classifier.
- Speech recognition system has the capabilities of model selection and model adaptation.

Large Margin Classifier

Support Vector Machines (SVMs)

$$\min_{\mathbf{w}} Q(\mathbf{w}) \equiv \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \zeta_i \qquad C \text{ is a trade-off}$$

$$\text{Subject to } : y_i(\mathbf{w} : \mathbf{x}_i + \mathbf{b}) \geq 1, \forall i, \dots, N$$

Hard Margin

Soft Margin

Large Margin Estimation

$$\hat{W} = \arg \max_{W} p(W \mid X) = \arg \max_{W} p(X \mid W, \lambda) p(W)$$

Discriminant function & separation margin for an utterance

$$d_{LM}(X_i, \lambda) = \log p(X_i \mid \lambda_{W_i}) - \max_{W_j \in \Omega_W, j \neq i} \log p(X_i \mid \lambda_{W_j})$$

Support token set

$$\Psi_{\mathrm{LM}} = \{X_i \mid X_i \in D \text{ and } 0 \leq d_{\mathrm{LM}}(X_i, \lambda) \leq \varepsilon\}$$
 Utterances

Objective: maximize the minimum margin of support tokens

$$\lambda_{\text{LM}} = \arg \max_{\lambda} \min_{X_i \in \Psi_{\text{LM}}} d_{\text{LM}}(X_i, \lambda)$$

Soft Margin Estimation

Separation measure for an utterance

$$d_{SM}(X_i) = \frac{1}{n_i} \sum_{k} \log \left[\frac{P(\mathbf{x}_{ik} \mid \lambda_{W_i})}{P(\mathbf{x}_{ik} \mid \lambda_{W_j})} \right] I(\mathbf{x}_{ik} \in F_i)$$

Hinge error loss function

$$(\rho - d_{SM}(X_i))_+ = \begin{cases} \rho - d_{SM}(X_i), & \text{if } \rho - d_{SM}(X_i) > 0\\ 0, & \text{otherwise} \end{cases}$$

Objective function

$$L^{\text{SM}}(\Lambda) = \frac{\lambda}{\rho} + \frac{1}{N} \sum_{i=1}^{N} (\rho - d_{\text{SM}}(X_i))_{+}$$
$$= \frac{\lambda}{\rho} + \frac{1}{N} \sum_{i=1}^{N} (\rho - d_{\text{SM}}(X_i)) l(X_i \in U)$$

Bayesian Large Margin Estimation

- From Bayesian viewpoint, the *model uncertainty* is considered in expressing the separation margin.
- The uncertainty is characterized by a prior density.
- Posterior separation margin is yielded by

$$\sum_{X_i \in \Psi_{\text{BLM}}, W_j \in \Omega_W, j \neq i} \exp \left[\log p(\lambda_{W_j} \mid X_i) - \log p(\lambda_{W_i} \mid X_i) \right]$$

• Variational Bayesian is applied to approximate the true distribution $p(\lambda_W \mid X)$ by using a variational distribution $q(\lambda_W \mid X)$. VB-EM algorithm is performed.

Variational Inference

 Variational distribution is estimated through maximization of a lower bound of logarithm of marginal likelihood

$$\log p(X) = \log \int \sum_{S,L} p(X,S,L \mid \lambda_{W}) p(\lambda_{W}) d\lambda_{W}$$

$$\geq \int \sum_{S,L} q(S,L,\lambda_{W} \mid X) \log \frac{p(X,S,L \mid \lambda_{W}) p(\lambda_{W})}{q(S,L,\lambda_{W} \mid X)} d\lambda_{W}$$

$$= \int q(\lambda_{W} \mid X) \left[\sum_{S,L} q(S,L \mid X) \log \frac{p(X,S,L \mid \lambda_{W}) p(\lambda_{W})}{q(\lambda_{W} \mid X)} \right] d\lambda_{W}$$

$$- \sum_{S,L} q(S,L,X) \log q(S,L \mid X).$$
variational distributions

LM-HMM Parameters and Their Priors

LM-HMM model parameters

$$\{\pi_i, a_{im}, \omega_{ik}, (\mu_{ik}, r_{ik})\}$$

 We specify the prior of probability parameter to be Dirichlet density and the prior of Gaussian mean and precision to be a normal-Wishart density

