AUTOMATIC COMPLEXITY CONTROL FOR LVCSR SYSTEMS

Xunying Liu

June 16, 2003

Cambridge University Engineering Department

MIL Speech Seminar 2003

Why are we doing complexity control?

- Most LVCSR systems are trained on large amounts of data.
- Many techniques alter system complexity and recognition performance.
 - State clustering
 - State distributions of Gaussian mixtures
 - Adaptation transforms sharing
 - Dimensionality reduction schemes
- Aiming at optimizing complexity to minimize word error rate for unseen data.
- Infeasible to train and evaluate individual systems' performance.
- Need automatic criterion to quickly predict performance ranking.

System complexity we are optimizing

- Two system complexity attributes of HLDA systems:
 - Complexity of state pdf in terms of number of Gaussians
 - Retained subspace dimensionality
- Initial aim: optimizing system complexity on global level:
 - Possible to explicitly evaluate various complexity control criteria
 - Feasible to obtain WER ranking for criterion evaluation
- Final aim: optimizing system complexity on local level:
 - Complexity of state pdf in terms of number of Gaussians
 - Infeasible to obtain WER for various systems
 - Aiming at decreasing WER given fixed system complexity

Heteroscedastic LDA (HLDA)

$$\check{\mathbf{o}} = \left[egin{array}{c} \mathbf{A}_{[p]}\mathbf{o} \\ \mathbf{A}_{[n-p]}\mathbf{o} \end{array}
ight] = \left[egin{array}{c} \check{\mathbf{o}}_{[p]} \\ \check{\mathbf{o}}_{[n-p]} \end{array}
ight]$$

- Feature space diagonalizing and projection transform.
- Allow to incorporate higher order dynamic features.
- Iterative EM based optimization, successfully applied to LVCSR tasks.
- Need to determine optimal retained subspace dimensionality.

Mixture of Gaussians based pdf

$$b_j(\mathbf{o}) = \sum_m c_{jm} \mathcal{N}(\mathbf{o}; \boldsymbol{\mu}^{(jm)}, \boldsymbol{\Sigma}^{(jm)})$$

- Possible to approximate any form of distribution given sufficient number of Gaussian components.
- Implicitly modeling feature space correlation.
- How many components should we have then???

Two Component Mixture Model

Existing complexity control criteria

- Explicitly train up individual systems and access WER.
- Validation test using held-out data likelihood.
 - Sufficiently large and representative enough.
 - Further reducing the amount of training data available.
 - Infeasible to build individual systems for criterion evaluation.
- Bayesian evidence integration, assuming its strong correlation with held-out data likelihood.

$$\hat{\mathcal{M}} = \arg \max_{\mathcal{M}} \left\{ P(\mathcal{M}) \int p(\mathcal{O}|\Theta, \mathcal{M}) p(\Theta|\mathcal{M}) \mathrm{d}\Theta \right\}$$

- Information theory approaches.
- Fitting complexity proportional to amount of training data, eg. VarMix

Ockham's Razor

- Important property of Bayesian evidence integral.
- Penalizes over complex model structures with bad generalization.
- Model structures with optimal complexity only model a certain range of interesting data sets.
- Over simple model structures are not powerful enough.

Approximation schemes for evidence integration

• Bayesian Information Criterion (BIC):

$$\log p(\mathcal{O}|\mathcal{M}) \approx \log p(\mathcal{O}|\hat{\Theta}, \mathcal{M}) - \frac{k}{2}\log \mathcal{T}$$

• Laplace approximation:

$$\log p(\mathcal{O}|\mathcal{M}) \approx \log p(\mathcal{O}|\hat{\Theta}, \mathcal{M}) - \frac{1}{2} \log \left| -\nabla^2 \log p(\mathcal{O}|\hat{\Theta}, \mathcal{M}) \right| + \frac{k}{2} \log 2\pi$$

• Variational Approximation:

$$\log p(\mathcal{O}|\mathcal{M}) \geq \int \sum_{j} \mathcal{G}(\mathcal{S}_{j}, \boldsymbol{\Theta}) \log \frac{p(\mathcal{O}, \mathcal{S}_{j}, \boldsymbol{\Theta}|\mathcal{M})}{\mathcal{G}(\mathcal{S}_{j}, \boldsymbol{\Theta})} \mathrm{d}\boldsymbol{\Theta}$$

• Markov Chain Monte Carlo (MCMC) sampling schemes.

