Design of Fast LVCSR systems

Gunnar Evermann, Phil Woodland & Rest of the CU-HTK STT team

October 21st 2003

Cambridge University Engineering Department

MIL Seminar

Overview

- EARS project
- Background: LVCSR evaluation systems
- System structure for $10 \times RT$
- Review of previous 10xRT CU-HTK systems
- Speed/accuracy trade-off
- 2003 system results
- Conclusions

DARPA EARS Programme

- Effective, Affordable, Reusable Speech-to-text (EARS) 5-year programme
- Work on two English corpora:
 - Broadcast News (BN, formerly known as Hub4) for first 3 years
 144h training from CNN, ABC, etc.; typical WER: 15%
 - Conversational Telephone Speech (CTS, aka Switchboard or Hub5)
 360h training, phone conversations on assigned topics; typical WER: 25%
- Aims are:
 - Very significant reduction in WER
 - Substantial speedup of current systems
 - Final targets: 5% WER at 1x Real Time
 - Generate metadata (speaker labels, punctuation, etc.)
 words + metadata = Rich Transcription
 - Port English work to Mandarin and Arabic

EARS at CUED: HTK-RAT

- CUED HTK Rich Audio Transcription project
- One of 3 funded Speech-to-Text (STT) teams: SRI, BBN+LIMSI, CUED
- 3 staff + 6 RAs + 6 PhD students + lots of computers
- Builds on previous work on BN (-1998) and CTS (1997-2002)
- Work on English BN and CTS and Mandarin CTS
- Participate in yearly Rich Transcription evaluations starting with RT02 (April 2002) and RT03 (March 2003)
- Benefits for rest of MIL: compute infrastructure, access to large amounts of data, complete state-of-the-art LVCSR systems

Building Fast Systems

- Recently increased interest in making state-of-the-art eval systems fast and thus feasible for practical use
- Several sites have had systems for 10xRT BN and unlimited CTS for some time (Primary condition for RT03)
- RT04/05 will be much more difficult with limits on CTS and <5xRT BN
- CTS is harder, due to higher task & system complexity
- Prepare for future evals and concentrate on appropriate techniques
- Build and submit prototype systems (10xRT CTS in RT02 & RT03)

Background: Typical LVCSR evaluation systems

- Perform multiple decoding passes, to allow for complex models/adaptation
- Later passes often operate on lattices
- Combine output from multiple branches with different models
- Employ word N-gram + class N-gram language models
- Use PLP, VTLN, CMN, CVN, HLDA, MPE, SAT, SPron, latMLLR, FV, CNC...
- Very slow: 200-2000 ×RT

Background: 2002 CU-HTK CTS system (320xRT)

• System has 2 stages: Lattice generation and multi-model lattice rescoring

Lattice Generation

- Aim is to restrict search space for rescoring stage
- Use 3 full decoding passes
- P1 (initial transcription): only used to improve segmentation and as VTLN supervision
- P2 (supervision): produce supervision for MLLR
- P3 (lattice generation): generate very large lattices

Background: 2002 CU-HTK CTS system (320xRT)

- Lattice Rescoring in 3 branches: SAT, non-HLDA and SPron
- P4: triphones; P5: quinphones

10xRT systems: Design decisions

- Use same system structure for BN and CTS
- No quinphones (only marginal gains at very high cost)
- Generate lattices in 2 passes, i.e. use P1 as supervision for VTLN and MLLR
- Simplify all adaptation processes (e.g. fewer transforms/passes)
- Tighter search parameters in all passes (large system is very conservative)
- Use only 2 rescoring branches, i.e. 2-way system combination

General system structure for 10xRT (BN/CTS)

- Segmentation
- Initial transcription
- Normalisation (re-segment, VTLN, etc.) Adaptation
- Lattice generation with word+class LM
- Lattice rescoring: for each model set:
 - Adaptation: MLLR (1-best + lattice), FV
 - Lattice rescoring
 - Confusion network generation

• System combination

Choosing Rescoring Model Sets

- Due to runtime constraints only 2-way system combination feasible
- Four MPE triphone sets were built for the CTS system:

A: SAT HLDAB: HLDAC: SPron HLDAD: non-HLDA

Results of pairwise system combination using CNC:

System	A	В	C	D
	23.0	23.6	23.4	24.8
+A		23.1	22.6	22.7
+B			22.9	23.3
+C				22.8

Individual Systems and pairwise combination %WER on cts-eval02 after lattice-MLLR/FV and CN

2003 System structure 10xRT CTS Lattice Segmentation CN 1-best • Automatic segmentation **P1** MPE triphones, HLDA, 58k, fgint03 • Use new models from full system VTLN Resegmentation CMN / CVN All models use MPE, HLDA **P2** MLLR, 1 speech transform MPE triphones, HLDA, 58k, fgintcat03 P2: use HLDA model for latgen fgintcat03 Lattices Use lattice MLLR and full-variance MPE MPE LatMLLR LatMLLR **HLDA** 2 trans. 2 trans. HLDA • Selected most effective 2-way **SPron P3.1 P3.3** SAT combination (SAT & SPron) FV FV CNC **PProb PProb** Alignment CN CN

