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� acoustic signal is the observed output of some underlying process

� the true underlying process is articulation

� can we use this fact when modelling/synthesising/recognising speech?
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Some current CSTR projects
� speech recognition using phonological or pseudo-articulatory features

with Mirjam Wester

� speech recognition using linear dynamical models
with Joe Frankel and Fiona Kenney

� join cost and smoothing for concatenative synthesis
with Jithendra Vepa

� articulatory-controllable speech modification
with Yoshi Shiga

� acoustic-to-articulatory inversion
Korin Richmond
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Hidden vs. underlying articulation
� all speech production involves articulation(!)

– sometimes it is known (it has been observed and measured)

– usually it is not known

� can we use information gathered from observed articulation to

– make better models / do better signal processing

– even for speech with unobserved articulation
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Speech production motivation

Articulator movements have particular characteristics

� continuous, smooth trajectories

� asynchronous (loosely coupled)

� limited velocities and accelerations

� almost constantly moving

4



Acoustics are manifestation of this system

� piecewise continuous in spectral domain

Do atypical farmers grow oats?
h# d  ux q  ey tcl t  ih pclp  ih kclk  el f  aa r  m  axr z  gclg  r  ow ow tclt  s  h# 
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Measuring articulation
� can measure movement of the articulators during speech production

� Electromagnetic articulography (EMA)

� QMUC are building a corpus of parallel speech signal and articulatory
measurement data (MOCHA - uses TIMIT sentences)
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The true picture of speech production is revealed by articulatory data.
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A toy example

Small inventory:

� two tokens of “never”, one token of “down”

Limited domain:

� we can only say one thing: “never down”

Unit selection: need to choose which of the “never” tokens to use

� using conventional acoustic measure to select units

� compare with an articulatory measure

8



Join cost

What we need is a good join cost for concatenative synthesis

target cost

target diphone sequence

join cost
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Back to the basics: articulation
� two tokens of the word “never”

1. from the context “... never compile ...”

2. from the context “... never changes ...”

Articulator movement during each token of this word will be

� roughly the same, otherwise it wouldn’t sound like “never”

but will still vary, within certain limits
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Similarities

We expect basic similarities in articulation

� tongue tip raised and velum lowered for [n]

� velum raised, tongue body and tip lowered for [ � ]

� upper incisor meets lower lip for [v]

� constriction released for [ � ]
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Differences

Differences largely due to context.

Consider only right-context

� Token 1 is from the context “... never compile ...”
towards end of [n � v � ] we expect

– tongue tip lowering for upcoming [k]

– tongue body/dorsum raised & moved back to make closure for [k]

� Token 2 is from the context “... never changes ...”

– tongue tip/body raised to make closure for [ � ]

12



Here’s some of the articulation for “never”, token 1
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And for “never”, token 2
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Concatenation
If we want to make “... never down ...”

which token of “never” should we choose?

� could use an acoustic measure

– compare spectra at end of each token of “never” with start of “down”

– choose most similar

� could use a context-based measure

– compare contexts of each token:
“... never compile ...” vs. “... never changes ...”

– choose context most similar to “down”
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Acoustic distance

e.g. Euclidean distance between Mel-scale cepstral coefficients

time

distance
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Results of acoustic join cost

(large cost = acoustically dissimilar, implies bad match)

left unit right unit acoustic distance

“never”, token 1
“down”

4.02
“never”, token 2 7.24

� � acoustic cost says to use token 1 of “never”
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Context measure

Which of [k] or [ � ] will have the most similar contextual effect on the
preceding segment to [d] ?

� place of articulation

– [ � ] most similar to [d]

� manner of articulation

– [k] most similar to [d]

� � features of context are hard to formulate as a cost
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Articulatory measure

A more sophisticated “place of articulation” that allows easier formulation
into a join cost
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Our only token of “down”
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Concatenation
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Joining token 1 of “never” with “down”
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Joining token 2 of “never” with “down”
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1.

2.
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What if we don’t know the real articulation?
� infer it from the acoustics (Korin Richmond)

– almost certainly needs speaker-specific parallel acoustic+articulatory
training data

� or infer something that has similar properties

– what are the important properties?

– what kind of model has those properties?
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Properties of articulation

Those that seem important to consider when concatenating speech

� continuous

� smooth

– a consequence of particular dynamic characteristics

– e.g. limited range, velocity and acceleration

We need a model with those properties
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Linear Dynamic Model (LDM)

ηtε t ~ N(v ~ wwith ,C) and N( D),

= H txty + ε t

+= −1x ηtF txt

� Linear segment model with Markovian structure

� Continuous state which encapsulates dynamics

Well known in the field of control systems and optimal estimation as the
Kalman filter
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Why use a subspace?
� modelling directly in the observation space

(e.g. a spectral parameterisation of the speech signal)

– fixes the dimensionality

– therefore fixes the complexity of the motion

� modelling in a subspace

– allows any dimensionality

– can choose complexity of the motion to suit the data
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Properties of the state space

ηtε t ~ N(v ~ wwith ,C) and N( D),

= H txty + ε t

+= −1x ηtF txt

� dynamics expressed in the state space

� state dimension dictates complexity of trajectories

� continuous within segments and can also be over boundaries
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Subspace modelling

The model operates in an underlying subspace in which it makes smooth,
continuous motion (a trajectory)
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hidden space observation
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Actual state trajectory
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  2−d slices through an 8−d space showing mean ’ah’ state trajectory
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Properties of the state-observation mapping

