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Xunying Liu: Automatic Complexity Control for LVCSR Systems

Why are we doing complexity control?

• Most LVCSR systems are trained on large amounts of data.

• Many techniques alter system complexity and recognition performance.
– State clustering
– State distributions of Gaussian mixtures
– Adaptation transforms sharing
– Dimensionality reduction schemes

• Aiming at optimizing complexity to minimize word error rate for unseen data.

• Infeasible to train and evaluate individual systems’ performance.

• Need automatic criterion to quickly predict performance ranking.
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System complexity we are optimizing

• Two system complexity attributes of HLDA systems:
– Complexity of state pdf in terms of number of Gaussians
– Retained subspace dimensionality

• Initial aim: optimizing system complexity on global level:
– Possible to explicitly evaluate various complexity control criteria
– Feasible to obtain WER ranking for criterion evaluation

• Final aim: optimizing system complexity on local level:
– Complexity of state pdf in terms of number of Gaussians
– Infeasible to obtain WER for various systems
– Aiming at decreasing WER given fixed system complexity

Cambridge University
Engineering Department

MIL Speech Seminar 2003 2



Xunying Liu: Automatic Complexity Control for LVCSR Systems

Heteroscedastic LDA (HLDA)

ǒ =

[

A[p]o

A[n−p]o

]

=

[

ǒ[p]

ǒ[n−p]

]

• Feature space diagonalizing and
projection transform.

• Allow to incorporate higher order
dynamic features.

• Iterative EM based optimization,
successfully applied to LVCSR tasks.

• Need to determine optimal retained
subspace dimensionality.
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Mixture of Gaussians based pdf

bj(o) =
∑

m

cjmN (o;µ(jm),Σ(jm))

• Possible to approximate any form of
distribution given sufficient number
of Gaussian components.

• Implicitly modeling feature space
correlation.

• How many components should we
have then???

Two Component Mixture Model
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Existing complexity control criteria

• Explicitly train up individual systems and access WER.

• Validation test using held-out data likelihood.
– Sufficiently large and representative enough.
– Further reducing the amount of training data available.
– Infeasible to build individual systems for criterion evaluation.

• Bayesian evidence integration, assuming its strong correlation with held-out
data likelihood.

M̂ = argmax
M

{

P (M)

∫

p(O|Θ,M)p(Θ|M)dΘ

}

• Information theory approaches.

• Fitting complexity proportional to amount of training data, eg. VarMix
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Ockham’s Razor

• Important property of Bayesian
evidence integral.

• Penalizes over complex model
structures with bad generalization.

• Model structures with optimal
complexity only model a certain
range of interesting data sets.

• Over simple model structures are not
powerful enough.

X

just right

All Possible Data Sets

too simple
P(

X|
M

)

too complex
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Approximation schemes for evidence integration

• Bayesian Information Criterion (BIC):

log p(O|M) ≈ log p(O|Θ̂,M)− k

2
log T

• Laplace approximation:

log p(O|M) ≈ log p(O|Θ̂,M)− 1

2
log
∣

∣

∣
−∇2 log p(O|Θ̂,M)

∣

∣

∣
+
k

2
log 2π

• Variational Approximation:

log p(O|M) ≥
∫

∑

j

G(Sj,Θ) log
p(O,Sj,Θ|M)

G(Sj,Θ)
dΘ

• Markov Chain Monte Carlo (MCMC) sampling schemes.
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Laplace approximated Bayesian evidence
∫

f(x)dx ≈ (2π)
d
2f(x̂)

|−∇2
x
log f(x̂)|12

• Gaussian approximation of likelihood
local curvature in the parametric
space.

• Computationally tractable lower
bound needed to approximate true
log likelihood.

• Using block diagonal Hessian matrix
to reduce computation.

PSfrag replacements

x

f(x)

x̂

[

−∇2
x
log f(x̂)

]
1
2

Laplace Approximation
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Variational approximated Bayesian evidence
Lower bounding ML criterion marginalization

log p(O|M) ≥
∫

∑

j

G(Sj,Θ) log
p(O,Sj,Θ|M)

G(Sj,Θ)
dΘ

• Impossible to use EM strong sense
auxiliary function based lower bound
if joint posterior P (Sj,Θ|O,M) is
intractable.

• Using tractable approximation to
P (Sj,Θ|O,M).

• Variational lower bound may not
equal to ML criterion during E step
for each model instance.

PSfrag replacements

F(Θ,M)

L(Θ, Θ̃)

LVB(Θ,M)

Variational Approximation
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Variational approximated Bayesian evidence

• Various forms of G(Sj,Θ) may tighten the bound.

