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Overview

• MMI & MPE objective functions

• Optimisation of objective functions

– Strong & weak-sense auxiliary functions
– Application to Gaussians and weights

• Prior information: I-smoothing

• Lattices and MMI & MPE optimisation

• Other issues to consider in discriminative training

• Some typical improvements from discriminative training
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Objective functions: MMI & ML
ML objective function is product of data likelihoods given speech file Or

FML(λ) =
R

∑

r=1

log pλ (Or|sr) , (1)

MMI objective function is posterior of correct sentence:

FMMIE(λ) =
R

∑

r=1

log
pλ (Or|sr)

κ P (sr)κ
∑

s pλ (Or|s)κ P (s)κ

=
R

∑

r=1

log Pκ (sr|Or, λ) (2)
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Objective functions: MPE
Minimum Phone Error (MPE) is the summed “raw phone accuracy” (#correct -
#ins) times the posterior sentence prob:

FMPE(λ) =
R

∑

r=1

∑

s pλ(Or|s)κP (s)κRawPhoneAccuracy(s, sr)
∑

s pλ(Or|s)κP (s)κ

=
R

∑

r=1

∑

s

Pκ (sr|Or, λ)RawPhoneAccuracy(s, sr) (3)

Equals the expected phone accuracy of a sentence drawn randomly from the
possible transcriptions (proportional to scaled probability).
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Objective functions: Simple example

• Suppose correct sentence is “a”, only alternative is “b”.

• Let a = pλ(O|“a”)P (“b”) (acoustic & LM likelihood), b is same for “b”.

• ML objective function = log(a)+ other training files.

• MMI objective function = log( a
a+b)+ other training files.

• MPE objective function = a×1+b×0
a+b + other training files.

Cambridge University
Engineering Department

IEEE ICASSP’2002 4



Dan Povey: Discriminative Training for Speech Recognition

Objective functions: Simple example (Continued)
Criteria shown graphically: MPE and MMI criteria as a function of log(a

b).
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Objective functions: Further remarks on MPE

• MPE is sensitive to the “degree of wrongness” of wrong transcriptions.

• There is a related criterion, MWE, where we calculate accuracy based on a
word level.

• (MWE doesn’t work quite so well).
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Optimisation of objective functions: preliminary remarks

• With ML training, there is a fast method available (Expectation-Maximisation)

• For MMI and MPE training, optimisation is more difficult

• Two general kinds of optimisation available: gradient based, and Extended
Baum-Welch (EB)

• Be careful, because criterion optimisation 6= test-set recognition !!

• Need to optimise the objective function in a “smooth” way

• Extended Baum-Welch (EB) is nice because it doesn’t need second-order
statistics
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Auxiliary functions

Objective function
(to be maximised)

function
Auxiliary

(to be maximised)
Objective function

function
Auxiliary

(a) (b)
Use of (a) strong-sense and (b) weak-sense auxiliary functions for function
optimisation

• Auxiliary functions are a concept used in E-M. Functions of (eg) HMM
parameters λ

• Strong-sense auxiliary function: has the same value as real objective function
at a local point λ = λ′, but ≤ objf everywhere else

• Weak-sense auxf has same differential around local point λ = λ′
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Auxiliary functions & function maximisation

• To maximise a function using auxiliary functions, find the maximum of the
auxiliary function, find a new auxiliary function around the new point and
repeat

• With strong-sense auxiliary function, this is guaranteed to increase the function
value on each iteration unless a local maximum has been reached (e.g. as in
E-M)

• With weak-sense auxiliary function, there is no guarantee of convergence

• ... but if it does converge it will converge to a local maximum

• Similar level of guarantee to gradient descent (which will only converge for
correct speed of optimisation)

• Note– “weak-sense” and “strong-sense” are my terminology, normal
terminology is different also involves the term “growth transformation.”

Cambridge University
Engineering Department

IEEE ICASSP’2002 9



Dan Povey: Discriminative Training for Speech Recognition

Strong-sense auxiliary functions- beyond E-M

Example of using strong-sense auxiliary function to maximise something (not
E-M):

• Suppose we want to maximise
∑M

m=1 Am log xm + Bmxm for constants Am,
Bm, with constraint

∑M
m=1 xm = 1 (will mention reason later)

• Suppose the current values of xm are x′m (for m = 1 . . .M).

• For each m, add a +ve constant km times the function (x′m log(xm)− xm) to
the objective function.

• Function km(x′m log(xm) − xm) for +ve km is convex with a zero gradient
around the current values x′m

• ... so can add this function to objf for each m & will get a strong-sense auxf

• Add this using appropriate values of km to make coeffs of xm all the same,
hence constant (due to sum-to-one constraint).