ηtε t ~ N(v ~ wwith ,C) and N( D),

= H txty + ε t

+= −1x ηtF txt

� Observations are weighted sum of state values

� Noise accounts for confidence on each stream of data
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Training
� Expectation-Maximisation algorithm

Current system is very simple

� context-independent phone models

� training data labelled at phonetic (i.e. model) level

� “embedded” training from sentence-level labelled data coming soon
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Things we can do with LDMs
� speech recognition

� join cost calculation

� optimal parameter smoothing for disguising concatentation
discontinuities
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MAP evaluation

Sum errors � � (normalised by covariance) to compute likelihood that model
generated �� �� � � � � � �� � � 	 .
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Filtering in action
Spectrogram of observations �� �� � � � � � �� � � 	

Do atypical farmers grow oats?
h# d  ux q  ey tcl t  ih pclp  ih kclk  el f  aa r  m  axr z  gclg  r  ow ow tclt  s  h# 

Spectrogram generated from model predictions

Do atypical farmers grow oats?
h# d  ux q  ey tcl t  ih pclp  ih kclk  el f  aa r  m  axr z  gclg  r  ow ow tclt  s  h# 
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LDM-based join cost
� instead of measuring distance in acoustic domain, use a subspace

model (the LDM)

� in fact, use the LDM as a probabilistic generative model

� use prediction error as a join cost

38



LDM as generative model
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LDM as generative model - natural speech

time

smooth "true" trajectory

noisy observation
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LDM as generative model - joined speech

time

smooth "true" trajectory

noisy observation
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LDM measuring error

error time

smooth "true" trajectory

noisy observation
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LDM computing join cost

Use the error between

� actual observations (e.g. LSFs)

� model’s smooth predicted trajectory

Because model’s predicted trajectory will hopefully be like that of natural
speech
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LDM join cost

LDM LDM LDM

natural speech good join bad join

train synthesise

time
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Designing a join cost

How can we know whether our join cost function is any good?

A good join cost should

� correlate well with perceived join discontinuity

and to measure that, we need

� perceptual data
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Perceptual data

Need to

� synthesise various stimuli containing both good and bad joins

� gather data on perceptual prominence of join

then

� examine correlations between objective join costs and perceptual rat-
ings
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Perceptual experiment
� five American English diphthongs, each in two carrier sentences

– these are known to be hard segments to make joins in

diphthong sentences
ey More places are in the pipeline.

The government sought authorization of his citizenship.
ow European shares resist global fallout.

The speech symposium might begin on Monday.
ay This is highly significant.

Primitive tribes have an upbeat attitude.
aw A large household needs lots of appliances.

Every picture is worth a thousand words.
oy The boy went to play tennis.

Never exploit the lives of the needy.
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Perceptual experiment
� synthesise many versions of each (using rVoice)

� manually select a subset of about 30 per sentence with a range of join
qualities

� present to subjects

– who rate them on 1–5 scale

[see recent papers in on CSTR web site for details]
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Data (i.e. results) from perceptual experiment

After discarding unreliable subjects

� for each of about 30 examples of each diphthong in each sentence

– average perceptual rating for join cost, on 1–5 scale

We can now correlate these ratings with objective measures based on
acoustic signal
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Using this data to evaluate objective join costs
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Latest work

In rVoice joins are always made mid-phone (units are diphones)

� train one LDM per phone class

� for a candidate join between two units from the inventory

– “run” the LDM along the phone being joined

– use it to estimate the error of the observed data

– if the joined phone is similar to a natural one, the error will be low
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LDM join cost - good join
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LDM join cost - bad join
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Latest results

Correlations between LDM join cost and perceptual data

MFCC LSF MCA MCA wgts. LDM MAP
ey 0.21 0.37 0.36 0.44 0.58

0.66 0.58 0.46 0.60 0.17
ow 0.31 0.21 0.19 0.19 0.26

0.56 0.40 0.46 0.52 0.34
ay 0.39 0.01 0.03 -0.02 0.56

0.66 0.61 0.45 0.49 0.59
aw 0.34 0.66 0.35 0.49 -0.02

0.77 0.78 0.57 0.62 0.50
oy 0.17 0.20 0.53 0.55 0.45

-0.01 0.17 0.30 0.39 -0.14

bold = statistically significant (� � � � �� )

54



Join smoothing

However good the join cost is, some join smoothing is usually necessary

� typically smooth the line spectral frequencies (LSFs)

� they have better interpolation properties than LPCs

� can synthesise directly from LSFs
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Problem with current methods
� LSFs come in pairs

– typically need 6 pairs

– each pair describes something a bit like a formant peak + band-
width

– so must modify them in pairs

� worse still, each LSF pair is not independent of the other pairs

– so should not even modify individual pairs of LSFs at all
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Join smoothing
� interpolating individual LSFs can result in

– sets of LSF values that would never occur in natural speech

� need a model which constrains the set of LSFs to be consistent

– i.e. ones which could occur in natural speech

further

� want LSF trajectories to be

– like those in natural speech
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LDM join smoothing
� since the LDM is a generative model

– can use it to generate smoothed LSF trajectories for joined phones

time

smoothed trajectory

We’ll be testing this method in a perceptual experiment
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Conclusion
� if we pay attention to what the underlying articulation is,

we can probably

– devise a better join cost for concatenative synthesis

– perform smoothing which results in more natural speech

� which hopefully leads on to being able to manipulate the articulation
of recorded speech

links: www.cstr.ed.ac.uk www.rhetorical.com
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