Discriminative Cluster Adaptive Training

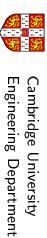
Kai Yu

Mar. 2004

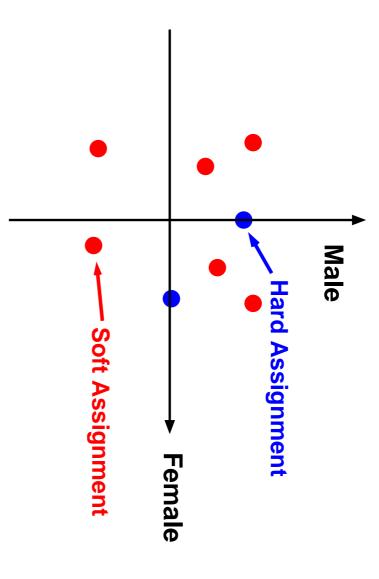
Cambridge University Engineering Department

Overview

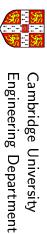
- Multi-cluster system and cluster adaptive training (CAT)
- ML re-estimation of multi-cluster hmm model
- ML re-estimation of interpolation weights
- Initialisation
- MPE training for multi-cluster hmm model
- form of smoothing function to use
- nature of prior to use
- MPE training for interpolation weights
- Cluster adaptive training combined with constrained MLLR
- Performance evaluated on CTS English.



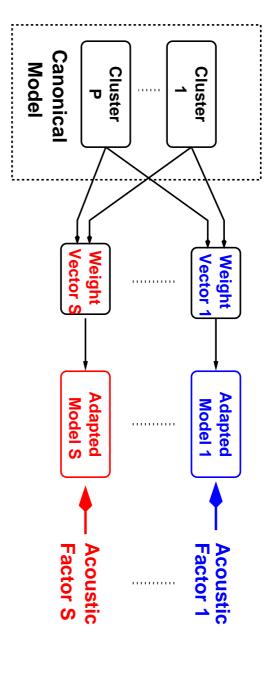
Hard Assignment and Soft Assignment



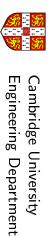
- Hard assignment only selects one of the GD models $\lambda_1+\lambda_2=1$, $\lambda_1,\lambda_2\in\{0,1\}$
- Soft assignment can construct any linear combination of the two models $\lambda_1 + \lambda_2 = 1$, $\lambda_1, \lambda_2 \in \{-\infty, +\infty\}$, better use of axes



Cluster Adaptive Training



- Canonical model consists of
- Common covariance, mixture weight and transition matrices
- Cluster-specific mean vectors $\mathbf{M} = [\boldsymbol{\mu}_1, \cdots, \boldsymbol{\mu}_P]$, P is the number of clusters
- The speaker mean is given by interpolating among means of several clusters $\mu^{(s)}={f M}{m \lambda}^{(s)}=\sum_{c=1}^P \lambda_c \mu_c$
- Iteratively training multi-cluster model and weights



ML Model Parameters Estimation

Multi-cluster canonical model (updates of variances not described)

$$\mathbf{G}^{(m)} = \sum_{s,t} \gamma_m(t) \pmb{\lambda}^{(s)} \pmb{\lambda}^{(s)T}$$

$$\mathbf{K}^{(m)} = \sum_{s,t} \gamma_m(t) \boldsymbol{\lambda}^{(s)} \mathbf{o}^{(s)}(t)^T$$

$$\mathbf{M}^{(m)T} = \mathbf{G}^{(m)-1}\mathbf{K}^{(m)}$$

- $\mathbf{G}^{(m)}$ is a $P \times P$ matrix, $\mathbf{K}^{(m)}$ is a $P \times D$ matrix, P is cluster number, D is feature vector size
- mean update $\mathbf{M}^{(m)} = \mu^{(m)} = \frac{\sum_{s,t} \gamma_m(t) \mathbf{o}^{(s)}(t)}{}$