$$p(\mu_{ik}, r_{ik} \mid m_{ik}, \tau_{ik}, \alpha_{ik}, u_{ik}) = |r_{ik}|^{(\alpha_{ik} - d)/2}$$

$$\times \exp\left[-\frac{\tau_{ik}}{2} (\mu_{ik} - m_{ik})^T r_{ik} (\mu_{ik} - m_{ik})\right] \exp\left[-\frac{1}{2} \operatorname{tr}(u_{ik} r_{ik})\right]$$

where $\tau_{ik} > 0$, $\alpha_{ik} > d-1$, μ_{ik} is $d \times 1$ vector,

 u_{ik} is a $d \times d$ positive definite matrix.

$$\{\boldsymbol{\varpi}_{i}, \phi_{im}, \boldsymbol{\varphi}_{ik}, m_{ik}, \boldsymbol{\tau}_{ik}, \boldsymbol{\alpha}_{ik}, \boldsymbol{u}_{ik}\}$$

Graphical Representation

Variational BLM-HMM

Variational Distribution

• *VB posterior distributions* $\tilde{q}(\lambda|X)$ and $\tilde{q}(S,L|X)$ are alternatively estimated

$$\begin{split} \widetilde{q}(\lambda \mid X) &\approx p(\lambda \mid \{\varpi_{i}, \phi_{im}, \varphi_{ik}, m_{ik}, \tau_{ik}, \alpha_{ik}, u_{ik}\}) \\ &\times \exp\left[\sum_{S,\tau} \widetilde{q}(S, L \mid X) \log p(X, S, L \mid \lambda)\right] \\ &= \prod_{i,m,k} \widetilde{q}(\{\pi_{i}\} \mid X) \, \widetilde{q}(\{a_{im}\} \mid X) \, \widetilde{q}(\{\omega_{ik}\} \mid X) \, \widetilde{q}(\{\mu_{ik}, r_{ik}\} \mid X) \\ &= \prod_{i,m,k} p(\{\pi_{i}\} \mid \{\widetilde{\omega}_{i}\}) \, p(\{a_{im}\} \mid \{\widetilde{\phi}_{im}\}) \, p(\{\omega_{ik}\} \mid \{\widetilde{\phi}_{ik}\}) \\ &\times p(\{\mu_{ik}, r_{ik}\} \mid \{\widetilde{m}_{ik}, \widetilde{\tau}_{ik}, \widetilde{\alpha}_{ik}, \widetilde{u}_{ik}\}) \\ &\times p(\{\mu_{ik}, r_{ik}\} \mid X) \propto p(\{\mu_{ik}, r_{ik}\} \mid \{m_{ik}, \tau_{ik}, \alpha_{ik}, u_{ik}\}) \\ &\times \exp\left[\sum_{i,k,t \in \Psi_{\text{BLM}}} \widetilde{\xi}_{tik} \log p(\mathbf{x}_{t} \mid \mu_{ik}, r_{ik})\right] \end{split}$$

Relation to SVM Objective Function

We make the approximation

$$\widetilde{q}(s_t = i, l_t = k \mid \mathbf{x}_{it}) \cong \exp(-[-d_{\text{BLM}}^{ij}(\mathbf{x}_{it})]_+) = \exp(-\widetilde{\xi}_t)$$

where $[b]_{+} = b$ if b > 0 and $[b]_{+} = 0$ if b < 0.

