Unsupervised Bayesian Adaptation on Adaptively Trained Systems

Kai Yu & Mark Gales

May. 2006

Cambridge University Engineering Department

Overview

- Adaptive training and adaptation
 - Multi-style training and adaptive training Build model for adaptation
 - Unsupervised adaptation
- Bayesian adaptation on adaptively trained systems
 - Unsupervised adaptation from Bayesian perspective
 - Lower bound approximations
 - * Point estimate and Variational Bayes
 - $\ast\,$ Lower bound inference and N-Best supervision
 - Direct approximations Frame-independent assumption
 - Incremental Bayesian adaptation based on lower bound approx.
- Experiments on Conversational Telephone Speech recognition
 - Batch adaptation with very limited data
 - Incremental adaptation

Multi-style Training and Adaptive Training

- Adaptation requires a well built HMM system
- Training data often has various acoustic conditions non-homogeneous

- Two schemes to build systems on non-homogeneous training data
 - Multi-style training: generic model all kinds of variabilities
 - Adaptive training: canonical model pure speech variability

Adaptive Training

• Separate modelling of speech/non-speech variabilities

- Canonical model pure speech variability
- A set of transforms
 - * Represent unwanted non-speech variabilities
 - * Each transform associated with one homogeneous block
- Interleave canonical model and transform estimation

Unsupervised Adaptation

- No transcriptions available for test data
- Multi-style trained system Directly used for decoding, adaptation optional

- Unsupervised adaptation process:
 - 1. Initial 1-Best supervision generation: Decode with the multi-style model
 - 2. Adaptation: Estimate transforms using hypothesis
 - 3. Recognition:

Adapt model and re-decode all data

- Adaptively trained system Not suited for direct decoding, adaptation required
 - How to directly use canonical model for unsupervised adaptation

Adaptive Training From Bayesian Perspective

- Observation dependent on state/component heta and transform ${\mathcal T}$
- Transform is constant for each testing acoustic condition $\mathcal{T}_t = \mathcal{T}_{t+1}$
- Output of adaptive training with sufficient data
 - Point estimate of canonical model
 - Prior distribution of transform parameters $p(\mathcal{T})$
 - * Form conjugate prior (e.g. single Gaussian for MLLR)
 - $\ast\,$ Hyper-parameters estimated using empirical Bayes

Adaptation Using Bayesian Inference

• Acoustic score - marginal likelihood of the whole sequence

$$p(\mathbf{O}|\mathcal{H}) = \int_{\mathcal{T}} p(\mathbf{O}|\mathcal{H}, \mathcal{T}) p(\mathcal{T}) d\mathcal{T}$$

- Two modes of Bayesian adaptation
 - Supervised mode: $p(\mathcal{T})$ updated to posterior distribution
 - Unsupervised mode: $p(\mathcal{T})$ directly used as above
- Acoustic score calculated for *every* possible hypothesis sequence
 - Observations not conditionally independent due to constant transform
 - Viterbi algorithm is not applicable
 - N-Best rescoring used

Bayesian Inference Approximations

- Bayesian integral in $p(\mathbf{O}|\mathcal{H})$ calculation intractable approx. required
 - Real inference evidence:

$$\hat{\mathcal{H}} = \arg \max_{\mathcal{H}} p(\mathbf{O}|\mathcal{H}) P(\mathcal{H})$$

- Practical inference evidence: approx. value used instead of real likelihood

$$\hat{\mathcal{H}} = \arg \max_{\mathcal{H}} \mathcal{A}(\mathbf{O}|\mathcal{H}) P(\mathcal{H})$$

 $p(\mathbf{O}|\mathcal{H}) \approx \mathcal{A}(\mathbf{O}|\mathcal{H})$

- Approximation approaches
 - Lower bound approximations: $p(\mathbf{O}|\mathcal{H}) \geq \mathcal{A}(\mathbf{O}|\mathcal{H})$
 - * Point estimate (MAP/ML)
 - * Variational Bayes
 - Direct approximations:
 - * Sampling
 - * Frame-independent assumption

Lower Bound Approximations

- Lower bound to log marginal likelihood Jensen's inequality
- Joint variational distribution of state/component sequence θ and transform parameters $\mathcal T$ is introduced

$$\log p(\mathbf{O}|\mathcal{H}) = \log \int_{\mathcal{T}} p(\mathbf{O}|\mathcal{H}, \mathcal{T}) p(\mathcal{T}) d\mathcal{T}$$
$$\geq \int_{\mathcal{T}} q(\boldsymbol{\theta}, \mathcal{T}) \log \frac{p(\mathbf{O}, \boldsymbol{\theta}|\mathcal{T}, \mathcal{H}) p(\mathcal{T})}{q(\boldsymbol{\theta}, \mathcal{T})} d\mathcal{T}$$

• Equality condition

$$q(\boldsymbol{\theta}, \mathcal{T}) = P(\boldsymbol{\theta} | \mathbf{O}, \mathcal{H}, \mathcal{T}) p(\mathcal{T} | \mathbf{O}, \mathcal{H})$$