• Reduces to something of the form
∑M

m=1 Am log xm which can be solved
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Weak-sense auxiliary functions– Mixture weights

Example of weak-sense auxf for MMI

• Optimising mixture weights for MMI

• For ML, we can get a (strong-sense) auxiliary function which looks like
∑J

j=1

∑M
m=1 γjm log cjm (plus other terms for Gaussians & transitions

• ... as in normal E-M. The above is a strong-sense auxiliary function for the log
HMM likelihood

• For MMI, the objective function is one HMM likelihood (OK) minus another
(Not OK)

• Call these numerator (num) and denominator (den) HMMs
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Weak-sense auxiliary functions– Mixture weights (cont’d)

• Try −
∑J

j=1

∑M
m=1 γden

jm log cm as a weak-sense auxf for second term

• But total auxf
∑J

j=1

∑M
m=1(γ

num
jm − γden

jm ) log cm would not give good
convergence (would set some mixtures to zero).

• Instead use
∑J

j=1

∑M
m=1 γnum

jm log cm − γden
jm

cm
c′m

.

• Same differential w.r.t. mixture weights where they equal old mixture weights
c′m.

• Can be maximised easily (see previous slide)

• Gives good convergence
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Weak-sense auxiliary functions– Gaussians

• Normal auxiliary function for ML is
∑J

j=1

∑M
m=1−0.5

(

γjm log σ2
jm +

θjm(O2)−2µjmθjm(O)−γjmµ2
jm

σ2
jm

)

where θjm(O) and θjm(O2) are sum of data & data squared for mix m of
state j.

• Abbreviate this to
∑J

j=1

∑M
m=1 Q(γjm, θjm(O), θjm(O2)|µjm, σ2

jm).

• For MMI, a valid weak-sense auxiliary function for objf is
∑J

j=1

∑M
m=1 Q(γnum

jm , θnum
jm (O), θnum

jm (O2)|µjm, σ2
jm)

−Q(γden
jm , θden

jm (O), θden
jm (O2)|µjm, σ2

jm).
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Weak-sense auxiliary functions– Gaussians (cont’d)

• Would not have good convergence, so add “smoothing function”
∑J

j=1

∑M
m=1 Q(Djm, Djmµ′jm, Djm(µ′jm

2, σ′jm
2)|µjm, σ2

jm)
for a positive constant Djm chosen for each Gaussian.

• This function has zero differential where the parameters equal the old
parameters µ′jm, σ′jm

2, so local gradient unaffected.

• Solving this leads to the EB update equations, e.g. (for the mean):

µjm = {θnum
jm (O)−θden

jm (O)}+Djmµ′jmn
γnum

jm −γden
jm

o
+Djm

• For good convergence set Djm to Eγden
jm for e.g. E = 1 or 2
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MPE optimisation

• For MPE, we dont have a difference of HMM likelihoods as in MMI.

• For Gaussians– Work out differential w.r.t. MPE objective function of each
log Gaussian likelihood at each time t.

• Define γMPE
jm (t) as that differential.

• Use
∑

r,t,j,m γMPE
jm (t) logN (or(t)|µjm, σ2

jm) as basic auxiliary function.
Obviously has same differential as real objective function locally (where λ = λ′)

• The functional form of this is equivalent to the Q(. . . ) functions referred to
above, with similar statistics required.
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MPE optimisation

• Ensure convergence by adding “smoothing function”
∑J

j=1

∑M
m=1 Q(Djm, Djmµ′jm, Djm(µ′jm

2, σ′jm
2)|µjm, σ2

jm).

• Leads to EB equations, except statistics are gathered in a different way

• Set the constant Djm based on a further constant E, in a similar way to MMI.
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I-smoothing

• I-smoothing is the use of a prior distribution over the Gaussian parameters

• Mode of prior is at the ML estimate

• Prevents extreme parameter values being estimated based on limited training
data

• Prior is Q(τ, τ
θmle
jm (O)

γmle
jm

, τ
θmle
jm (O2)

γmle
jm

|µjm, σ2
jm)

• ... where mle refers to the ML statistics, and τ is a constant (e.g. 50)

• Very simple to implement in the context of the EB equations (all the terms
inside the various Q(. . . ) functions can just be added together)

• Important for MPE: unless I-smoothing is used for robustness, MPE is worse
than MMI

• I-smoothing can also improve MMI, but only slightly
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Lattices and MMI/MPE optimisation

• Lattices are generated once and used for a number of iterations of optimisation

• 2 sets of lattices-

– Numerator lattice (= alignment of correct sentence)
– Denominator lattice (from recognition). [Needs to be big, e.g beam > 125]

• Lattices need time-marked phone boundaries:

• Can’t do unconstrained forward-backward because:
i) slow and ii) interferes with the probability scaling which is done at whole-
model level
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Lattices and MMI/MPE optimisation (cont’d)

• Optimisation involves two phases, as in ML: i) get statistics, ii) reestimate.