If P=1 and assume no scaling for speakers, the formula degrades to standard

ML Weights Parameters Estimation

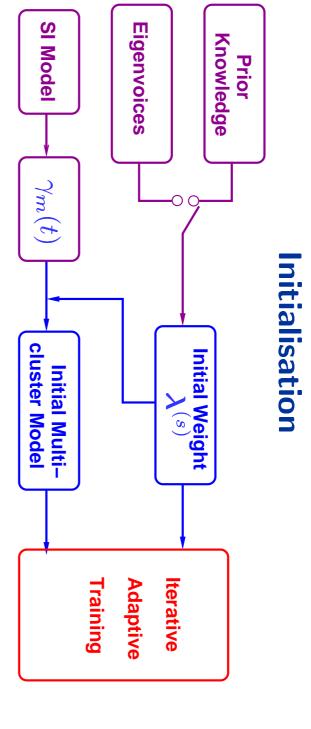
Interpolation weights for each speaker s

$$\mathbf{G}^{(s)} = \sum_{m,t} \gamma_m(t) \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} \mathbf{M}^{(m)}$$

$$\mathbf{k}^{(s)} = \sum_{m} \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} \left(\sum_{t} \gamma_{m}(t) \mathbf{o}(t) \right);$$

$$oldsymbol{\lambda}^{(s)} = \mathbf{G}^{(s)-1}\mathbf{k}^{(s)}$$

- $\mathbf{G}^{(s)}$ is a $P \times P$ matrix, $\mathbf{k}^{(s)}$ is a $P \times 1$ matrix
- Only $\gamma_m(t)$ and multi-cluster model are needed to estimate weights
- SI model used for initial alignment when estimating weights in testing adaptation



- Initialise weights
- Prior knowledge: e.g. 2 cluster initialisation using gender information
- Eigenvoices

on meta-vectors \Longrightarrow eigen-meta-vectors (eigenvoices) \Longrightarrow initial weights Bias cluster $\pmb{\lambda}^{(s)}=[\lambda_1^{(s)},\cdots,\lambda_{P-1}^{(s)},1]$ Simple speaker-dependent model \Longrightarrow meta-vector for each speaker \Longrightarrow PCA

- Construct initial multi-cluster model using standard model and initial weights

Minimum Phone Error Criterion

MPE criterion

$$\mathcal{F}(\mathcal{M}) = \frac{\sum_{w} p(\mathbf{O}|\mathcal{M}_{w})^{\kappa} P(w) \operatorname{RawAccuracy}(w)}{\sum_{w} p(\mathbf{O}|\mathcal{M}_{w})^{\kappa} P(w)}$$

Use weak-sense auxiliary function

$$Q(\mathcal{M}) = Q^n(\mathcal{M}) - Q^d(\mathcal{M}) + G(\mathcal{M}) + \log p(\mathcal{M})$$

- $\mathcal{Q}^n(\mathcal{M})$ and $\mathcal{Q}^d(\mathcal{M})$ are standard auxiliary function for numerator and denominator
- $\mathcal{G}(\mathcal{M})$ is smoothing function to improve stability
- $\log p(\mathcal{M})$ is I-smoothing distribution over the model parameters to improve generalisation ability

Multi-Cluster Smoothing Function

- Smoothing function satisfies $\frac{\partial}{\partial\mathcal{M}}\mathcal{G}(\mathcal{M})\big|_{\hat{\mathcal{M}}}=0$, $\hat{\mathcal{M}}$ are current model parameters
- Standard smoothing function $\mathcal{G}(\mathcal{M}) = \sum_m \mathcal{G}_m \big(\boldsymbol{\mu}^{(m)}, \boldsymbol{\Sigma}^{(m)}; \hat{\boldsymbol{\mu}}^{(m)}, \hat{\boldsymbol{\Sigma}}^{(m)} \big)$
- $\mathsf{Multi-cluster\ version:}\ \mathcal{G}(\mathcal{M}) = \sum\nolimits_{s,m} \nu_m^{(s)} \mathcal{G}_m \big(\boldsymbol{\mu}^{(sm)}, \boldsymbol{\Sigma}^{(m)}; \hat{\boldsymbol{\mu}}^{(sm)}, \hat{\boldsymbol{\Sigma}}^{(m)} \big)$
- Difference between multi-cluster and standard smoothing function
- Defined at speaker level, use $\hat{m{\mu}}^{(sm)} = \hat{m{M}}^{(m)} m{\lambda}^{(s)}$ and $m{\mu}^{(sm)} = m{M}^{(m)} m{\lambda}^{(s)}$
- Add normalised contribution from speaker s $u_m^{(s)}$, though for any $u_m^{(s)}$, $\mathcal{G}(\mathcal{M})$ is a valid smoothing function $\nu_m^{(s)} = \frac{\sum_t \gamma_m^n(t)^{(s)}}{\sum_s \sum_t \gamma_m^n(t)}$

Effective smoothing statistics are $D_m \mathbf{G}_D^{(m)}$ and $D_m \mathbf{K}_D^{(m)}$

$$\mathbf{G}_D^{(m)} = \sum
u_m^{(s)} \boldsymbol{\lambda}^{(s)} \boldsymbol{\lambda}^{(s)T}; \qquad \mathbf{K}_D^{(m)} = \mathbf{G}_D^{(m)} \hat{\mathbf{M}}^{(m)T}$$