• Iterative algorithm (EM-like) employed to update $q({m heta},{\mathcal T})$

Form of Lower Bound Approximations

- Various forms of $q(\theta, T)$ may be used in lower bound approx.
 - Point estimate (MAP/ML) Sufficient data assumption

$$q(\boldsymbol{\theta}, \mathcal{T}) = P(\boldsymbol{\theta} | \mathbf{O}, \mathcal{H}, \hat{\mathcal{T}}) \delta(\mathcal{T} - \hat{\mathcal{T}})$$

- * Transform posterior becomes Dirac delta function \Rightarrow point estimate
- * Non-informative prior: MAP \Rightarrow ML estimate
- * Point estimate for transform $\hat{\mathcal{T}}$ used to calculate $\mathcal{A}(\mathbf{O}|\mathcal{H})$
- Variational Bayes (VB) state/component θ and transform \mathcal{T} conditionally independent

$$q(\boldsymbol{\theta}, \mathcal{T}) = P(\boldsymbol{\theta} | \mathbf{O}, \mathcal{H}) p(\mathcal{T} | \mathbf{O}, \mathcal{H})$$

- * Decoupling of heta and \mathcal{T} \Rightarrow integral tractable
- * More robust due to use of real distributions
- * Non-point distribution $p(\mathcal{T}|\mathbf{O},\mathcal{H})$ used to calculate $\mathcal{A}(\mathbf{O}|\mathcal{H})$

Tightness of Lower Bound

• Tightness of lower bound greatly affects inference

- Forms of lower bound
 - Point estimate loose
 - Variational Bayes tighter
- Iteration number in EM-like algorithm
 - More iterations tighter bounds
 - Tightness controllable

Cambridge University Engineering Department

1-Best vs. N-Best Supervision

- 1-Best supervision standard adaptation concept
 - Choose 1-Best hypothesis as "supervision"
 - One transform (dist.) for all possible hypothesis
 - All lower bounds optimised using the same transform (dist.)
- N-Best supervision obtain tight lower bound
 - Each hypothesis as "self supervision"
 - Distinct transform (dist.) for every possible hypothesis
 - Lower bound optimised using specific transform (dist.)
- Effects on Bayesian inference
 - 1-Best supv. generally looser lower bound \Rightarrow poor infer. performance
 - N-Best supv. tighter lower bound \Rightarrow better infer. performance

Lower Bound Inference

Exact Evidence	Exact Value	Value of lower bound evidence		
		1-Best (Loose)	N-Best (Tight)	
$p(\mathbf{O} \mathtt{bat})P(\mathtt{bat})$	0.88	0.66	0.80	
$p(\mathbf{O} \mathtt{fat})P(\mathtt{fat})$	0.84	0.78	0.78	
$p(\mathbf{O} \mathtt{mat})P(\mathtt{mat})$	0.80	0.68	0.74	

- Decoding using lower bound instead of exact marginal likelihood
- Assumption: lower bound approx. yields consistent rank ordering
 - 1-Best supervision is fat
 - Lower bound with 1-Best supervision is looser than N-Best one
 - Looser bound yields inconsistent rank ordering: fat > mat > bat
 - Tighter bound yields consistent rank ordering: bat > fat > mat
- Lower bound as tight as possible \Rightarrow N-Best supervision

Direct approximations

- Direct approximate marginal likelihood $p(\mathbf{O}|\mathcal{H}) \approx \mathcal{A}(\mathbf{O}|\mathcal{H})$
- Form of direct approximations
 - Sampling approach
 - * Only applicable to systems with small number of parameters
 - Frame-independent assumption
 - * Transform not constant within a homogeneous block
- Closeness of approx. value $\mathcal{A}(\mathbf{O}|\mathcal{H})$ to $p(\mathbf{O}|\mathcal{H})$ is not well controllable

Sampling Approximation

$$p(\mathbf{O}|\mathcal{H}) \approx \frac{1}{N} \sum_{n=1}^{N} p(\mathbf{O}|\mathcal{H}, \hat{\mathcal{T}}_n)$$

- Converge to true evidence when $N \to \infty$
- N likelihood calculations for each possible hypothesis high cost
- Only applicable to systems with small number of parameters
 - CAT (2-clusters): 2
 - MLLR-SAT (39-dim feature): $39 \times 39 + 39$

Frame-independent (FI) Assumption

• Transform can swap at each frame

Strict Adaptation

FI Assumption

• Integral performed at each frame - Bayesian predictive distribution

$$p(\mathbf{O}|\mathcal{H}) = \int_{\mathcal{T}} \sum_{\boldsymbol{\theta}} P(\boldsymbol{\theta}|\mathcal{M}) \prod_{t} b(\mathbf{o}_{t}|\mathcal{T}, \theta_{t}) p(\mathcal{T}) d\mathcal{T}$$
$$\approx \sum_{\boldsymbol{\theta}} P(\boldsymbol{\theta}|\mathcal{M}) \prod_{t} \int_{\mathcal{T}} b(\mathbf{o}_{t}|\mathcal{T}, \theta_{t}) p(\mathcal{T}) d\mathcal{T}$$

Incremental Bayesian Adaptation

- Many tasks require results causally e.g. dictation
- Adaptation data comes causally (on-line adaptation)
- Basic Process of incremental adaptation
 - 1. Initialisation. Use canonical model and transform prior distribution to decode the 1^{st} utterance
 - 2. **Propagation**. Using adaptation information from previous utterances to adapt the canonical model
 - 3. Inference. Find the best hypothesis sequence upto the current utterance
 - 4. Next utterance comes. Go to the propagation step 2.
- Lower bound inference used in step 3
- Key issue what information to propagate?

