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A Mixture of Gaussians Front End for Speech Recognition

Overview

• The GMM speech frontend
– Motivation
– Implementation

• Performance of GMM features
– Baseline results
– Concatenated with MFCCs
– Streaming systems

• Confidence metrics

• Noise compensation

• Speaker Adaptation

• Conclusions
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The case for formants in LVCSR

Motivation for using formants:

• Considered representative of underlying phonetic content

• Potentially useful in noisy or band-limited enviroments

• Formant positions important for human speech recognition

Existing formant schemes:

• Analysis by synthesis

• Linear prediction analysis

• Dynamic template matching of hand-labelled spectra
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Problems with formants

Problems with existing formant extraction schemes:

• Not always well defined in spectra, (eg fricatives or nasalised sounds)

• Amplitude information required to distinguish certain phone types (eg nasalised
phones and voiced vowels)

Statistical peak representations:

• Gravity Centroids: extract first and second moments from spectral subbands

• HMM-2: fit a second frequency HMM to the spectrum at each frame, each
frequency state corresponds to a spectral peak or region

Cambridge University

Engineering Department
SVR Speech Seminar Series 3



A Mixture of Gaussians Front End for Speech Recognition

The Gaussian Mixture Model for feature extraction

Gaussian mixture model:

• Fits a set of Gaussian mixtures to the smoothed magnitude spectra of a speech
signal

• Characterises the spectra in terms of spectral peaks, hence the features are
‘formant-like’.

• Can represent general spectral envelope

• Statistical representation

• Is not band-limited as Gravity Centriods
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Gaussian Mixture Model front end
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Single coded frame

Example single frame plot from test utterance, before and after smoothing.
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GMM front end trajectory plot

• Utterance “Where were you while we were away?”

• Four Gaussian components fitted per frame
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• Extracts close approximation to formant positions

• No spectral smoothing or frame to frame constraints
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Experimental details

All experiments were performed on the Resource Management (RM) task

• 3990 training sentences with roughly a 1000 word vocabulary, 109 training
speakers and 1200 test sentences from 40 subjects

• Cross-word triphone context-dependent HMMs were made using a phonetic
decision class tree as per HTK RM Recipe

• A word-pair grammar was used for recognition

• Results were tuned on the 300 sentence ‘feb89’ subset of data

• Word Error Rate averages over all 4 test sets quoted
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Baseline Resource Management results

Description Total % WER
Features

MFCC 39 4.19
PLP 39 3.89

4 Component GMM 39 6.10
6 Component GMM 57 4.90

• Best GMM features result was 17% worse than the MFCC baseline

• Fitting six mixtures (GMM6) to spectra yields better result than four

• Errors were distributed evenly across phone classes
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Resource Management results for hybrid systems

Gaussian means were appended directly onto the MFCC feature vector

Parameterisation Total % Err
Features

MFCC {c1 · · · c12} 39 4.19
MFCC + {c1 · · · c16} 51 4.29

MFCC + 4 Formant frequencies from ESPS 51 4.89
MFCC + 4 Gravity Centroids 51 4.08
MFCC + 6 Gravity Centroids 57 5.02
MFCC + 4 GMM Means 51 4.08
MFCC + 6 GMM Means 57 3.96

• Appending the GMM means gave a WER decrease of 5.5% relative to MFCC
baseline

• Adding four Gravity Centroids reduced the WER by 2%

• All other features appended degraded performance
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Synchronous stream system

• Input vector y divided into 2 streams {yMFCC,yGMM}

• Output probability given by

bj(y) =

S
∏

s=1

[

M
∑

m=1

cjsmN (ys;µjsm,Σjsm)
]γs

• Where γs is the stream weight of stream s.

• Stream weights were constrained to sum to one.

• Only MFCCs were used to obtain alignments in Baum Welch training
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Results for streamed system
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• Optimal performance was for GMM6 system at stream weight of 0.8, giving
3.7% WER, a relative improvement of 10.9%.

• Streaming MFCC and PLP features gave little improvement.
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Confidence in GMM Fit Metrics

• Peaks are less reliably defined in unvoiced or quiet regions

• Define confidence metric ξ(t) based on amplitude and curvature

ξ(t) = β

[

N
∏

n=1

en(t) + 10.53

σn(t)

]

1
N

• Use standard synchronous stream system

bj(y(t)) =

R
∏

r=1

[

M
∑

m=1

cjrmN (yr(t);µjrm,Σjrm)
]γr(t)

• Stream weights γr(t) set by confidence metric

γ1(t) = 1 − ξ(t) γ2(t) ∝ ξ(t))
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Example Confidence Metric
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• Clean and noise-corrupted plots shown