Laplace approximated Bayesian evidence

$$\int f(\mathbf{x}) \mathrm{d}\mathbf{x} ~\approx~ \frac{(2\pi)^{\frac{d}{2}} f(\hat{\mathbf{x}})}{|-\nabla_{\mathbf{x}}^2 \log f(\hat{\mathbf{x}})|^{\frac{1}{2}}}$$

- Gaussian approximation of likelihood local curvature in the parametric space.
- Computationally tractable lower bound needed to PSprzgxiepHteentrents log likelihood.
- Using block diagonal Hessian matrix to reduce computation.

Variational approximated Bayesian evidence

Lower bounding ML criterion marginalization

$$\log p(\mathcal{O}|\mathcal{M}) \geq \int \sum_{j} \mathcal{G}(\mathcal{S}_{j}, \boldsymbol{\Theta}) \log \frac{p(\mathcal{O}, \mathcal{S}_{j}, \boldsymbol{\Theta}|\mathcal{M})}{\mathcal{G}(\mathcal{S}_{j}, \boldsymbol{\Theta})} \mathrm{d}\boldsymbol{\Theta}$$

- Impossible to use EM strong sense auxiliary function based lower bound if joint posterior $P(S_j, \Theta | \mathcal{O}, \mathcal{M})$ is intractable.
- Using tractable approximation to $P(S_j, \Theta | \mathcal{O}, \mathcal{M})$. PSfrag replacements
- Variational lower bound may not equal to ML criterion during E step for each model instance.

Variational Approximation

Variational approximated Bayesian evidence

- Various forms of $\mathcal{G}(\mathcal{S}_j, \Theta)$ may tighten the bound.
- One choice of variational distribution:

$$\mathcal{G}(\mathcal{S}_j, \mathbf{\Theta}) = P(\mathcal{S}_j | \mathcal{O}, \tilde{\mathbf{\Theta}}, \mathcal{M}) p(\mathbf{\Theta} | \mathcal{M})$$

- Bayesian evidence integral is then lower bounded as $\int p(\mathcal{O}|\Theta, \mathcal{M}) p(\Theta|\mathcal{M}) \mathrm{d}\Theta \geq \mathcal{R}(\tilde{\Theta}, \mathcal{M}) \int \exp\{\mathcal{Q}_{\mathrm{ML}}(\Theta, \tilde{\Theta})\} p(\Theta|\mathcal{M}) \mathrm{d}\Theta$
- $\mathcal{R}(\tilde{\Theta}, \mathcal{M})$ is related to entropy of hidden variable posteriors.

$$\mathcal{R}(\tilde{\boldsymbol{\Theta}}, \mathcal{M}) = \exp\left\{-\sum_{j} P(\mathcal{S}_{j}|\mathcal{O}, \tilde{\boldsymbol{\Theta}}, \mathcal{M}) \log P(\mathcal{S}_{j}|\mathcal{O}, \tilde{\boldsymbol{\Theta}}, \mathcal{M})\right\}$$

• Using Laplace approximation to compute the evidence integral lower bound.

Issues with ML paradigm

- No strong correlation between criteria and WER.
- Considerable prediction error.
- Making assumption about model correctness.
- Why not use criteria directly related to recognition error???

Using discriminative training criteria

- More directly related to recognition error.
- Successfully applied for training LVCSR systems.
- Efficient lattice based implementation available.
- Criteria we will investigate:
 - Maximum Mutual Information (MMI) criterion
 - Minimum Word Error (MWE) criterion
 - Minimum Phone Error (MPE) criterion
- Can't we marginalize these criteria instead of ML criterion???

