Statistical Machine Translation of Euparl Data by using Bilingual N-grams

Rafael E. Banchs Josep M. Crego Adrià de Gispert Patrik Lambert José B. Mariño
Department of Signal Theory and Communications
Universitat Politècnica de Catalunya, Barcelona 08034, Spain
{rbanchs,jmcrego,agispert,lambert,canton}@gps.tsc.upc.edu

Abstract
This work discusses translation results for the four Euparl data sets which were made available for the shared task “Exploiting Parallel Texts for Statistical Machine Translation”. All results presented were generated by using a statistical machine translation system which implements a log-linear combination of feature functions along with a bilingual n-gram translation model.

1 Introduction
During the last decade, statistical machine translation (SMT) systems have evolved from the original word-based approach (Brown et al., 1993) into phrase-based translation systems (Koehn et al., 2003). Similarly, the noisy channel approach has been expanded to a more general maximum entropy approach in which a log-linear combination of multiple models is implemented (Och and Ney, 2002). The SMT approach used in this work implements a log-linear combination of feature functions along with a translation model which is based on bilingual n-grams. This translation model was developed by de Gispert and Mariño (2002), and it differs from the well known phrase-based translation model in two basic issues: first, training data is monotonously segmented into bilingual units; and second, the model considers n-gram probabilities instead of relative frequencies. This model is described in the following equation:

\[p(T, S) \approx \prod_{n=1}^{N} p((t, s)_n| (t, s)_{n-2}, (t, s)_{n-1}) \]

where \(t \) refers to target, \(s \) to source and \((t, s)_n\) to the \(n^{th} \) tuple of a given bilingual sentence pair.

Tuples are extracted from a word-to-word aligned corpus according to the following two constraints: first, tuple extraction should produce a monotonic segmentation of bilingual sentence pairs; and second, the produced segmentation is maximal in the sense that no smaller tuples can be extracted without violating the previous constraint (Crego et al., 2004). According to this, tuple extraction provides a unique segmentation for a given bilingual sentence pair alignment. Figure 1 illustrates this idea with a simple example.

French, de: German, and fi: Finnish) into English (en) are presented and discussed.

The paper is structured as follows. Section 2 describes the bilingual n-gram translation model. Section 3 presents a brief overview of the whole SMT procedure. Section 4 presents and discusses the shared task results and other interesting experimentation. Finally, section 5 presents some conclusions and further work.

2 Bilingual N-gram Translation Model
As already mentioned, the translation model used here is based on bilingual n-grams. It actually constitutes a language model of bilingual units which are referred to as tuples (de Gispert and Mariño, 2002). This model approximates the joint probability between source and target languages by using n-grams as it is described in the following equation:
We would like to achieve perfect translations.

Once the training data was preprocessed, a word-to-word alignment was performed in both directions, source-to-target and target-to-source, by using GIZA++ (Och and Ney, 2000). As an approximation to the most probable alignment, the Viterbi alignment was considered. Then, the intersection and union of alignment sets in both directions were computed for each training set.

3.2 Feature Function Computation

The considered translation system implements a total of five feature functions. The first of these models is the tuple 3-gram model, which was already described in Section 2. Tuples for the translation model were extracted from the union set of alignments as shown in Figure 1. Once tuples had been extracted, the tuple vocabulary was pruned by using histogram pruning. The same pruning parameter, which was actually estimated for Spanish-English, was used for the other three language pairs. After pruning, the tuple 3-gram model was trained by using the SRI Language Modeling toolkit (Stolcke, 2002). Finally, the obtained model was enhanced by incorporating 1-gram probabilities for the embedded word tuples, which were extracted from the intersection set of alignments.

Table 1 presents the total number of running words, distinct tokens and tuples, for each of the four training data sets.

<table>
<thead>
<tr>
<th></th>
<th>running words</th>
<th>distinct tokens</th>
<th>tuple vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>15670801</td>
<td>113570</td>
<td>1288770</td>
</tr>
<tr>
<td>French</td>
<td>14844465</td>
<td>78408</td>
<td>1173424</td>
</tr>
<tr>
<td>German</td>
<td>15207550</td>
<td>204949</td>
<td>1391425</td>
</tr>
<tr>
<td>Finnish</td>
<td>11228947</td>
<td>389223</td>
<td>1496417</td>
</tr>
</tbody>
</table>

The second feature function considered was a target language model. This feature actually consisted of a word 3-gram model, which was trained from the target side of the bilingual corpus by using the SRI Language Modeling toolkit.

The third feature function was given by a word penalty model. This function introduces a sentence length penalization in order to compensate the sys-

Figure 1: Example of tuple extraction from an aligned sentence pair.

Two important issues regarding this translation model must be mentioned. First, when extracting tuples, some words always appear embedded into tuples containing two or more words, so no translation probability for an independent occurrence of such words exists. To overcome this problem, the tuple 3-gram model is enhanced by incorporating 1-gram translation probabilities for all the embedded words (de Gispert et al., 2004).

Second, some words linked to NULL end up producing tuples with NULL source sides. This cannot be allowed since no NULL is expected to occur in a translation input. This problem is solved by preprocessing alignments before tuple extraction such that any target word that is linked to NULL is attached to either its precedent or its following word.
tem preference for short output sentences. More specifically, the penalization factor was given by the total number of words contained in the translation hypothesis.