• ξ(t) is high in regions with peak-structures

• Is low in regions with low energy or no peaks
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Experimental setup

WSJ task

• 284 training speakers, 65,000 word vocabulary, Hub 1 dev and eval

• Cross-word triphone context-dependent HMMs

• Trigram language model

• Cepstal Mean Normalisation used on feature vectors
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Results on WSJ using confidence metric

Description % WER
MFCC 9.75
MFCC+6 Means Concatenative 9.56
MFCC+6 Means Fixed Stream Weights 9.64
MFCC+6 Means Confidence Metric 9.52
GMM6 12.43
GMM6 feature mean normalisation 12.02

• Small improvements over fixed stream weights

• No significant improvement over concatenative feature vectors by using
confidence metrics on clean speech
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GMM Features in Noise

• Peak representations of speech are inheirently robust to some noise sources

• Noise sources with strong peak structures (ie background babble) can corrupt
features significantly

• Unlike most peak representations, can reconstruct spectrum from GMM
features

• Can compensate for noise at feature extraction stage by estimating clean
speech parameters given noise model

• Alternatively can generate noise compensated model set given clean model set
and noise model
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Front End Noise Compensation

• Compensate at feature extraction stage

• Assumes noise model θ̂(n) = {ê(n), µ̂(n), σ̂(n)}

• Estimate clean speech feature parameters given noise model

l(x(t)|θ(t), θ̂
(n)

) =

K
∑

k=1

ln

( Q
∑

q=1

ê
(n)
q N

(

xk(t); µ̂
(n)
q , σ̂

(n)2
q

)

+

N
∑

n=1

en(t)N
(

xk(t);µn(t), σ
2
n(t)

)

)
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Model Compensation

• Adapts the static mean parameters of clean HMM model trained on GMM
parameters

• Reconstructs spectra xjm from GMM parameters of each state j and
component m in model

• Noise corrupted spectra is formed by adding spectra from noise spectrum q

• Parameters for noisy data θ̂jm are re-estimated

l(xjm + q|θ̂jm) =

K
∑

k=1

(

ln

N
∑

n=1

êjmnN
(

xjmk + qk; µ̂jmn, σ̂
2
jmn

)

)
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Additive Noise
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Clean GMM Plot
Noisy GMM Plot

• Noise source is Operations Room noise from the Noisex database

• Data corrupted by adding noise at waveform level

• Coloured noise distrupts peak structure severely

• Noise spectrum and corrupted spectrum shown
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RM Results in additive noise - I

Results using UC Uncompensated clean speech models
MC Mean compensated models
NM Noise matched models

18 dB SNR UC MC NM

MFCC 32.3 14.0 8.1
MFCC+GMM Concat. 30.6 13.1 7.1

+ Confidence 29.6 12.6 7.1

• Adding GMM parameters to MFCCs gives improvements in noisy conditions

• Confidence metric yields small improvements for model compensated data

• Frontend compensation to the GMM parameters gave 28.3% WER
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RM Results in additive noise - II
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• Adding GMM features to MFCCs gives small improvements over a range of
SNRs.
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Speaker adaptation

• GMM features are directly represented in spectrum - position of compenent
means are frequency bin values

• Can implement a VTLN approach by scaling the component means

• CMN approach approximates VTLN for GMM system

• Diagonal feature transforms will scale features for VTLN and spectral tilt
effects.
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Speaker adaptation
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• Obtained an constrained diagonal MLLR transform for WSJ speakers

• Regression fit to GMM means warpings yields VTLN factors correlated to
MFCC Brent estimated ML search parameters.
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Unconstrained MLLR
• Adapting the data using a speech/silence full MLLR transform

Type of MFCC MFCC GMM6
Transform + 6 Means

None 9.75 9.56 12.0
UC MLLR 8.69 8.36 10.37
C MLLR 8.77 8.84 11.26

C MLLR + SAT 7.98 8.45 11.32

• 4% improvement incorporating GMM features with MFCCs and using UC
MLLR

• Performance degrades when feature space transforms are used

• Systems using diagonal feature transforms did improve in CMLLR systems
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Conclusions

• Fitting a GMM to speech provides features with information complementary
to MFCC parameterisation.

• Incorporating GMM features with MFCCs by concantenating feature vectors
reduces error rates on RM task.

• Combining MFCCs with GMM features using synchronous streams measure of
confidence yields no significant improvement over concatenating into a single
feature vector
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Conclusions

• Including GMM features with MFCCs gives improved performance in an additive
noise environment

• The static mean parameters of GMM features can be rapidly adapted to
additive noise environments

• Relative improvements incorporating GMM features with an MFCC
parameterisation are maintained with a MLLR adaptation

• GMM features are not suited to feature-space transforms and constrained
MLLR approaches
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