- $D_{\dot{m}}$ is a smoothing constant
- $\mathbf{G}_D^{(m)}$ is a P imes P matrix, $\mathbf{K}_D^{(m)}$ is a P imes D matrix, P is cluster number, Dis feature vector size
- Sum over all speakers, note $\sum_s
 u_m^{(s)} = 1$
- If P=1 and assume no scaling for speakers, the formula degrades to standard MPE mean update

$$\mathbf{G}_{D}^{(m)}=1; \qquad \mathbf{K}_{D}^{(m)}=\hat{m{\mu}}^{(m)}$$

Multi-cluster Model I-smoothing Distribution

Standard I-smoothing distribution

$$\log p(\mathcal{M}) = \sum_{m} \log p(\boldsymbol{\mu}^{(m)}, \boldsymbol{\Sigma}^{(m)}; \boldsymbol{\tau}^{I}, \tilde{\boldsymbol{\mu}}^{(m)}, \tilde{\boldsymbol{\Sigma}}^{(m)})$$

Multi-cluster verstion:

$$\log p(\mathcal{M}) = \sum_{s,m} \tilde{\nu}_m^{(s)} \log p(\boldsymbol{\mu}^{(sm)}, \boldsymbol{\Sigma}^{(m)}; \boldsymbol{\tau}^I, \tilde{\boldsymbol{\mu}}^{(sm)}, \tilde{\boldsymbol{\Sigma}}^{(m)})$$

- Main difference
- Variables of interst are actually $\mathbf{M}^{(m)}$ and $\mathbf{\Sigma}^{(m)}$
- Defined at speaker level, use $oldsymbol{\mu}^{(sm)} = \mathbf{M}^{(m)} oldsymbol{\lambda}^{(s)}$
- Add normalised contribution from speaker s

$$\tilde{\nu}_m^{(s)} = \frac{\sum_t \gamma_m^{ml}(t)^{(s)}}{\sum_s \sum_t \gamma_m^{ml}(t)}$$

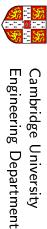
ullet Key issue is to select appropriate prior $ilde{oldsymbol{\mu}}^{(sm)}$



Selection of I-smoothing Prior

- Different forms of prior
- $ilde{m{\mu}}^{(sm)} = ilde{\mathbf{M}}_{ML}^{(m)} m{\lambda}^{(s)}$, $ilde{\mathbf{M}}_{ML}$ is the ML estimates of multi-cluster mean
- $ilde{m{\mu}}^{(sm)} = ilde{m{\mu}}^{(m)}$, $ilde{m{\mu}}^{(m)}$ is single-cluster prior mean vector, can be
- * Static (existing model parameters): ML-SAT, MPE-SI, etc
- * Dynamic (from current accumulated statistics): ML-SI, MPE-SAT, etc.
- $-~ ilde{m{\mu}}^{(sm)} = ilde{f M}_{MAP}^{(m)} m{\lambda}^{(s)}$, $ilde{f M}_{MAP}$ is the MAP estimates of multi-cluster mean matrix, a trade-off of the above two kinds of priors
- This work uses standard static MPE-SI model as the prior
- Effective I-smoothing statistics are $au^I \tilde{\mathbf{G}}^{(m)}$ and $au^I \tilde{\mathbf{K}}^{(m)}$

$$\tilde{\mathbf{G}}^{(m)} = \sum_{s} \tilde{\nu}_{m}^{(s)} \boldsymbol{\lambda}^{(s)} \boldsymbol{\lambda}^{(s)T}; \qquad \tilde{\mathbf{K}}^{(m)} = \bigg(\sum_{s} \tilde{\nu}_{m}^{(s)} \boldsymbol{\lambda}^{(s)}\bigg) \tilde{\boldsymbol{\mu}}^{(m)T}$$