- Substitute this approximate probability into
 - $-\log \widetilde{q}(S, L, \mu_{ik}, r_{ik} \mid X_i)$, we obtain

$$-\log \widetilde{q}(S, L, \mu_{ik}, r_{ik} \mid X_i) = \frac{\widetilde{\tau}_{ik}}{2} (\mu_{ik} - \widetilde{m}_{ik})^T r_{ik} (\mu_{ik} - \widetilde{m}_{ik}) + \sum_{t} \widetilde{\xi}_t + \text{constant}$$

Negative Class Margin

Sum of Errors

Comparison

	MCE	LME	SME	BLME
Generalization		0	0	00
Separation Measure	Utterance LLR	Utterance LLR	LLR with frame selection	Log Posterior Ratio with frame selection
Parameters	All Parameters	Mean	Mean	Mean & Precision
Parameter Solution	GPD	GPD	GPD	Closed form
Model Comparison & Adaptation				0

Experimental Results on TIMIT

Bayesian Topic Language Model

Latent Dirichlet Language Model for Speech Recognition, IEEE SLT Workshop 2008

N-Grams

$$\Pr(W) = \Pr(w_1, ..., w_T) = \prod_{i=1}^{T} \Pr(w_i | w_1, w_2, ..., w_{i-1}) \cong \prod_{i=1}^{T} \Pr(w_i | w_{i-n+1}^{i-1})$$

Two important issues:

- Data sparseness problem
 - Model smoothing
 - Backoff method
 - Continuous space LM
- Insufficient long-distance regularity
 - Topic information
 - Probabilistic latent semantic analysis (PLSA)
 - Latent Dirichlet allocation (LDA)

Probabilistic LSA LM [Gildea & Hofmann, 1999]

Document probability

Topic-dependent unigrams

Document-dependent topic mixture weight

Online EM algorithm was used.

$$p(k \mid w_1^{i-1}) = \frac{1}{i+1} \frac{p(w_{i-1} \mid k) p(k \mid w_1^{i-2})}{\sum_{i=1}^{K} p(w_{i-1} \mid j) p(j \mid w_1^{i-2})} + \frac{i}{i+1} p(k \mid w_1^{i-2})$$

$$p(k \mid w_1) = p(k) = \frac{\sum_{w,d} N_{wd} p(k \mid d)}{\sum_{w,d} N_{wd}}$$

Latent Dirichlet Allocation [Blei et al., 2003]

 To improve the generalization to unseen documents, a *Dirichlet prior* is used to model the topic distribution.

Document probability

$$p(\mathbf{w} \mid \mathbf{\alpha}, \mathbf{\beta}) = \int p(\mathbf{\theta} \mid \mathbf{\alpha}) \prod_{n=1}^{N} \sum_{k_n=1}^{K} p(k_n \mid \mathbf{\theta}) p(w_n \mid k_n, \mathbf{\beta}) d\mathbf{\theta}$$

 Variational Bayesian EM (VB-EM) algorithm is applied for parameter estimation.

LDA LM Adaptation [Tam and Schultz, 2005, 2006]

- Estimation of topic probability using VB-EM
 - from historical words
 - from transcription of a whole sentence

 Interpolation or unigram scaling method were applied for language model adaptation.

$$p(\boldsymbol{w}|\boldsymbol{h}) \rightarrow \mathcal{A}p_{n-\text{gram}}(\boldsymbol{w}|\boldsymbol{h}) + \frac{p_{\text{LDA}}(\boldsymbol{w})}{p_{\text{LDA}}(\boldsymbol{w})}$$

Direct Topic Model for ASR

- Document-level topic model (PLSA, LDA)
 - bag-of-words scheme
 - document clustering
 - indirect model for speech recognition
- N-gram-level topic model (LDLM)
 - word orders are considered.
 - history clustering
 - direct model for speech recognition

Model Construction

- Topic model is directly built from n-gram events.
- LDLM acts as a new Bayesian topic language model in which the prior density of the topic variable is involved.

H: number of histories in the training data

 N_h : number of words following the history

History Representation

• The n-1 historical words w_{i-n+1}^{i-1} are represented by an $(n-1)V \times 1$ vector.