Finally, the fourth and fifth feature functions corresponded to two lexicon models based on IBM Model 1 lexical parameters \(p(t|s) \) (Brown et al., 1993). These lexicon models were calculated for each tuple according to the following equation:

\[
\begin{align*}
 p_{\text{lexicon}}((t, s)_n) &= \frac{1}{(I + 1)^J} \prod_{j=1}^{J} \sum_{i=0}^{I} p(t^i_n|s^j_n) \\
\end{align*}
\]

where \(s^j_n \) and \(t^i_n \) are the \(j^{th} \) and \(i^{th} \) words in the source and target sides of tuple \((t, s)_n\), being \(J \) and \(I \) the corresponding total number words in each side of it.

The forward lexicon model uses IBM Model 1 parameters obtained from source-to-target alignments, while the backward lexicon model uses parameters obtained from target-to-source alignments.

3.3 Decoding and Optimization

The search engine for this translation system was developed by Crego et al. (2005). It implements a beam-search strategy based on dynamic programming and takes into account all the five feature functions described above simultaneously. It also allows for three different pruning methods: threshold pruning, histogram pruning, and hypothesis recombination. For all the results presented in this work the decoder’s monotonic search modality was used.

An optimization tool, which is based on a simplex method (Press et al., 2002), was developed and used for computing log-linear weights for each of the feature functions described above. This algorithm adjusts the log-linear weights so that \textit{BLEU} (Papineni et al., 2002) is maximized over a given development set. One optimization for each language pair was performed by using the 2000-sentence development sets made available for the shared task.

4 Shared Task Results

Table 2 presents the \textit{BLEU} scores obtained for the shared task test data. Each test set consisted of 2000 sentences. The computed \textit{BLEU} scores were case insensitive and used one translation reference.

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>es - en</th>
<th>fr - en</th>
<th>de - en</th>
<th>fi - en</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3007</td>
<td>0.3020</td>
<td>0.2426</td>
<td>0.2031</td>
</tr>
</tbody>
</table>

As can be seen from Table 2 the best ranked translations were those obtained for French, followed by Spanish, German and Finnish. A big difference is observed between the best and the worst results.

Differences can be observed from translation outputs too. Consider, for example, the following segments taken from one of the test sentences:

- \textit{es-en}: \textit{We know very well that the present Treaties are not enough and that, in the future, it will be necessary to develop a structure better and different for the European Union...}
- \textit{fr-en}: \textit{We know very well that the Treaties in their current are not enough and that it will be necessary for the future to develop a structure more effective and different for the Union...}
- \textit{de-en}: \textit{We very much aware that the relevant treaties are inadequate and, in future to another, more efficient structure for the European Union that must be developed...}
- \textit{fi-en}: \textit{We know full well that the current Treaties are not sufficient and that, in the future, it is necessary to develop the Union better and a different structure...}

It is evident from these translation outputs that translation quality decreases when moving from Spanish and French to German and Finnish. A detailed observation of translation outputs reveals that there are basically two problems related to this degradation in quality. The first has to do with reordering, which seems to be affecting Finnish and, specially, German translations.

The second problem has to do with vocabulary. It is well known that large vocabularies produce data sparseness problems (Koehn, 2002). As can be confirmed from Tables 1 and 2, translation quality decreases as vocabulary size increases. However, it is not clear yet, in which degree such degradation is due to monotonic decoding and/or vocabulary size.

Finally, we also evaluated how much the full feature function system differs from the baseline tuple 3-gram model alone. In this way, \textit{BLEU} scores were computed for translation outputs obtained for the baseline system and the full system. Since the English reference for the test set was not available, we computed translations and \textit{BLEU} scores over de-
velopment sets. Table 3 presents the results for both the full system and the baseline.1

Table 3: Baseline- and full-system BLEU scores (computed over development sets).

<table>
<thead>
<tr>
<th>language pair</th>
<th>baseline</th>
<th>full</th>
</tr>
</thead>
<tbody>
<tr>
<td>es - en</td>
<td>0.2588</td>
<td>0.3004</td>
</tr>
<tr>
<td>fr - en</td>
<td>0.2547</td>
<td>0.2938</td>
</tr>
<tr>
<td>de - en</td>
<td>0.1844</td>
<td>0.2350</td>
</tr>
<tr>
<td>fi - en</td>
<td>0.1526</td>
<td>0.1989</td>
</tr>
</tbody>
</table>

From Table 3, it is evident that the four additional feature functions produce important improvements in translation quality.

5 Conclusions and Further Work

As can be concluded from the presented results, performance of the translation system used is much better for French and Spanish than for German and Finnish. As some results suggest, reordering and vocabulary size are the most important problems related to the low translation quality achieved for German and Finnish.

It is also evident that the bilingual n-gram model used requires the additional feature functions to produce better translations. However, more experimentation is required in order to fully understand each individual feature’s influence on the overall log-linear model performance.

6 Acknowledgments

This work has been funded by the European Union under the integrated project TC-STAR - Technology and Corpora for Speech to Speech Translation -(IST-2002-FP6-506738, http://www.tc-star.org). The authors also want to thank José A. R. Fonollosa and Marta Ruiz Costa-jussà for their participation in discussions related to this work.

References

Adrià de Gispert, and José B. Mariño. 2002. “Using X-grams for speech-to-speech translation”. *Proc. of the 7th Int. Conf. on Spoken Language Processing*.