Multi-cluster Model MPE Estimates

Complete update based on smoothing all accumulates:

$$\mathbf{G}^{(m)} = \sum_{s,t} \gamma_m^{mpe}(t) \boldsymbol{\lambda}^{(s)} \boldsymbol{\lambda}^{(s)T} + D_m \mathbf{G}_D^{(m)} + \tau^I \tilde{\mathbf{G}}^{(m)}$$

$$\mathbf{K}^{(m)} = \sum_{s,t} \gamma_m^{mpe}(t) \boldsymbol{\lambda}^{(s)} \mathbf{o}^{(s)}(t)^T + D_m \mathbf{K}_D^{(m)} + \tau^I \tilde{\mathbf{K}}^{(m)}$$

where
$$\gamma_m^{mpe}(t) = \gamma_m^n(t) - \gamma_m^d(t)$$

Multi-cluster model re-estimation based on

$$\mathbf{M}^{(m)T} = \mathbf{G}^{(m)-1}\mathbf{K}^{(m)}$$

Interpolation Weights MPE Estimates

- Selection of smoothing function and I-smoothing distribution
- Smoothing function has the same form as for multi-cluster model
- Variable of interest in I-smoothing distribution is $oldsymbol{\lambda}^{(s)}$, similar prior types can be selected
- Similar form of MPE Estimates: $\lambda^{(s)} = \mathbf{G}^{(s)-1}\mathbf{k}^{(s)}$

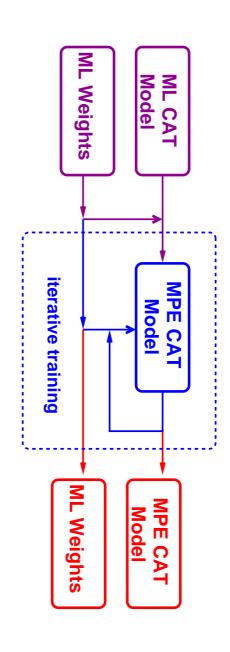
$$\mathbf{G}^{(s)} = \sum_{m} \left(\left(\sum_{t} \gamma_{m}^{mpe}(t) \right) + D_{m} \mathbf{g}_{D} + \tau^{I} \tilde{\mathbf{g}} \right) \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} \mathbf{M}^{(m)}$$

$$\mathbf{k}^{(s)} = \sum_{m} \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} \left(\left(\sum_{t} \gamma_{m}^{mpe}(t) \mathbf{o}(t) \right) + D_{m} \mathbf{k}_{D} + \tau^{I} \tilde{\mathbf{k}} \right)$$

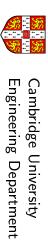
where $\gamma_m^{mpe}(t) = \gamma_m^n(t) - \gamma_m^d(t)$



Simplified MPE-CAT Training Procedure

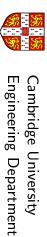


- Multi-cluster model and weights are ML estimated
- Fix weights for further MPE training
- Only multi-cluster model is MPE updated



Structured Transforms

- Found data may be highly non-homogeneous
- multiple acoustic factors (e.g. gender/channel/style);
- effects on acoustic signal of each factor vary;
- Multiple transforms
- a separate transform for each kind of unwanted variability;
- nature of transform (should) reflect factor;
- (possibly) more compact systems.
- Form examined in this work
- constrained MLLR (CMLLR) transforms;
- interpolation weights in cluster adaptive training (CAT);
- no explicit association of transform with factor.



CMLLR and CAT

Likelihood of observation given by

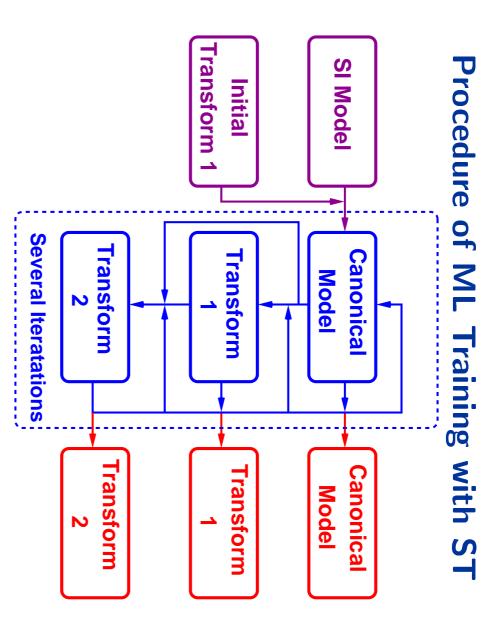
$$p(\mathbf{o}(t)|m,s) \propto -\frac{1}{2}\log|\mathbf{\Sigma}^{(m)}| + \frac{1}{2}\log(|\mathbf{A}^{(s)}|^2) -\frac{1}{2}(\mathbf{o}^{(s)}(t) - \boldsymbol{\mu}^{(sm)})^T \mathbf{\Sigma}^{(m)-1}(\mathbf{o}^{(s)}(t) - \boldsymbol{\mu}^{(sm)})$$

Constrained Maximum Likelihood Regression (CMLLR)

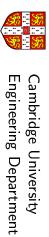
$$\mathbf{o}^{(s)}(t) = \mathbf{A}^{(s)}\mathbf{o}(t) + \mathbf{b}^{(s)}$$