Prediction of topic probabilities $p(k | \mathbf{h}_{i-n+1}^{i-1})$ (Linear or non-linear classifier)

Prior density of topic mixture

$$\mathbf{\theta} = [\theta_1, \dots, \theta_K]^{\mathrm{T}} \sim \mathrm{Dir}(\mathbf{g}(\mathbf{h}_{i-n+1}^{i-1}))$$

Latent Dirichlet Language Model

Probability of an *n*-gram event

$$p(w_{i} | \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}, \boldsymbol{\beta}) = \sum_{k_{i}=1}^{K} p(w_{i} | k_{i}, \boldsymbol{\beta}) \int p(\boldsymbol{\theta} | \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}) p(k_{i} | \boldsymbol{\theta}) d\boldsymbol{\theta}$$
$$= \sum_{k=1}^{K} \beta_{ik} \frac{\mathbf{a}_{k}^{T} \mathbf{h}_{i-n+1}^{i-1}}{\sum_{j=1}^{K} \mathbf{a}_{j}^{T} \mathbf{h}_{i-n+1}^{i-1}}.$$

• LDLM performed the *unsupervised learning* and found the classes or latent topics through the VB-EM procedure.

Variational Inference

Likelihood function of a data set D

$$\log p(D \mid \mathbf{A}, \boldsymbol{\beta}) = \sum_{(w_i, \mathbf{h}_{i-n+1}^{i-1}) \in D} \log p(w_i \mid \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}, \boldsymbol{\beta})$$

$$= \sum_{\mathbf{h}_{i-n+1}^{i-1}} \log \left\{ \int p(\mathbf{\theta} \mid \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}) \left[\prod_{i=1}^{N_h} \sum_{k_i=1}^K p(w_i \mid k_i, \mathbf{\beta}) p(k_i \mid \mathbf{\theta}) \right] d\mathbf{\theta} \right\}$$

True posterior probability

$$p(\mathbf{\theta}, \mathbf{k}_h \mid \mathbf{w}_h, \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}, \mathbf{\beta}) = \frac{p(\mathbf{\theta} \mid \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}) \prod_{i=1}^{N_h} p(w_i \mid k_i, \mathbf{\beta}) p(k_i \mid \mathbf{\theta})}{\int p(\mathbf{\theta} \mid \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A}) \prod_{i=1}^{N_h} \sum_{k_i=1}^{K} p(w_i \mid k_i, \mathbf{\beta}) p(k_i \mid \mathbf{\theta}) d\mathbf{\theta}}.$$

Variational distribution

$$q(\mathbf{\theta}, \mathbf{k}_h \mid \mathbf{\gamma}_h, \mathbf{\phi}_h) = q(\mathbf{\theta} \mid \mathbf{\gamma}_h) \prod_{i=1}^{N_h} q(k_i \mid \mathbf{\phi}_{h,i})$$
Dirichlet Multinomial

VB-E Step

Lower bound of log marginal likelihood

$$L(\mathbf{A}, \boldsymbol{\beta}; \boldsymbol{\gamma}, \boldsymbol{\varphi}) = \sum_{\mathbf{h}_{i-n+1}^{i-1}} \{ E_q[\log p(\boldsymbol{\theta} \mid \mathbf{h}_{i-n+1}^{i-1}, \mathbf{A})] + E_q[\log p(\mathbf{k}_h \mid \boldsymbol{\theta})]$$

$$+ E_q[\log p(\mathbf{w}_h \mid \mathbf{h}_{i-n+1}^{i-1}, \mathbf{k}_h, \boldsymbol{\beta})] - E_q[\log q(\boldsymbol{\theta} \mid \boldsymbol{\gamma}_h)] - E_q[\log q(\mathbf{k}_h \mid \boldsymbol{\varphi}_h)] \}$$

VB-E step (updating of variational parameters)

$$\hat{\gamma}_{h,k} = \mathbf{a}_k^{\mathrm{T}} \mathbf{h}_{i-n+1}^{i-1} + \sum_{i=1}^{N_h} \phi_{h,ik}$$

$$\hat{\phi}_{h,ik} = \frac{\beta_{ik} \exp[\Psi(\gamma_{h,k}) - \Psi(\sum_{j=1}^{K} \gamma_{h,j})]}{\sum_{l=1}^{K} \beta_{il} \exp[\Psi(\gamma_{h,l}) - \Psi(\sum_{j=1}^{K} \gamma_{h,j})]}$$