Information Propagation Strategy

- Information propagation affects efficiency of adaptation
- No information propagated
 - Redo inference on all utterances
 - High computational cost
- All information propagated
 - Inferred hypothesis sequence No need to redo inference on previous utterances
 - Estimated transform (distribution) propagated align current utterance
 - Accumulated statistics propagated No need to re-cal. statistics of the previous utterances
- Efficient recursive formulae obtained with the above propagation

Experiments on Conversational Telephone Speech Task

- Switchboard (English): conversational telephone speech task
 - Training dataset: about 290hr, 5446spkr
 - Test dataset: 6hr, 144spkr
 - Front-end: PLP+Energy+ 1^{st} , 2^{nd} , 3^{rd} derivatives
 - HLDA and VTLN used
 - 150-Best list rescoring in inference
- 16 Gaussian components per state systems
 - ML and MPE speaker independent (SI) system baseline
 - MLLR based speaker adaptive training (SAT) ML and MPE version

$$\hat{\boldsymbol{\mu}}^{(s)} = \mathbf{A}^{(s)} \boldsymbol{\mu} + \mathbf{b}^{(s)}$$

- MLLR prior distribution Single Gaussian distribution
- MPE-SAT only discriminatively updated the canonical model given ML estimated transforms

Multi-style vs. Adaptive Systems

- Each utterance is a single homogeneous block ave. length is 3.13 s
- \bullet ML-SAT+VB is the best performance for adaptively trained system
- \bullet Adaptive training significantly outperformed multi-style training by 1.3%

Utterance Level Bayesian Adaptation - ML

Bayesian	ML Train		
Approx	SI	SAT	
	32.83		
FI		32.90	
ML	35.54	35.16	
MAP	32.16	31.76	
VB	31.77	31.50	

- FI similar to SI single Gaussian prior
- ML adaptation much worse than SI insufficient adaptation data
- MAP improved WER use prior information
- VB significantly better non-point distribution, tighter bound
- SAT outperformed SI after adaptation by **0.3% 0.4%**

Lower Bound Tightness - N-Best Supervision

- VB trans. dist. and MAP transform updated with 1-Best and N-Best supv.
- Experiments done on ML-SAT system

Bayesian	Supervision		
Approx.	N-Best	1-Best	
MAP	31.76	32.00	
VB	31.50	32.04	

- N-Best supv. significantly better than 1-Best supv.
- VB degradation (0.5%) more than MAP degradation (0.2%)
 - VB more sensitive to supv.

Utterance Level Bayesian Adaptation - MPE

Bayesian	MPE Train		
Approx	SI	SAT	
	29.20		
FI		29.74	
ML	32.44	32.27	
MAP	29.01	28.80	
VB	28.75	28.63	

- FI significantly worse than SI **0.5%** degradation
- Similar trends for lower bound approximation as ML case
 - VB > MAP > SI > ML
 - Corresponding gains (SAT vs. SI) reduced: 0.1% 0.2%
- Reason for degradation (FI) or reduced gain (lower bound):
 - Prior distribution estimated on ML transforms
 - Prior applied in a non-discriminative way

Incremental Bayesian Adaptation

- Full Bayesian approximation significantly better at beginning
- Smaller difference between MAP and VB with more data available
- Trends for ML-SAT and MPE-SAT are similar

Incremental Bayesian Adaptation - Final Performance

Bayesian	ML Train		MPE Train	
Approx	SI	SAT	SI	SAT
ML+thresh	31.23		27.81	
ML	32.23	31.84	28.86	28.72
MAP	30.92	30.40	27.65	27.47
VB	30.88	30.31	27.73	27.44

- Similar observations utterance level adaptation
 - ML+thresh is the baseline for incremental adaptation
 - ML not robust, VB outperformed MAP
 - Adaptive training significantly better than non-adaptive training
 - Gain of MPE adaptive training reduced
 - * Poor prior and non-discriminative adaptation
- Overall performance better than utterance level adaptation

Conclusion

- Adaptive training Deals with non-homogeneous training data
- Bayesian framework allows adaptively trained systems to be used in decoding
 - Approximations required: Lower bound/direct approximations
 - Efficient recursive formulae for incremental adaptation
- Observations in experiments
 - Adaptively trained systems significantly outperformed multi-style systems
 - Variational Bayes more robust with limited data
 - Point estimates gradually become reasonable with data amount increasing
 - Gains of discriminative adaptive systems are smaller than ML adaptive systems due to the use of ML transform prior distribution

