

Outline

Introduction **Development of Japanese English read speech database Corpus-based analysis of JE production** Phonetic Tree Analysis (PTA) Corpus-based analysis of JE perception Segmental intelligibility estimation without acoustic matching Application of PTA-based intelligibility estimation What is the next target phoneme in efficient learning? Prediction of the student's future Some interesting issues on PTA and phonetics **Conclusions and future works**

Introduction (#1)

Current situation of English education in Japan

- General State
 General
- ♀ From "native-sounding" to "intelligible" pronunciation
 - Solution Foreign accents don't always disturb smooth communication.
 - So Listeners easily adapt themselves to the speaker's pronunciation.
- What is the intelligibility of the pronunciation?
 - Easiness of accessing to a fisterier's mental lexicon
 - Not only phonetics-based but also cognition-based strategy for LL
 - What is the model for listeners' ability of the adaptation?
- ♀ A boom -- CALL system --
 - Acoustic matching between students and teachers
 - "Native-sounding" oriented
 - Still unstable especially for children / elderly speech
 - No adaptation techniques are allowed basically.

Introduction (#2)

No two students are the same.

- On the second second
 - Current CALL technologies = error detection and scoring
 - Required technologies = writing of how the student was, is, and will be.
- Phonetic Tree Analysis (PTA)
 - Se Extraction of embedded phonetic structure in the pronunciation
 - Abstract but phonetically-meaningful visualization of how the student is
 - Cancellation of microphone characteristics and speakers' individuality
 - Perceptual representation of the pronunciation structure
 - No need of acoustic matching with reachers' speech
 - © Can be applied to children and elderly speech immediately.
 - Can be applied to estimate the segmental intelligibility
 - Can be applied to instruct the next target in learning
 - Can be applied to roughly estimate the student's future.

Introduction (#3)

From phonetics to phonetics+cognition

students'

speech

students'

speech

teachers' HMMs

Conventional --- matching between two sounds ---

Based on speech sci. and eng.

Affected by mic, BN, size, shape, sex, age, individuality

Native-sounding oriented

Proposed -- matching between two structures ---

mental lexicon

Based also on cognition

Complete cancellation of static multiplicative noise Intelligibility oriented

Development of JE speech database (#1)

Technical and educational requirements for the design

Technical issues

- Solution Focus only on commonly observed acoustic distortions
- Adequate selection of speakers and recording strategy
 - Random selection of 100 male and 102 female university students
 - Reading given sheets, not spontaneous conversation
 - Phonetic symbols and prosodic symbols
 - Pronunciation practices allowed
 - Repetition until the speakers judged that they did it right.

Seducational issues

- Phonetic (segmental) aspect and prosocic aspect
- Word reading and sentence reading
- Sentence set / word set X phonetic set / prosodic set

Development of JE speech database (#2)

Word / sentence sets for the phonetic aspect

set	size
Phonemically-balanced words	300
Minimal pair words	600
TIMIT-based phonemically-balanced sentences	460
Sentences with phoneme sequences difficult to produce fluently	32
Sentences designed for test set	100
	TRAISEL-1
Minimal pair words ulcidde some unknown words	
vord / sentence sets for the prosourc aspect	
s <mark>et</mark>	size
Words and compound words with various accent patterns	109
Sentences with various intonation patterns	94
Sentences with various rhythm patterns	121
Intonational differences caused by commas, focused words, syntac	tic
structures, references, and so on	

Prosodic symbols assigned by English teachers

Development of JE speech database (#4) More examples S2_0094 Did John resign or retire ? [D IH1 D] [JH AA1 N] [R AXO Z AY1 N] [AO1 R] [R AXO T AY1 R] 備考:選択疑問文「辞任したのか引退したのか,どちらなのか」について尋ねる。 S2_0095 Did John resign or retire ? [D IH1 D] [JH AA1 N] [R AXO Z AY1 N] [AO1 R] [R AXO T AY1 R] 備考:Yes/No 疑問文「辞任または引退した」ことが事実かどうかを尋ねる。 S1 0105 Come to tea. /+ - @/ [K AH1 M] [T UW1] [T IY1] S1 0106 Come to tea with John. / + - + -0 [K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N] S1_0107 Come to tea with John and Mary. @/-0 -/ / + + -[K AH1 M] [T UW1] [T IY1] [W IH1 DH] [JH AA1 N] [AE1 N D] [M EH1 R IYO]