VB-M Step

- Updating of model parameters
 - word probabilities in different topics

$$\hat{\beta}_{vk} = \frac{\sum_{\mathbf{h}_{i-n+1}^{i-1}} \sum_{i=1}^{N_h} \hat{\phi}_{h,ik} \delta(w_v, w_i)}{\sum_{m=1}^{V} \sum_{\mathbf{h}_{i-n+1}^{i-1}} \sum_{i=1}^{N_h} \hat{\phi}_{h,ik} \delta(w_m, w_i)}$$

gradient function for updating transformation matrix

$$\nabla_{\mathbf{a}_{k}} L(\mathbf{A}, \hat{\boldsymbol{\beta}}; \hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\phi}})$$

$$= \sum_{\mathbf{h}_{i-n+1}^{i-1}} \left[\Psi(\sum_{j=1}^{K} \mathbf{a}_{j}^{\mathrm{T}} \mathbf{h}_{i-n+1}^{i-1}) - \Psi(\mathbf{a}_{k}^{\mathrm{T}} \mathbf{h}_{i-n+1}^{i-1}) + \Psi(\hat{\boldsymbol{\gamma}}_{h,k}) - \Psi(\sum_{j=1}^{K} \hat{\boldsymbol{\gamma}}_{h,j}) \right] \cdot \mathbf{h}_{i-n+1}^{i-1}$$

WER with Different Sizes of Training Data

	Size of Training Data			
	6M	12M	18M	38M
Baseline LM	39.19 (-)	21.25 (-)	15.79 (-)	12.89 (-)
Cache LM	38.13 (2.1)	20.92 (1.6)	15.56 (1.5)	12.74 (1.4)
PLSA LM	35.96 (8.2)	19.77 (7.0)	14.96 (5.2)	12.33 (4.5)
LDA LM	38.86 (8.5)	19.67 (7.4)	14.73 (6.7)	12.16 (5.7)
LDLM	35.91 (8.4)	19.59 (7.8)	14.61 (7.5)	11.96 (7.2)
Cache LDLM	34.15 (12.9)	19.32 (9.1)	14.47 (8.4)	11.91 (7.6)

WER Using Different Vocabularies

Bayesian Topic Language Model

Nonstationary Latent Dirichlet Allocation for Speech Recognition, INTERSPEECH 2009

Motivation

- Words in a document should be non-stationary.
 - The style of the same words is varied in different segments.

New Speech Recognition

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} \ p(W|X) = \underset{W}{\operatorname{arg\,max}} \ p_{\Lambda}(X|W) p_{\operatorname{composite}}(W)$$

$$p_{\operatorname{tonic}}(W)$$

Model Construction

- Generation process of a document
 - 1. Choose a topic mixture vector $\theta \alpha Dir()$

```
p(\mathbf{w} \mathbf{\hat{q}} \mathbf{B}_{n} \mathbf{\hat{q}} \mathbf{r}, \mathbf{e}) ch of the N words w_n:
```

$$= p^{\rho(\theta \neq B)} \sum_{s=1}^{\infty} \sum_{n=1}^{\infty} \sum_{z_n=1}^{\infty} \sum_{s=1}^{\infty} \sum_{s=1}^{\infty}$$

Model Inference

- Marginal likelihood is intractable.
 - variational inference
- True posterior $p(\theta, \mathbf{z}, \mathbf{s} | \mathbf{w}_d, \alpha, \mathbf{B}, \pi, \mathbf{A})$ is approximated by the variational distribution

Lower bound of log marginal likelihood is calculated by

$$\begin{split} L(\alpha, \mathbf{B}, \mathbf{\pi}, \mathbf{A}; \mathbf{\gamma}, \mathbf{\varphi}, \mathbf{\rho}) &= \bigcap_{d=1}^{D} \left\{ <\log p(\mathbf{\theta} \mathbf{\varphi} \mathbf{z} \mathbf{\theta}) >_{q_d} + <\log p(\mid) >_{q_d} \right. \\ &\left. <\log p(\mathbf{w}_d \mid \mathbf{z}, \mathbf{s}, \mathbf{B}) >_{q_d} + <\log p(\mathbf{s} \mathbf{x} \mathbf{A}, |) >_{q_d} \\ &\left. - <\log q(\mathbf{\theta} \mathbf{v} \mathbf{z} \mathbf{\varphi}) \mathbf{\rho} >_{q_d} - <\log q(\mid | |_d) >_{q_d} - <\log q(\mid | |_d) >_{q_d} \right\} \end{split}$$