Cluster Adaptive Training (CAT)

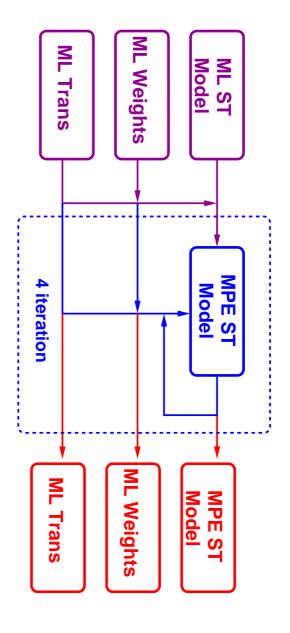
$$oldsymbol{\mu}^{(sm)} = \mathbf{M}^{(m)} oldsymbol{\lambda}^{(s)} \ \ \mathbf{M}^{(m)} = \left[oldsymbol{\mu}_1^{(m)}, \cdots, oldsymbol{\mu}_P^{(m)}
ight]$$



- Canonical model consists of P sets of cluster means;
- Transform1 is interpolation weight, transform2 is CMLLR transform



Simplified MPE Training Procedure



MPE training with ST for multi-cluster model parameters: MPE-CAT training except for using transformed features: The same as

$$\mathbf{o}^{(s)}(t) = \mathbf{A}^{(s)}\mathbf{o}(t) + \mathbf{b}^{(s)}$$

CMLLR transforms and interpolation weights are not discriminatively updated

Experiments on SwitchBoard System

- Switchboard (English): conversational telephone speech task
- Training dataset: h5etrain03, 290hr, 5446spkr
- Test dataset: dev01sub (3hr) and eval03 (6hr)
- Front-end: PLP_0_D_A_T, HLDA and VTLN are used
- Full decoding with trigram language model
- System description
- 16 components and 28 components
- All systems employed 4 ML iterations
- Initialisation
- CMLLR transforms initialised to identity transforms.
- information/eigenvoices Interpolation weights initialised using gender information/corpus

Comparison of Different Initialisation

eigenvoices	eigenvoices	eigenvoices	MPF_CAT eigenvoices	corpus info.	gender info.	MPE-SI — —	System Initialization
yes	yes	yes	no	no	no		Bias
4	ω	2	3	ω	2		#Cluster
29.0	29.0	29.3	29.0	29.2	29.3	30.4	dev01sub
28.9	28.9	29.2	28.9	28.9	29.1	29.9	eval03

- 16 component systems with 4 MPE iterations
- training Most gain over MPE-SI was obtained by 2 cluster systems due to adaptive
- ullet 3 cluster systems outperforms 2 cluster systems, but more clusters did not help
- ullet No wer difference between bias and non-bias 3 cluster eignvoices systems
- Eigenvoices initialised systems slightly outperformed corpus initialised systems

Results on 16-Component Systems (8 Iter.)

29.6 29.0	32.6	29.6 29.1	32.6	GD(MPE-MAP) CAT(GD-Init)
29.9	32.9	29.8	32.7	GD
29.5	33.3	29.5	33.4	GI
MPE	ML	MPE	ML	
eval03	eve	dev01sub	devC	System

- MPE systems significantly outperformed ML systems 3-4 percent absolute
- ML-GD system significantly outperformed ML-SI system,
- GD MPE-MAP needs tuning parameter, though outperforms MPE-GD
- MPE-CAT system still significantly outperformed MPE-SI system and gained 3.5 percent absolute over ML-CAT system

Results on 28-Component MPE Systems (8 Iter.)

26.2	26.7	ST	TS	TS
26.4	27.1	TS	CAT	CAT(GDInit)
26.6	26.9	CMLLR	CMLLR	SAT
26.7	27.5	CMLLR	gender info	GD-MAP
26.9	27.1	CMLLR	1	SI
		Adaptation	Adaptation	
eval03	dev01sub	Test	Training	System

- ST is CAT+CMLLR
- GD-MAP still needs tuning parameters
- Performance of SAT and CAT with ST in adaptation were similar;
- Adaptive training with ST obtained statistically significant gain on eval03

Summary

- MPE training for multi-cluster model and interpolation weights
- Redefine smoothing function and I-smoothing distribution
- Select appropriate priors of I-smoothing distribution
- Adaptive training with structured transforms: CAT+CMLLR
- Simplified MPE-training for CAT and ST-based systems
- Gains over other systems after adaptation
- Possibly more useful as amount of data increasing