• One choice of variational distribution:
G(Sj,Θ) = P (Sj|O, Θ̃,M)p(Θ|M)

• Bayesian evidence integral is then lower bounded as
∫

p(O|Θ,M)p(Θ|M)dΘ ≥ R(Θ̃,M)

∫

exp{QML(Θ, Θ̃)}p(Θ|M)dΘ

• R(Θ̃,M) is related to entropy of hidden variable posteriors.

R(Θ̃,M) = exp







−
∑

j

P (Sj|O, Θ̃,M) logP (Sj|O, Θ̃,M)







• Using Laplace approximation to compute the evidence integral lower bound.
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Issues with ML paradigm

• No strong correlation between
criteria and WER.

• Considerable prediction error.

• Making assumption about model
correctness.

• Why not use criteria directly related
to recognition error??? −50 −49 −48 −47 −46 −45 −44 −43
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Using discriminative training criteria

• More directly related to recognition error.

• Successfully applied for training LVCSR systems.

• Efficient lattice based implementation available.

• Criteria we will investigate:
– Maximum Mutual Information (MMI) criterion
– Minimum Word Error (MWE) criterion
– Minimum Phone Error (MPE) criterion

• Can’t we marginalize these criteria instead of ML criterion???
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Marginalizing discriminative training criteria

Marginalizing a criterion lower bound derived using generalized EM algorithm,

L(Θ, Θ̃) =
∑

j

G(Sj, Θ̃) log
H(Sj,Θ,M)

G(Sj, Θ̃)

• Initially find a criterion lower bound
H(Θ,M) with similar curvature.

• Further lower bounding H(Θ,M)
using generalized EM algorithm to
L(Θ, Θ̃).

• L(Θ, Θ̃) is a strong sense auxiliary
function for H(Θ,M) but not for
F(Θ,M).

PSfrag replacements

F(Θ,M)

L(Θ, Θ̃)

H(Θ,M)
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Marginalizing discriminative training criteria

• L(Θ, Θ̃) can be related to discriminative training auxiliary functions.

– Strong correlation between criteria and bounds in training.
– Possible to use one set of statistics to rank multiple systems.

• This affects how to select H(Sj,Θ,M) and G(Sj, Θ̃):

– H(Sj,Θ,M) should be related to emission probability.

H(Sj,Θ,M) ∝ p(O,Sj|Θ,M)

– H(Sj,Θ,M) should be related to criterion curve curvature.

∑

j

H(Sj,Θ,M) ∝ F(Θ,M)−F(Θ̃,M)

– G(Sj, Θ̃) has positive and sum to one constraint.
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Marginalizing MMI criterion

• MMI criterion equivalent to posterior over the correct sentence W.

FMMI(Θ,M) =
p(O,W|Θ,M)

p(O|Θ,M)

• Under certain constraints imposed on the parametric space we select:
H(Sj,Θ,M) = p(O,Sj|Θ,M)

[

FMMI(Θ,M)−FMMI(Θ̃,M)

+Dj · p(O,W|Θ̃,M)
]

G(Sj, Θ̃) =
H(Sj, Θ̃,M)

∑

jH(Sj, Θ̃,M)

• Θ̃ is the “current” model parameters such that FMMI(Θ̃,M) ≤ FMMI(Θ,M).
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Marginalizing MMI criterion

The criterion lower bound L(Θ, Θ̃) is tractable given sufficient statistics:

• MMI hidden variable occupancy.

γMMI
j (O) = P (Sj|O,W, Θ̃,M)− P (Sj|O, Θ̃,M) +Dj · p(O,Sj|Θ̃,M)

• MMI auxiliary function.

QMMI(Θ, Θ̃) =
∑

j

γMMI
j (O) log p(O,Sj|Θ,M)

• Hidden variable specific convergence factor Dj.
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Marginalizing MWE/MPE criterion

• MWE criterion equivalent to average word error.

FMWE(Θ,M) =

∑

W̃ p(O, W̃|Θ,M)A(W̃,W)

p(O|Θ,M)

• A(W̃,W) is word or phone level accuracy for some path W̃.

• Under certain constraints imposed on the parametric space we select:
H(Sj,Θ,M) = p(O,Sj|Θ,M)

[

FMWE(Θ,M)−FMWE(Θ̃,M)

+Dj · p(O|Θ̃,M)
]

G(Sj, Θ̃) =
H(Sj, Θ̃,M)

∑

jH(Sj, Θ̃,M)

• Θ̃ satisfies that FMWE(Θ̃,M) ≤ FMWE(Θ,M).
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Marginalizing MWE/MPE criterion

The criterion lower bound L(Θ, Θ̃) is tractable given sufficient statistics:

• MWE hidden variable occupancy.

