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Overview

• Adaptive training and adaptation

– Multi-style training and adaptive training - Build model for adaptation
– Unsupervised adaptation

• Bayesian adaptation on adaptively trained systems

– Unsupervised adaptation from Bayesian perspective
– Lower bound approximations
∗ Point estimate and Variational Bayes
∗ Lower bound inference and N-Best supervision

– Direct approximations - Frame-independent assumption
– Incremental Bayesian adaptation based on lower bound approx.

• Experiments on Conversational Telephone Speech recognition

– Batch adaptation with very limited data
– Incremental adaptation
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Multi-style Training and Adaptive Training

• Adaptation requires a well built HMM system

• Training data often has various acoustic conditions - non-homogeneous
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• Two schemes to build systems on non-homogeneous training data

– Multi-style training: generic model - all kinds of variabilities
– Adaptive training: canonical model - pure speech variability
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Adaptive Training

• Separate modelling of speech/non-speech variabilities
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– Canonical model - pure speech variability
– A set of transforms
∗ Represent unwanted non-speech variabilities
∗ Each transform associated with one homogeneous block

– Interleave canonical model and transform estimation
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Unsupervised Adaptation

• No transcriptions available for test data

• Multi-style trained system - Directly used for decoding, adaptation optional
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– Unsupervised adaptation process:

1. Initial 1-Best supervision generation:
Decode with the multi-style model

2. Adaptation:
Estimate transforms using hypothesis

3. Recognition:
Adapt model and re-decode all data

• Adaptively trained system - Not suited for direct decoding, adaptation required

– How to directly use canonical model for unsupervised adaptation
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Adaptive Training From Bayesian Perspective
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Standard HMM Adaptive HMM

• Observation dependent on state/component θ and transform T

• Transform is constant for each testing acoustic condition Tt = Tt+1

• Output of adaptive training with sufficient data

– Point estimate of canonical model
– Prior distribution of transform parameters - p(T )
∗ Form - conjugate prior (e.g. single Gaussian for MLLR)
∗ Hyper-parameters - estimated using empirical Bayes
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Adaptation Using Bayesian Inference

• Acoustic score - marginal likelihood of the whole sequence

p(O|H) =

∫

T

p(O|H, T )p(T ) dT

• Two modes of Bayesian adaptation

– Supervised mode: p(T ) updated to posterior distribution
– Unsupervised mode: p(T ) directly used as above

• Acoustic score calculated for every possible hypothesis sequence

– Observations not conditionally independent due to constant transform
– Viterbi algorithm is not applicable
– N-Best rescoring used
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Bayesian Inference Approximations

• Bayesian integral in p(O|H) calculation intractable - approx. required

– Real inference evidence:

Ĥ = arg max
H

p(O|H)P (H)

– Practical inference evidence: approx. value used instead of real likelihood

Ĥ = arg max
H
A(O|H)P (H)

• Approximation approaches

– Lower bound approximations: p(O|H) ≥ A(O|H)
∗ Point estimate (MAP/ML)
∗ Variational Bayes

– Direct approximations: p(O|H) ≈ A(O|H)
∗ Sampling
∗ Frame-independent assumption
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Lower Bound Approximations

• Lower bound to log marginal likelihood - Jensen’s inequality

• Joint variational distribution of state/component sequence θ and transform
parameters T is introduced

log p(O|H) = log

∫

T

p(O|H, T )p(T ) dT

≥

∫

T

q(θ, T ) log
p(O,θ|T ,H)p(T )

q(θ, T )
dT

• Equality condition

q(θ, T ) = P (θ|O,H, T )p(T |O,H)

• Iterative algorithm (EM-like) employed to update q(θ, T )

Cambridge University
Engineering Department

MIL Seminar 8



Unsupervised Bayesian adaptation: K. Yu & M.J.F. Gales

Form of Lower Bound Approximations

• Various forms of q(θ, T ) may be used in lower bound approx.