Marginalizing discriminative training criteria

Marginalizing a criterion lower bound derived using generalized EM algorithm,

$$\mathcal{L}(\mathbf{\Theta}, ilde{\mathbf{\Theta}}) = \sum_{j} \mathcal{G}(\mathcal{S}_{j}, ilde{\mathbf{\Theta}}) \log rac{\mathcal{H}(\mathcal{S}_{j}, \mathbf{\Theta}, \mathcal{M})}{\mathcal{G}(\mathcal{S}_{j}, ilde{\mathbf{\Theta}})}$$

- Initially find a criterion lower bound $\mathcal{H}(\Theta, \mathcal{M})$ with similar curvature.
- Further lower bounding $\mathcal{H}(\Theta, \mathcal{M})$ using generalized EM algorithm to $\mathcal{L}(\Theta, \tilde{\Theta})$.
- $\begin{array}{l} & \mathsf{PSfrag replacements}\\ \bullet \ \mathcal{L}(\Theta, \tilde{\Theta}) \ \text{is a strong sense auxiliary} \\ \text{function for } \mathcal{H}(\Theta, \mathcal{M}) \ \text{but not for} \\ \mathcal{F}(\Theta, \mathcal{M}). \end{array}$

Marginalizing discriminative training criteria

- $\mathcal{L}(\Theta, \tilde{\Theta})$ can be related to discriminative training auxiliary functions.
 - Strong correlation between criteria and bounds in training.
 - Possible to use one set of statistics to rank multiple systems.
- This affects how to select $\mathcal{H}(\mathcal{S}_j, \Theta, \mathcal{M})$ and $\mathcal{G}(\mathcal{S}_j, \tilde{\Theta})$:
 - $\mathcal{H}(\mathcal{S}_j, \Theta, \mathcal{M})$ should be related to emission probability.

$$\mathcal{H}(\mathcal{S}_j, \boldsymbol{\Theta}, \mathcal{M}) \propto p(\mathcal{O}, \mathcal{S}_j | \boldsymbol{\Theta}, \mathcal{M})$$

- $\mathcal{H}(\mathcal{S}_j, \Theta, \mathcal{M})$ should be related to criterion curve curvature.

$$\sum_{j} \mathcal{H}(\mathcal{S}_{j}, \mathbf{\Theta}, \mathcal{M}) \propto \mathcal{F}(\mathbf{\Theta}, \mathcal{M}) - \mathcal{F}(ilde{\mathbf{\Theta}}, \mathcal{M})$$

- $\mathcal{G}(\mathcal{S}_j, \tilde{\Theta})$ has positive and sum to one constraint.

Marginalizing MMI criterion

 $\bullet\,$ MMI criterion equivalent to posterior over the correct sentence $\mathcal W.$

$$\mathcal{F}_{\text{MMI}}(\mathbf{\Theta}, \mathcal{M}) = \frac{p(\mathcal{O}, \mathcal{W} | \mathbf{\Theta}, \mathcal{M})}{p(\mathcal{O} | \mathbf{\Theta}, \mathcal{M})}$$

• Under certain constraints imposed on the parametric space we select:

$$\mathcal{H}(\mathcal{S}_{j}, \mathbf{\Theta}, \mathcal{M}) = p(\mathcal{O}, \mathcal{S}_{j} | \mathbf{\Theta}, \mathcal{M}) \left[\mathcal{F}_{\mathrm{MMI}}(\mathbf{\Theta}, \mathcal{M}) - \mathcal{F}_{\mathrm{MMI}}(\tilde{\mathbf{\Theta}}, \mathcal{M}) \right]$$
$$+ D_{j} \cdot p(\mathcal{O}, \mathcal{W} | \tilde{\mathbf{\Theta}}, \mathcal{M}) \left]$$
$$\mathcal{G}(\mathcal{S}_{j}, \tilde{\mathbf{\Theta}}) = \frac{\mathcal{H}(\mathcal{S}_{j}, \tilde{\mathbf{\Theta}}, \mathcal{M})}{\sum_{j} \mathcal{H}(\mathcal{S}_{j}, \tilde{\mathbf{\Theta}}, \mathcal{M})}$$

• $\tilde{\Theta}$ is the "current" model parameters such that $\mathcal{F}_{MMI}(\tilde{\Theta}, \mathcal{M}) \leq \mathcal{F}_{MMI}(\Theta, \mathcal{M})$.

Marginalizing MMI criterion

The criterion lower bound $\mathcal{L}(\Theta, \tilde{\Theta})$ is tractable given sufficient statistics:

• MMI hidden variable occupancy.