Development of JE speech database (#5)

Recording

Speakers

- Quasi-random selection of 100 male and 102 ismale univ. students
- Recording task
 - All the sentences into 8 sub-sets
 - All the words into 5 sub-sets
 - I sentence sub-set (125) + 1 word sub-set (225) / speaker
- Recording procedures
 - [Before R] Speakers were asked to do pronunciation practices
 - [During R] Also asked to do repetition until they judged they did it right.
 Correct English at least for students
 - [After R] Every utterance was checked by technical staff.
 - The remaining errors are due to lack of the speakers' knowledge of correct articulation of English sounds.

Development of JE speech database (#6)

Corpus analysis of JE production (SI, #1)

Training of AE and JE SI-HMMs

Monophones with a single mixture for easy visualization

- Transcription automatically generated with RRONLEX
 - Pronunciation errors were not represented in the transcription.

Corpus analysis of JE production (SI, #2)

Magnitude of variances of AE and JE

Se Relative difference in averaged variances over cep. dimensions

Corpus analysis of JE production (SI, #3)

Phoneme pairs difficult for Japanese to discriminate

Q Ratio of state distance in JE to that in AE

22469776215979354							<u> </u>
pair	s2	s3	s4	pair	s2	s3	s4
/r/&/l/	0.18	0.18	0.10	/hh/&/f/	0.31	0.27	0.58
/s/&/th/	0.09	0.03	0.10	/b/&/v/	0.94	0.79	0.40
/s/&/sh/	0.28	0.34	0.55	/ih/&/iy/	0.22	0.20	0.15
/th/&/sh/	0.23	0.32	0.49	/ih/&/y/	0.17	0.29	0.62
/z/&/zh/	0.36	0.49	0.76	/uh/&/uw/	0.26	0.23	0.30
/z/&/dh/	0.20	0.24	0.35	/ae/&/aa/	6 <mark>2</mark> 4	0.28	0.62
/z/&/jh/	0.21	0.37	0.62	/ae/&/ah/	0 5	0.17	0.12
/zh/&/jh/	0.31	0.32	0.56	/aa/&/ah/	0 26	0.13	0.46
/zh/&/dh/	0.27	0.31	0.38	/er/&/ah/	0 0 3	0 9	0.16
/dh/&/jh/	0.19	0.20	0.44	/er/&/aa/	<i>J</i> . 7	£ 12	0.26
/n/&/ng/	0.74	0.59	0.50	/er/&/ae/	0.15	0.09	0.22

Larger confusion is clearly seen in each pair

9

 \bigcirc Mid and low vowels are replaced by a Japanese mid and low vowel $/ \overline{b} / .$

Corpus analysis of JE production (SI, #4)

Schwa and other vowels in AE and JE

Solution Five nearest phonemes (not vowels) to schwa in AE and JE

state	1st	2nd	3rd	4th	5th
ax2/AE	ih2(0.68)	uh2(0.73)	d4(0.75)	ah2(0.76)	eh2(0.86)
ax3/AE	ih3(0.87)	uh3(0.88)	eh4(0.93)	ae4(0.94)	uw4(0.96)
ax4/AE	uw4(0.69)	ih4(0.72)	uh4(0.76)	ah4(0.80)	eh4(0.84)
ax2/JE	ae2(0.46)	ah2 0 51)	aa2(0.51)	ay2(0.65)	aw2(0.69)
ax3/JE	ah3(0.57)	$ae^{2}(\hat{v}.61)$	aa3(0.72)	aw3(0.80)	uh3(0.87)
ax4/JE	ah4(0.54)	$a \rightarrow 0, \ell_1$	aa4(0.73)	aw4(0.78)	uh4(0.86)

Schwa is one of the most difficult sounds for Japanese to produce.

So Various vowels are found in AE but only mid and low wowels in JE.