γMWE
j (O) =

∑

W̃

P (W̃|O, Θ̃,M)A(W̃,W)
[

P (Sj|O, W̃, Θ̃,M)

−P (Sj|O, Θ̃,M)
]

+Dj · p(O,Sj|Θ̃,M)

• MWE auxiliary function.

QMWE(Θ, Θ̃) =
∑

j

γMWE
j (O) log p(O,Sj|Θ,M)

• Hidden variable specific convergence factor Dj.
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Evaluation of complexity control criteria

• Expecting strong correlation between
criterion and WER.

• Increasing a good criterion should
never deteriorate WER.

• Increasing a bad criterion leads to
high error in WER ranking prediction.

• Intuitive and efficient to compare
various criteria.

Complexity Control Criterion

W
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rr
o
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High prediction error

Low prediction error 
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Quantizing criteria ranking prediction error

• Average ranking prediction error is computed using:
– Amount of position shifts due to mis-ranking.
– Pairwise WER difference between the mis-ranked systems.
– Normalization by maximum WER difference and position shifts.

• Simple example: criterion F2 outperforms F1 in ranking prediction.

– Correct ranking: 38.5 38.2 38.1 38.0
– F1: 38.1 38.2 38.5 38.0

=⇒ (38.5− 38.1)× (3− 1)

4× (38.5− 38.0)× 3
= 13.3% ×

– F2: 38.5 38.0 38.2 38.1

=⇒ (38.2− 38.1)× (3− 2) + (38.1− 38.0)× (4− 3)

4× (38.5− 38.0)× 3
= 3.3%

√
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Switchboard Hub5 training setup

• 68 hours switchboard corpus h5train00sub
– PLP features with differentials up to third order
– VTLN with side based cepstral mean and variance normalization
– Decision tree based cross word triphone
– trigram language model for decoding

• 3 hours of test and held-out data set dev01sub

• System complexity attributes to optimize on global level:
– Retained subspace dimensionality: {28, ..., 52}
– Number of Gaussians per state: {12, 16, 24}

• System complexity attributes to optimize on local level:
– Variable number of mixture components per state
– Fixed total number of components in the system: 74k
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Bayesian Information Criterion (BIC)

• High ranking prediction error.

• Wrong prediction of optimal number
of Gaussian components.

• Favoring higher dimensional systems.

• Computationally expensive.
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Bayesian Information Criterion (BIC)

• Criterion ambiguity: non-monotonic
increment of training data log-
likelihood against the number of free
parameters.

• Limitation for optimizing multiple
system complexity attributes.

• Unsuitable for LVCSR complexity
control tasks. 0.4 0.6 0.8 1 1.2 1.4 1.6
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Variational approximated Bayesian evidence

• General trend of reduced WER vs.
increased criterion.

• Robust prediction for optimizing
multiple system complexity
attributes.

• Low prediction error given the
assumptions made.

• Computationally cheaper.
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Marginalized MMI criterion

• Considerably strong correlation
between criterion and WER%.

• Robust in optimizing multiple system
complexity attributes.

• Low prediction error.

• Computationally cheaper. 23 24 25 26 27 28 29 30
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Marginalized MMI criterion
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Closely capturing WER variation across different model structures!!!
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Ranking prediction error and run time

• Average ranking prediction error and run time of various criteria across all 75
ML HLDA systems with different WER% thresholds.

Ranking Error% Run time
WER% threshold 0.0 0.1 0.2 (×RT)

BIC 48.43 48.36 47.35 1200.0
Held-out data likelihood 8.94 8.89 8.19 1237.5
Variational approximation 7.50 7.46 6.40 8.5
Marginalized MMI 7.37 7.35 5.79 29.0

WER 0.0 0.0 0.0 1575.0

• Marginalized MMI criterion outperforms all other criteria with the lowest overall
ranking prediction error.

• Criterion run time of marginalized MMI criterion and variational approximated
Bayesian evidence is significantly smaller.
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Optimizing local complexity attributes

• Fixing the total number of Gaussians in the system using various criteria to
optimize state pdf complexity on local level.

WER% on dev01sub
Swbd1 Swbd2 Cellular Total

Baseline (12com) 27.7 44.9 44.7 39.0
VarMix 27.6 45.0 44.4 38.9

Variational approximation 27.6 44.9 44.0 38.7
Marginalized MMI 27.6 44.8 44.0 38.7

• 0.3% abs gain from both variational approximated Bayesian evidence and
marginalized MMI criterion.

• Most of the gain on cellular data, improvements over all three subsets.
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Conclusion

• Likelihood based schemes like BIC unsuitable.
– Considerable prediction error on recognition performance.
– Poor performance when optimizing multiple complexity attributes.
– No direct relations with recognition word error.

• Future work will be concentrated on
– Marginalized discriminative training criteria.
– Optimizing HLDA retained subspace dimensionality on local level.
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