 $\gamma_j^{\mathrm{MMI}}(\mathcal{O}) = P(\mathcal{S}_j | \mathcal{O}, \mathcal{W}, \tilde{\Theta}, \mathcal{M}) - P(\mathcal{S}_j | \mathcal{O}, \tilde{\Theta}, \mathcal{M}) + D_j \cdot p(\mathcal{O}, \mathcal{S}_j | \tilde{\Theta}, \mathcal{M})$

• MMI auxiliary function.

$$\mathcal{Q}_{\mathrm{MMI}}(\boldsymbol{\Theta}, \tilde{\boldsymbol{\Theta}}) = \sum_{j} \gamma_{j}^{\mathrm{MMI}}(\mathcal{O}) \log p(\mathcal{O}, \mathcal{S}_{j} | \boldsymbol{\Theta}, \mathcal{M})$$

• Hidden variable specific convergence factor D_j .

Marginalizing MWE/MPE criterion

• MWE criterion equivalent to average word error.

$$\mathcal{F}_{\text{MWE}}(\boldsymbol{\Theta}, \mathcal{M}) = \frac{\sum_{\tilde{\mathcal{W}}} p(\mathcal{O}, \tilde{\mathcal{W}} | \boldsymbol{\Theta}, \mathcal{M}) \mathcal{A}(\tilde{\mathcal{W}}, \mathcal{W})}{p(\mathcal{O} | \boldsymbol{\Theta}, \mathcal{M})}$$

- $\mathcal{A}(\tilde{\mathcal{W}}, \mathcal{W})$ is word or phone level accuracy for some path $\tilde{\mathcal{W}}$.
- Under certain constraints imposed on the parametric space we select:

$$\mathcal{H}(\mathcal{S}_{j}, \Theta, \mathcal{M}) = p(\mathcal{O}, \mathcal{S}_{j} | \Theta, \mathcal{M}) \left[\mathcal{F}_{MWE}(\Theta, \mathcal{M}) - \mathcal{F}_{MWE}(\tilde{\Theta}, \mathcal{M}) \right]$$
$$+ D_{j} \cdot p(\mathcal{O} | \tilde{\Theta}, \mathcal{M}) \right]$$
$$\mathcal{G}(\mathcal{S}_{j}, \tilde{\Theta}) = \frac{\mathcal{H}(\mathcal{S}_{j}, \tilde{\Theta}, \mathcal{M})}{\sum_{j} \mathcal{H}(\mathcal{S}_{j}, \tilde{\Theta}, \mathcal{M})}$$

• $\tilde{\Theta}$ satisfies that $\mathcal{F}_{MWE}(\tilde{\Theta}, \mathcal{M}) \leq \mathcal{F}_{MWE}(\Theta, \mathcal{M}).$

Marginalizing MWE/MPE criterion

The criterion lower bound $\mathcal{L}(\Theta,\tilde{\Theta})$ is tractable given sufficient statistics:

• MWE hidden variable occupancy.

$$\gamma_{j}^{\text{MWE}}(\mathcal{O}) = \sum_{\tilde{\mathcal{W}}} P(\tilde{\mathcal{W}}|\mathcal{O}, \tilde{\Theta}, \mathcal{M}) \mathcal{A}(\tilde{\mathcal{W}}, \mathcal{W}) \left[P(\mathcal{S}_{j}|\mathcal{O}, \tilde{\mathcal{W}}, \tilde{\Theta}, \mathcal{M}) - P(\mathcal{S}_{j}|\mathcal{O}, \tilde{\Theta}, \mathcal{M}) \right] + D_{j} \cdot p(\mathcal{O}, \mathcal{S}_{j}|\tilde{\Theta}, \mathcal{M})$$

• MWE auxiliary function.

$$\mathcal{Q}_{\text{MWE}}(\boldsymbol{\Theta}, \tilde{\boldsymbol{\Theta}}) = \sum_{j} \gamma_{j}^{\text{MWE}}(\mathcal{O}) \log p(\mathcal{O}, \mathcal{S}_{j} | \boldsymbol{\Theta}, \mathcal{M})$$

• Hidden variable specific convergence factor D_j .

Evaluation of complexity control criteria

- Expecting strong correlation between criterion and WER.
- criterion and WER.
 Increasing a good criterion should never deteriorate WER.
- Increasing a bad criterion leads to high error in WER ranking prediction.
- Intuitive and efficient to compare various criteria.