– Point estimate (MAP/ML) - Sufficient data assumption

q(θ, T ) = P (θ|O,H, T̂ )δ(T − T̂ )

∗ Transform posterior becomes Dirac delta function ⇒ point estimate
∗ Non-informative prior: MAP ⇒ ML estimate
∗ Point estimate for transform T̂ used to calculate A(O|H)

– Variational Bayes (VB) - state/component θ and transform T
conditionally independent

q(θ, T ) = P (θ|O,H)p(T |O,H)

∗ Decoupling of θ and T ⇒ integral tractable
∗ More robust due to use of real distributions
∗ Non-point distribution p(T |O,H) used to calculate A(O|H)
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Tightness of Lower Bound

• Tightness of lower bound greatly affects inference

Tightness
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• Forms of lower bound

– Point estimate - loose
– Variational Bayes - tighter

• Iteration number in EM-like algorithm

– More iterations - tighter bounds
– Tightness controllable
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1-Best vs. N-Best Supervision

• 1-Best supervision - standard adaptation concept

– Choose 1-Best hypothesis as “supervision”
– One transform (dist.) for all possible hypothesis
– All lower bounds optimised using the same transform (dist.)

• N-Best supervision - obtain tight lower bound

– Each hypothesis as “self supervision”
– Distinct transform (dist.) for every possible hypothesis
– Lower bound optimised using specific transform (dist.)

• Effects on Bayesian inference

– 1-Best supv. - generally looser lower bound ⇒ poor infer. performance
– N-Best supv. - tighter lower bound ⇒ better infer. performance
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Lower Bound Inference

Exact Evidence Exact Value
Value of lower bound evidence
1-Best (Loose) N-Best (Tight)

p(O|bat)P (bat) 0.88 0.66 0.80
p(O|fat)P (fat) 0.84 0.78 0.78
p(O|mat)P (mat) 0.80 0.68 0.74

• Decoding using lower bound instead of exact marginal likelihood

• Assumption: lower bound approx. yields consistent rank ordering

– 1-Best supervision is fat
– Lower bound with 1-Best supervision is looser than N-Best one
– Looser bound yields inconsistent rank ordering: fat > mat > bat

– Tighter bound yields consistent rank ordering: bat > fat > mat

• Lower bound as tight as possible ⇒ N-Best supervision
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Direct approximations

• Direct approximate marginal likelihood - p(O|H) ≈ A(O|H)

• Form of direct approximations

– Sampling approach
∗ Only applicable to systems with small number of parameters

– Frame-independent assumption
∗ Transform not constant within a homogeneous block

• Closeness of approx. value A(O|H) to p(O|H) is not well controllable
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Sampling Approximation

p(O|H) ≈
1

N

N
∑

n=1

p(O|H, T̂n)

• Converge to true evidence when N →∞

• N likelihood calculations for each possible hypothesis - high cost

• Only applicable to systems with small number of parameters

– CAT (2-clusters): 2
– MLLR-SAT (39-dim feature): 39× 39 + 39
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Frame-independent (FI) Assumption

• Transform can swap at each frame
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Strict Adaptation
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FI Assumption

• Integral performed at each frame - Bayesian predictive distribution

p(O|H) =

∫

T

∑

θ

P (θ|M)
∏

t

b(ot|T , θt)p(T ) dT

≈
∑

θ

P (θ|M)
∏

t

∫

T

b(ot|T , θt)p(T ) dT
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Incremental Bayesian Adaptation

• Many tasks require results causally - e.g. dictation

• Adaptation data comes causally (on-line adaptation)

• Basic Process of incremental adaptation

1. Initialisation. Use canonical model and transform prior distribution to
decode the 1st utterance

2. Propagation. Using adaptation information from previous utterances to
adapt the canonical model

3. Inference. Find the best hypothesis sequence upto the current utterance
4. Next utterance comes. Go to the propagation step 2.