Variational Viterbi Decoding

• The best state sequence $\hat{\mathbf{s}}_d$ of a document \mathbf{w}_d is obtained by

$$\begin{split} & \hat{\mathbf{s}}_{a} \text{rg max} \quad {}_{\mathbf{s}} (p, \mathbf{w}|_{d} \mathbf{s}_{a} \mathbf{x}_{A}, \mathbf{B}) \\ & = \arg \max_{\mathbf{s}} \quad {} < \log \{ p(\mathbf{w}_{d} \mid \mathbf{z}, \mathbf{s}, \mathbf{B}) p(\mathbf{s}_{A} \mathbf{x}_{A},) \} >_{q(\mathbf{z})} \\ & = \arg \max_{\mathbf{s}} \quad {} \{ \log p(\mathbf{s}_{A} \mathbf{x}_{A},) + < \log p(\mathbf{z}_{A} \mid \mathbf{s}_{A}, \mathbf{B},) >_{q(\mathbf{z})} \} \\ & = \arg \max_{\mathbf{s}} \quad {} \{ \log p(\mathbf{s}_{A} \mathbf{x}_{A},) + \langle \log p(\mathbf{z}_{A} \mid \mathbf{s}_{A}, \mathbf{$$

Viterbi VB-EM Procedure

NLDA for Speech Recognition

• Using the best state sequence \hat{s} and the estimated variational parameter $\hat{\gamma}$ for test document, we calculate NLDA unigram and use it for language model adaptation.

$$p_{\hat{s}}(w) = \int \sum_{k=1}^{K} p(w \mid k, \hat{s}, \mathbf{B}) p(k \mid \mathbf{\theta}) p(\mathbf{\theta} \mid \mathbf{\alpha}) d\mathbf{\theta}$$

$$\approx \int \sum_{k=1}^{K} b_{\hat{s}kw} \theta_k q(\theta_k \mid \hat{\gamma}_k) d\theta_k = \sum_{k=1}^{K} b_{\hat{s}kw} E_q[\theta_k \mid \hat{\gamma}_k] = \frac{\sum_{k=1}^{K} b_{\hat{s}kw} \hat{\gamma}_k}{\sum_{j=1}^{K} \hat{\gamma}_j}$$

Experimental Results on WSJ

NLDA for calculating sentence probability

- Relax the limitation of starting and ending states when searching the best state sequence.
- Comparison of perplexities and WERs

`	Baseline	LDA	NLDA
Perplexity	46.6	45.1	43.3
WER (%)	5.38	5.17	5.14

Conclusions

- Online adaptation was performed to continuously learn the unknown variations in speech recognition.
- Adopting conjugate prior was feasible to obtain the closedform solution and perform the hyperparameter evolution.
- Robustness of a decision rule was strengthened by applying BPC decision rule. Ill-posed problem is tackled.
- We applied the *evidence framework* to HMM training, which automatically learnt the *priors* and their posteriors from data.
- Bayesian sparse learning was performed to establish the regularized large margin HMMs.

Conclusions

- A latent Dirichlet language model was developed for Bayesian topic modeling in n-gram level rather than in document level.
- A Markov chain was embedded in NLDA to characterize the temporal word variations in a document. Document segmentation was performed.
- A new NLDA document model was built for language model adaptation.
- Bayesian learning approaches are not only feasible to speech recognition but also to other pattern recognition applications.

Future Works

- We are extending the evidence framework for construction of different probabilistic models with/without latent variables.
- We are developing kernel method for Bayesian large margin HMMs. The evidence framework will be further developed for higher level inference.
- A Bayesian topic cache language model will be constructed.
- Conduct extensive experiments on a large-scale corpora consisting of spoken documents.
- Apply NLDA for spoken document retrieval and summarization.

Thank You!