 \bigcirc Mid and low vowels of JE = /5/

Japanese perceive /あ/ in native schwa sounds.

● Japanese produce /あ/ for schwa.

Corpus analysis of JE production (SI, #5)

Phonetic Tree Analysis (PTA) with SI HMMs

- State-level distance matrices for AE and JE
- Shattacharyya distance measure
- Hierarchical clustering for each matrix with Ward's method

Corpus analysis of JE production (SD, #1)

Speaker Dependent tree diagrams

- State-level --> phoneme-level
 - Phoneme-level distance matrix
 - I-state HMM with 1 mixture (GM)
 - ◎ approx. 60 sentences to train a set of HMMs
 - \bigcirc All the phonemes /zh/((3)) dipthongs (#phonemes = 34)
- Representation of how the student is

 - No two students are the same
- ♀ 20 Americans, each-reading 3 to

Corpus analysis of JE production (SD, #8)

Characteristics of PTA

- So Can do writing and labeling of how the student is.
 - © Clustering the trees defines typical states of pronunciation learning.
- Q Can do abstract and easy-to-understand visualization.
 - So physics, no acoustics but educationally meaningful enough
- Q Requires no acoustic matching with teachers.
 - Never has "mismatch" problems.
 - Can be applied to children and elderly people without any difficulty.
- Only focuses on inter-phoneme Bhattacharyya distances.
 - Shift and rotation do not change the distances
 - Scaling does not change either if variances are proportionally modified.
 - A part of MLR with a single matrix does not change the distances.
 - Sextraction of only the phonetic structure by ignoring some other factors.
- Perceptual representation of the pronunciation structure.

Corpus analysis of JE production (SD, #9)

Labeling of phonemes

- Phonemic transcriptions generated by forced alignment
- Sequence of phonemes seen in speech of some seconds

Eabeling of rhythms

- Sequence of (un)stressed sy lables seen in speech of some seconds

Labeling of intonation

- (x-)ToBI, Fujisaki-model, piecewise concatenation model,,,
- Q Change of 60 seen in speech of some seconds

Labeling of pronunciation

- Spectrograms for the individual phonemes
 - Only for researchers, not for education
- ♀ PTA for the overall description of pronunciation
- Generation seen in training of some months or years

Corpus analysis of JE production (SD, #8)

Characteristics of PTA

- So Can do writing and labeling of how the student is.
 - © Clustering the trees defines typical states of pronunciation learning.
- Q Can do abstract and easy-to-understand visualization.
 - So physics, no acoustics but educationally meaningful enough
- Q Requires no acoustic matching with teachers.
 - Never has "mismatch" problems.
 - Can be applied to children and elderly people without any difficulty.
- Only focuses on inter-phoneme Bhattacharyya distances.
 - Shift and rotation do not change the distances
 - Scaling does not change either if variances are proportionally modified.
 - A part of MLR with a single matrix does not change the distances.
 - Sextraction of only the phonetic structure by ignoring some other factors.
- Perceptual representation of the pronunciation structure.

Corpus analysis of JE production (SD, #10)

A state transition model of pronunciation learning

L3

12

Corpus analysis of JE production (SD, #8)

Characteristics of PTA

- Quan do writing of how the student is.
 - © Clustering the trees defines typical states of pronunciation learning.
- Q Can do abstract and easy-to-understand visualization.
 - No physics, no acoustics but educationally meaningful enough
- Q Requires no acoustic matching with teachers.
 - Never has "mismatch" problems.
 - Can be applied to children and elderly people without any difficulty.
- Only focuses on interphoneme Bhattacharyya distances.
 - Shift and rotation do not change the distances
 - Scaling does not change either if variances are proportionally modified.
 - A part of MLR with a single matrix does not change the distances.
 - Sextraction of only the phonetic structure by ignoring some other factors.
- Perceptual representation of the pronunciation structure.