Previous work

10xRT 1998 BN CUHTK-Entropic system:

- Single branch, two pass system, no lattice rescoring
- Automatic segmentation, speaker clustering
- Purpose-built acoustic models

10xRT 2002 CTS CUHTK system:

- Simple three pass system, based on full 320xRT system.
- Used models from full system (incl. 4 year old Pass 1 models!)
- No system combination

Software used

- All decoders use single tree static search network with multiple LM statedependent tokens
- lattice generation (P1,P2):
 - Based on Entropic decoder, optimised for speed
 - Fast Gaussian computation
 - word-**pair** approximaton for fast trigram search
- lattice rescoring (P3.x):
 - More flexible (general adaptation, pronprobs, etc.)
 - Can rescore with arbitrary deterministic finite-state "LM" (e.g. lattices)
 - Generates lattice on output
- Rest is vanilla HTK3 plus new adaptation code

Optimising speed/accuracy trade-off

• Accuracy of intial pass has little influence on overall result

P1 speed	WER		
×RT	P1	P2 trigram	P2 fourgram
0.48	37.4	26.3	25.5
0.83	35.2	26.3	25.4
1.50	34.4	26.1	25.2

P1 speed-accuracy trade-off (CTS eval02)

• Choose middle operating point for safety (avoid failures)

Tuning lattice size

• Larger rescoring lattices are more likely to contain the correct answer...

use "Oracle" to find path with lowest WER (compared to reference) in lattice

Tuning lattice size (cont'd)

• ...but we probably won't find it anyway:

Oracle Search WER: rescore big lattices and take result as "reference" for oracle

Lattice search word error rate against lattice density (CTS eval02, P2-fg)

Predicting rescoring time

 To hit xRT target it is useful to predict rescoring time (P3) and prune lattices accordingly

Rescoring runtime against lattice density & fit of $a + b \log(x + c)$ (CTS eval02)

- Curves are roughly log-shaped
- Reason: size of search network grows logarithmically with lattice density!

How to make it run fast

- All decoding parameters were carefully chosen to stay in compute budget
- Important to limit worst-case behaviour (max model beams, lattice pruning)
- Simplify adaptation, e.g. use 2 speech transforms instead of 4
- Buy many fast computers! For eval and, more importantly, experiments. CUED compute infrastructure:
 - cluster of 40 IBM x335 dual Xeons
 - SunGrid batch queuing system (720k jobs since Nov'02)
 - for eval runs: keep all data local, use 20 fastest single CPUs (2.8GHz) turn around for 6 hour CTS set: 3 hours
- Avoid excessive overhead (e.g. reading LMs) by running on large subsets, e.g. complete BN shows or sets of several CTS sides

CTS: Final results on eval03

	Swbd	Fisher	Total
P1	39.0	29.7	34.5
P2	29.4	20.9	25.3
P3.1-cn	26.0	18.8	22.5
P3.3-cn	26.3	18.9	22.7
final	25.5	18.4	22.1

% WER on eval03 for 2003 10xRT system

- The system ran in 9.21 xRT (on the dev set: 9.17xRT)
- The confidence scores have an NCE of 0.318

CTS: Progress over last year

CUED internal aims were:

- Automate running of multi-pass 10xRT system
- Outperform last year's full 320xRT system in 10xRT
- Narrow gap between full and fast systems

	Swbd1	Swbd2	Cellular	Total	fast gap
320×RT 2002 [†]	19.8	24.3	27.0	23.9	
10×RT 2002 [†]	22.3	27.7	31.0	27.2	+14%
190×RT 2003	18.6	22.3	23.7	21.7	
10×RT 2003	19.9	23.5	25.8	23.3	+7%

% WER on eval02 for full and fast systems

[†]: using manual segmentation

gap on eval03 is 7%, on the progress set it is 5%.

BN: Final results on eval03

	WER
P1	14.6
P2.fgintcat	11.9
P2.fgintcat-cn	11.6
P3.1-cn [†]	11.4
P3.3-cn	11.4
final	10.7

%WER on eval03 for 2003 10xRT system

 † wideband only, narrowband from P3.3

- P1 ran in 0.88 xRT submitted as contrast, not an optimised 1xRT system!
- The full system ran in $9.10 \times RT$
- The confidence scores have an NCE of 0.412

BN: System combination

- Combination in BN system is more complicated than CTS, as we had no BN narrow-band SAT models
- Employ 3-way combination (P2, SAT, SPron) for wideband, 2-way (P2, SPron) otherwise.
- Mismatch of posterior distributions due to lattice sizes (P2 are much bigger than P3)
- Ongoing work: Investigate mapped posteriors, system weights etc.

Conclusions

- BN: rebuilt setup and constructed state-of-the-art 10xRT system
- CTS: good improvements over RT02 systems
- Narrowed gap between 100 + xRT and 10xRT considerably
- Infrastructure for quick-turnaround *system* tests (vs. single *model* experiments)

Future Work

- Optimise models (HMMs and LMs) for fast systems
- Fast versions of VTLN and MLLR
- Adaptive optimisation of system structure