• Gathering statistics initially involves a forward (/backward) alignment of time-
marked models, to get whole-model acoustic likelihoods

• For MMI, a forward-backward algorithm is done over the lattice at the phone
level to get model occupation probabilities, and then stats are accumulated
(for each of the 2 lattices separately)

• For MPE, see next slide...
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Lattices and MPE optimisation

• For MPE, only align denominator lattice (numerator lattice is used to work
out how correct den-lattice sentences are)

• Each phone HMM in the lattice has a given start and end time, use q to refer
to these “phone arcs”

• Need to work out of differential of MPE objective function w.r.t. log acoustic
likelihood of each arc q (can then work out differentials w.r.t. individual
Gaussian likelihoods)

• Define γMPE
q = 1

κ times this differential

• Can use γMPE
q = γq(c(q)− cavg) where γq is occupation probability

• c(q) is average correctness of sentences passing through arc q, weighted by
scaled probability

• cavg is average correctness of entire file

• Hence, differential is positive for arcs with higher-than-average correctness
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Lattices and MPE optimisation (cont’d)

Can calculate c(q) = correctness of q in two ways:

• (Both of these ways involve an algorithm similar to a forward-backward
algorithm over the lattice)

• Approximate method:

– Use a heuristic formula based on overlap of phones to calculate the
approximate contribution of an individual phone arc to the correctness
of the sentence

– This method makes use of the time markings in the correct-sentence
(numerator) lattice

– Gives a value quite close to the “real” phone accuracy of paths
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Lattices and MPE optimisation (cont’d)

• Exact method:

– Turn the numerator (correct sentence) lattice into a sausage (in case of
alternate pronunciations)

– Do an algorithm which is like a forward-backward algorithm combined with
token-passing algorithm as used for recognition (not quite as complex as
normal token passing)

– Token-passing part corresponds to getting the best alignment to the lattice;
forward-backward part follows from the need to get a weighted sum over
sentences encoded in the lattice

• In both cases, generally ignore silence/short pause phones for calculating
accuracy

• Difference in recognition performance between approximate & exact versions
is not consistent
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Optimisation regime

• Generally use 4-8 iterations of EB, typically 4 for MMI and 8 for MPE

• Very quick– some discriminative optimisation techniques reported in the
literature use 50-100 iterations

• Recognition is the aim, not optimisation! Too-fast optimisation can lead to
poor test set performance

• “Smoothing constant” E (=1 or 2) and number of iterations of training are
set based on recognition (on development test set)

• For MMI on Broadcast News (hub4), criterion divided by #frames typically
increases from, say, -0.04 to -0.02 during training (0.0 = perfect)

• MPE on hub4: MPE criterion divided by #words increases from 0.78 to 0.88
during training (1.0 = perfect)
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Practical issues for discriminative training

• Need to recognise all the training data– takes a long time

• Need to get phone marked lattices → need right software

• Important to use the scale κ rather than using unscaled probabilities; otherwise
test set accuracy may not be very good

• κ typically in the range 1
10 to 1

20: generally equal to inverse of normal language
model scale

• Essential to have a language model available (in HTK it is in the lattices)

• Unigram language model is best (generates more confusable words than a
bigram)
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MMI or MPE?

• MPE generally gives more improvement than MMI, especially where there is
plenty of training data (see later)

• Compute time is similar for both criteria

• But MMI is easier to implement

• MPE implementation is built on top of MMI implementation so best to start
with MMI
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Improvements from MPE on various corpora
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• Figure shows relative improvements from MPE on various corpora

• Shows that once we know the amount of training data available per Gaussian,
improvement is predictable

• For typical systems as used for evaluations: 6% (WSJ), 11% (Swbd), 12%
(BN) relative improvement
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MMI & MPE on various corpora
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• Figure shows relative improvement from MMI, I-smoothed MMI and MPE
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• MPE best, but I-smoothed MMI nearly as good for limited training data (or
too many Gaussians)
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Interaction with other techniques

• How is the relative improvement from discriminative training affected by other
techniques?

• Discriminative training gives most improvement for small HMM sets and large
amounts of training data

• MLLR can sometimes (but not always) decrease improvement from
discriminative training

• Discriminative training can be combined with SAT, which helps restore any
lost improvement

• Discriminative training gives nearly as much improvment when tested on a
different database
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• Improvement slightly reduced when combined with HLDA

• Interaction with VTLN, CMN, clustering etc not investigated
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Summary & conclusions

• Discriminative objective functions described (MMI and MPE)

• Mentioned the use of probability scaling (κ) in the objective functions

• Explained meaning of strong-sense & weak-sense auxiliary functions

• Described how weak-sense auxiliary functions justify EB update equations

• Described in general terms how the same approach is applied to MPE

• ... and how MPE objective function is differentiated within the lattice

• Mentioned I-smoothing (priors over Gaussian parameters)

• Gave typical results over various corpors, showing that improvement is a
predictable of function of log(#frames/Gaussian)
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