Corpus analysis of JE production (SD, #11)

MLLR = Affine Transform of cepstrums

AT = scaling + warping + rotation + shift
 Structure in an object is kept before and after the transform

- MLLR with a single transform matrix
 MLLR adaptation with N (>>1) matrices in speech recognition
 Different parts of a triphone set have different speaker individuality.
- Speaker individuality can be modeled by a single GMM.
- MLLR adaptation in HMM-based speech synthesis
 - HMMs of a speaker are converted into those of another with 5 sentences.
 N \sim 1
- Good cancellation of speaker individuality

Corpus analysis of JE production (SD, #8)

Characteristics of PTA

- Quan do writing of how the student is.
 - © Clustering the trees defines typical states of pronunciation learning.
- Q Can do abstract and easy-to-understand visualization.
 - No physics, no acoustics but educationally meaningful enough
- Q Requires no acoustic matching with teachers.
 - Never has "mismatch" problems.
 - Can be applied to children and elderly people without any difficulty.
- Only focuses on inter-phoneme Bhattacharyya distances.
 - Shift and rotation do not change the distances
 - Scaling does not change either if variances are proportionally modified.
 - A part of MLR with a single matrix does not change the distances.
 - Extraction of only the phonetic structure by ignoring some other factors.
- Perceptual representation of the pronunciation structure.

Is PTA new ? (#1)

NO !

- @ "Structuralism" by R. Jakobson, M. Halle, G. Fant, and etc
 - © Concise and accurate description of sounds in a language
 - Phoneme clustering based upon distinctive features

Fig. I-1. Branching diagram representing the morphonemes of Russian. The numbers with which each node is labelled refer to the different features, as follows: 1. vocalic vs. nonvocalic; 2. consonantal vs. nonconsonantal; 3. diffuse vs. nondiffuse; 4. compact vs. noncompact; 5. low tonality vs. high tonality; 6. strident vs. mellow; 7. nasal vs. nonnasal; 8. continuant vs. interrupted; 9. voiced vs. voiceless; 10. sharped vs. plain; 11. accented vs. unaccented. Left branches represent minus values, and right branches, plus values for the particular feature.

C S S, Z Z; P P,

b b, m m,

Is PTA new ? (#1)

NO !

- Structuralism" by R. Jakobson, M. Halle, G. Fant, and etc
 - Concise and accurate description of sounds in a language
 - Phoneme clustering based upon distinctive features

🗳 YES !

- It's non-native speech sounds
 - On the second provide the sec
 - Some state-tying in HMM training and mixture tying in MLLR adaptation

🗳 YES !!

Technical meaning of genoring pronemes' absolute positions in AS
 Complete cancellation of static and multiplicative distortions
 Robust also in rotation and scaling

₽ YES !!!

Accordance between phonetic structure and lexical structure
 Cognition-based goodness of the segmental aspect of the pronunciation
 Not native sounding but intelligibility-based scoring

Section of the cohort size with the initial portion of input speech

Corpus analysis of JE perception (SI, #3)

Acoustic unit of cohort development

- Perceptual unit of English = syllables
- Syllabification with tsylb v2.1

Estimation of the cohort size with the initial syl. input

- Vocabulary
 - © PRONLEX dictionary (approx. 100K word entries)
- Q Varieties of the initial syllables of the entries
 - #different (initial) syllables = approx 10K
- Generation of the different syllables. CSO(si, €) is calculated.
 - \bigcirc CSO(si, θ) = #words starting with side
 - words starting with a syllable distant from si by less than θ
 - \bigcirc CS(θ) = average of CS0(si, θ) over s
- Distance measure between syllables

 - State-to-state distance = Bhattacharyya distance
 - State-level distance matrix provides all the required information.

Corpus analysis of JE perception (SI, #4)

Cohort size as a function of threshold θ

SI AE models vs. SI JE models
SD AE models vs. SD JE models

• No weighting based on N-gram probabilities

Low

Corpus analysis of JE perception (SD, #1)

Cohort size estimation with unigram

♀ Vocabulary

- WSJ 20K (unigram) words starting with /zh/ or dipthongs
- Solution of the initial syllables of the word entries
 - #different (initial syllables) = approx. 3,200
- \bigcirc For each of the different entries, CS1(wi, θ) is calculated.
 - \bigcirc CS1(wj, θ) = CS0(sij, θ), where sij is an initial syllable of wj
 - \bigcirc Expected Cohort Size, ECS($\Im = \Sigma p(wj)$ CS1(wj, Θ) p(wj) = 1-gram
- Or How correlated are the ECS and segmental proficiency labels ?