Complexity Control Criterion

Quantizing criteria ranking prediction error

- Average ranking prediction error is computed using:
 - Amount of position shifts due to mis-ranking.
 - Pairwise WER difference between the mis-ranked systems.
 - Normalization by maximum WER difference and position shifts.
- Simple example: criterion \mathcal{F}_2 outperforms \mathcal{F}_1 in ranking prediction.

$$\begin{array}{l} - \text{ Correct ranking: } 38.5 \ 38.2 \ 38.1 \ 38.0 \\ - \ \mathcal{F}_1: & 38.1 \ 38.2 \ 38.5 \ 38.0 \\ & \implies \frac{(38.5 - 38.1) \times (3 - 1)}{4 \times (38.5 - 38.0) \times 3} = 13.3\% \quad \times \\ - \ \mathcal{F}_2: & 38.5 \ 38.0 \ 38.2 \ 38.1 \\ & \implies \frac{(38.2 - 38.1) \times (3 - 2) + (38.1 - 38.0) \times (4 - 3)}{4 \times (38.5 - 38.0) \times 3} = 3.3\% \quad \checkmark \end{array}$$

Switchboard Hub5 training setup

- 68 hours switchboard corpus h5train00sub
 - PLP features with differentials up to third order
 - VTLN with side based cepstral mean and variance normalization
 - Decision tree based cross word triphone
 - trigram language model for decoding
- 3 hours of test and held-out data set dev01sub
- System complexity attributes to optimize on global level:
 - Retained subspace dimensionality: $\{28, ..., 52\}$
 - Number of Gaussians per state: $\{12, 16, 24\}$
- System complexity attributes to optimize on local level:
 - Variable number of mixture components per state
 - Fixed total number of components in the system: 74k

Bayesian Information Criterion (BIC)

- High ranking prediction error.
- Wrong prediction of optimal number of Gaussian components.
- Favoring higher dimensional systems.
- Computationally expensive.

Bayesian Information Criterion (BIC)

- Criterion ambiguity: non-monotonic increment of training data loglikelihood against the number of free parameters.
- Limitation for optimizing multiple system complexity attributes.
- Unsuitable for LVCSR complexity control tasks.

Variational approximated Bayesian evidence

- General trend of reduced WER vs. increased criterion.
- Robust prediction for optimizing multiple system complexity attributes.
- Low prediction error given the assumptions made.
- Computationally cheaper.

Variational approximated Bayesian evidence predicting WER%

Marginalized MMI criterion

- Considerably strong correlation between criterion and WER%.
- Robust in optimizing multiple system complexity attributes.
- Low prediction error.
- Computationally cheaper.

Closely capturing WER variation across different model structures!!!

Ranking prediction error and run time

• Average ranking prediction error and run time of various criteria across all 75 ML HLDA systems with different WER% thresholds.

	Ranking Error%			Run time
WER% threshold	0.0	0.1	0.2	(×RT)
BIC	48.43	48.36	47.35	1200.0
Held-out data likelihood	8.94	8.89	8.19	1237.5
Variational approximation	7.50	7.46	6.40	8.5
Marginalized MMI	7.37	7.35	5.79	29.0
WER	0.0	0.0	0.0	1575.0

- Marginalized MMI criterion outperforms all other criteria with the lowest overall ranking prediction error.
- Criterion run time of marginalized MMI criterion and variational approximated Bayesian evidence is significantly smaller.

Optimizing local complexity attributes

• Fixing the total number of Gaussians in the system using various criteria to optimize state pdf complexity on local level.

	WER% on dev01sub					
	Swbd1	Swbd2	Cellular	Total		
Baseline (12com)	27.7	44.9	44.7	39.0		
VarMix	27.6	45.0	44.4	38.9		
Variational approximation	27.6	44.9	44.0	38.7		
Marginalized MMI	27.6	44.8	44.0	38.7		

- 0.3% abs gain from both variational approximated Bayesian evidence and marginalized MMI criterion.
- Most of the gain on cellular data, improvements over all three subsets.

Conclusion

- Likelihood based schemes like BIC unsuitable.
 - Considerable prediction error on recognition performance.
 - Poor performance when optimizing multiple complexity attributes.
 - No direct relations with recognition word error.
- Future work will be concentrated on
 - Marginalized discriminative training criteria.
 - Optimizing HLDA retained subspace dimensionality on local level.