• Lower bound inference used in step 3

• Key issue - what information to propagate?
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Information Propagation Strategy

• Information propagation affects efficiency of adaptation

• No information propagated

– Redo inference on all utterances
– High computational cost

• All information propagated

– Inferred hypothesis sequence - No need to redo inference on previous
utterances

– Estimated transform (distribution) propagated - align current utterance
– Accumulated statistics propagated - No need to re-cal. statistics of the
previous utterances

• Efficient recursive formulae obtained with the above propagation
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Experiments on Conversational Telephone Speech Task

• Switchboard (English): conversational telephone speech task

– Training dataset: about 290hr, 5446spkr
– Test dataset: 6hr, 144spkr
– Front-end: PLP+Energy+1st,2nd,3rd derivatives
– HLDA and VTLN used
– 150-Best list rescoring in inference

• 16 Gaussian components per state systems

– ML and MPE speaker independent (SI) system - baseline
– MLLR based speaker adaptive training (SAT) - ML and MPE version

µ̂(s) = A
(s)µ+ b

(s)

– MLLR prior distribution - Single Gaussian distribution
– MPE-SAT only discriminatively updated the canonical model given ML
estimated transforms
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Multi-style vs. Adaptive Systems
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Multi-style Adaptive

ML-SI ML-SAT + VB

32.83 31.50

• Each utterance is a single homogeneous block - ave. length is 3.13 s

• ML-SAT+VB is the best performance for adaptively trained system

• Adaptive training significantly outperformed multi-style training by 1.3%
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Utterance Level Bayesian Adaptation - ML

Bayesian ML Train
Approx SI SAT

— 32.83 —

FI — 32.90

ML 35.54 35.16
MAP 32.16 31.76
VB 31.77 31.50

• FI similar to SI - single Gaussian prior

• ML adaptation much worse than SI - insufficient adaptation data

• MAP improved WER - use prior information

• VB significantly better - non-point distribution, tighter bound

• SAT outperformed SI after adaptation by 0.3% - 0.4%
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Lower Bound Tightness - N-Best Supervision

• VB trans. dist. and MAP transform updated with 1-Best and N-Best supv.

• Experiments done on ML-SAT system

Bayesian Supervision
Approx. N-Best 1-Best

MAP 31.76 32.00
VB 31.50 32.04

• N-Best supv. significantly better than 1-Best supv.

• VB degradation (0.5%) more than MAP degradation (0.2%)

- VB more sensitive to supv.
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Utterance Level Bayesian Adaptation - MPE

Bayesian MPE Train
Approx SI SAT

— 29.20 —

FI — 29.74

ML 32.44 32.27
MAP 29.01 28.80
VB 28.75 28.63

• FI significantly worse than SI - 0.5% degradation

• Similar trends for lower bound approximation as ML case

– VB > MAP > SI > ML
– Corresponding gains (SAT vs. SI) reduced: 0.1% - 0.2%

• Reason for degradation (FI) or reduced gain (lower bound):

– Prior distribution estimated on ML transforms
– Prior applied in a non-discriminative way
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Incremental Bayesian Adaptation
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• Full Bayesian approximation significantly better at beginning

• Smaller difference between MAP and VB with more data available

• Trends for ML-SAT and MPE-SAT are similar
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Incremental Bayesian Adaptation - Final Performance

Bayesian ML Train MPE Train
Approx SI SAT SI SAT

ML+thresh 31.23 — 27.81 —

ML 32.23 31.84 28.86 28.72
MAP 30.92 30.40 27.65 27.47
VB 30.88 30.31 27.73 27.44

• Similar observations utterance level adaptation

– ML+thresh is the baseline for incremental adaptation
– ML not robust, VB outperformed MAP
– Adaptive training significantly better than non-adaptive training
– Gain of MPE adaptive training reduced
∗ Poor prior and non-discriminative adaptation

• Overall performance better than utterance level adaptation
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Conclusion

• Adaptive training - Deals with non-homogeneous training data

• Bayesian framework allows adaptively trained systems to be used in decoding

– Approximations required: Lower bound/direct approximations
– Efficient recursive formulae for incremental adaptation

• Observations in experiments

– Adaptively trained systems significantly outperformed multi-style systems
– Variational Bayes more robust with limited data
– Point estimates gradually become reasonable with data amount increasing
– Gains of discriminative adaptive systems are smaller than ML adaptive
systems due to the use of ML transform prior distribution
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