Corpus analysis of JE perception (SD, #2)

Expected cohort size and segmental proficiency

Corpus analysis of JE perception (SD, #3)

Expected cohort size and segmental proficiency

Son-acoustic matching can estimate the segmental intelligibility.

9

Possible applications of PTA (#1)

Estimation of the next target for efficient learning

teacher's matrix

Which replacement realizes the largest reduction of cohort size ?

Speech samples of RYUNF06

Several sentence speech samples

Possible applications of PTA (#2)

Which phoneme's replacement should come first ?

Cohort size reduction only with a single replacement

Possible applications of PTA (#3)

What is the order in the most efficient learning ?

Possible applications of PTA (#4)

The learning order of another student

Prediction of her future....?

orig. Ə ı ðr ʌaːms dəy ɛ z p nu:∫æwgθ bự t uŋ j iː h ɔː l f ʤ k v

LVCSR vs. SIE

Two types of hearings

Input	an utterance utterances		
mput	(MFCC)	(phonetic structure)	
Acoustic model	phone models	(native phonetic	
	(tied-state triphones)	structure)	
Prop lovicon	phoneme-based	perceptual-unit-based	
FIOI. IEXICOI	tree structured lexicon	tree structured lexicon	
Lang. model	word trigram	word unigram	
	word trigram	(baseform unigram)	
Integration	decodor	isolated word	
integration	uecouer	perception model	
Output	sentence candidates	segmental	
Output	sentence candidates	intelligibility	
Problems	mismatch	mismatch	
	children & elderly	children & elderly	
	native sounding		

Some interesting issues on PTA (#1)

Which is more intelligible pronunciation ?

Some interesting issues on PTA (#2)

Foreign accented pronunciation always reduces the segmental intelligibility ?

Some interesting issues on PTA (#3)

Phonetic

structure

Some optimality is found between the two structures in a single accented language ?

Fionetic

structure

lexica

structure

Some interesting issues on PTA (#4)

st

Phonetic structure

ca

g with keeping the ture the two structures ?

Lexical structure

Pho

stru

A language is e

optimality betw

Two ways of looking at speech

Several new lights on "Structuralism"

Non-native speech

- Learners differ at all.
- No rules there, it's chaotic.
- Only bottom-up processings
- PTA to extract the structure

Word-level cognition

- Access to mental lexicon
- Cohort, Trace, Shortlist, etc
- Structuralism on lexicon

What's missing ?

- Cepstrum-based space
- MLLR adaptation of
- GMM modeling of
- Individuality, mic, age, etc

Application to LL

- Intelligible pronunciation
- Str. description of learners
- Segmental intelligibility
- Design of efficient learning

Conclusions & future works (#1)

Development of Japanese English read speech database

Corpus-based apalysis of JE production

Phonetic Tree Analysis (PTA)

Q Relational observation can visualize well how the student is.

Corpus-based analysis of JE perception

- Cognition-based estimation of the segmental intelligibility
- Q Accordance between two different levels of structures

Possible applications of PTA

The most efficient learning of English phonemes for the student
Prediction of the student's future

Some interesting issues on PTA

G B vs. A, B vs. S, and B vs. B

Conclusions & future works (#2)

Tuning up of acoustic conditions for analysis

General Kind of cepstrums, dimensions, Δ&ΔΔ components, etc.
 Of PTA-based native trees should be similar to the DF-based classical trees.
 Of How to handle insertions and deletions in non-native speech ?
 Of Better preparation of transcriptions to build HMMs
 Of More adequate derivation of phoneme-based distance matrix

Clustering of the trees

- Meaningful and effective definition of distance between two trees
 - Bottom-up definition of typical states of Japanese English
 - State transition model of change of pronunciation through learning

Practical and pedagogical evaluation

Is PTA-based representation really good for teachers and students ?
Is PTA-based design of learning really effective and efficient ?

