Rule Filtering by Pattern for Efficient Hierarchical Translation

Gonzalo Iglesias1 Adrià de Gispert2
Eduardo R. Banga1 William Byrne2

1Department of Signal Processing and Communications
University of Vigo, Spain

2Department of Engineering.
University of Cambridge, U.K.

12th Conference of the EACL.
Athens, April 2009.
Outline

1 Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2 Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Hierarchical Cube Pruning

Very Brief Description!

- CYK: source side, hypotheses recombination, no pruning
- k-best algorithm: uses cube pruning with LM costs to extract efficiently k-best lists
- NIST 2008 Arabic-to-English task, k-best=10000
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation

Refinements in the Cube Pruning Decoder

Rule Filtering by Pattern for Efficient Hierarchical Translation
Key aspect of Chiang’s k-best algorithm: memoization!

Each cell reached at least once by the k-best algorithm will store a k-best list

Only after finishing translation you can free memory (Gigs)
Idea: Couldn’t we delete k-best lists on the fly?
Problem: We do not know how many times will each cell be accessed
Solution: Traverse back-pointers twice:
 1st pass: count how many times each cell will be accessed (very fast)
 2nd pass, build translation hyps: Decrease counter for each cell. If counter=0, delete k-best list!

typically reduces memory usage in 30%
1 Refinements in the Cube Pruning Decoder
 • Hiero Cube Pruning
 • Smart Memoization
 • Spreading Neighborhood Exploration

2 Rule Filtering by Pattern
 • Rule Patterns
 • Hiero Shallow
 • Filtering Translations
 • Rule Patterns Revisited
 • Large Language Models and Evaluation
Cube Pruning: extracts efficiently first k-best hyps

- Original CP items X already added! Queue of candidates shrinks \rightarrow Search Errors!
- Spreading neighborhood exploration adds candidates S to the queue
How can we assess the impact of SNE?

We use as a reference TTM, a phrase-based SMT system implemented with Weighted Finite-State Transducers.

TTM Reordering Models: MJO, or an MJ1 (maximum phrase jump of 0 and 1, respectively).

TTM works largely without pruning (even with big models).

HCP can easily emulate TTM MJ0 and MJ1 models.
Table: Hierarchical grammars for MJ1

<table>
<thead>
<tr>
<th>HIERO MJ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow \langle S \ X, S \ X \rangle$</td>
</tr>
<tr>
<td>$S \rightarrow \langle X, X \rangle$</td>
</tr>
<tr>
<td>$X \rightarrow \langle V_2 \ V_1, V_1 \ V_2 \rangle$</td>
</tr>
<tr>
<td>$X \rightarrow \langle V, V \rangle$</td>
</tr>
<tr>
<td>$V \rightarrow \langle s, t \rangle$</td>
</tr>
<tr>
<td>$s, t \in T^+$</td>
</tr>
</tbody>
</table>
Hiero Search Errors III
A study in Phrase-Based Translation

<table>
<thead>
<tr>
<th></th>
<th>Monotone</th>
<th>MJ1+MET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU</td>
<td>SE</td>
</tr>
<tr>
<td>TTM</td>
<td>44.7</td>
<td>-</td>
</tr>
<tr>
<td>HCP</td>
<td>44.5</td>
<td>342</td>
</tr>
<tr>
<td>HCP+SNE=20</td>
<td>44.7</td>
<td>77</td>
</tr>
</tbody>
</table>

Table: Phrase-based TTM and Hiero performance comparison on Arabic-to-English *mt02-05-tune*. SE is the number of Hiero hypotheses with search errors.
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Initial Rule Sets Are Really Big

- Initial Rule Extraction: 175 M rules!
- Other approaches:
 - Lopez (2008) enforces rules with minspan of two words (115M)
 - Zollman et al. (2008) enforce mincount: (e.g. 57M mincount=3)
 - Shen et al. (2008) filter target-side rules that are not well-formed dependency trees
 - Chiang (2007) reports experiments with 5.5M
- Are all these rules needed for translation?
Hierarchical rules $X \rightarrow \langle \gamma, \alpha \rangle$: sequences of terminals and non-terminals (elements)

- Source Pattern and Target Pattern: replace every sequence of terminals by a single symbol ‘w’ ($w \in T^+$).
- Each hierarchical rule corresponds to a unique source and target pattern which together define the rule pattern.

- 65 hierarchical rule patterns
Rule Patterns II

Example:
Pattern $\langle wX_1, wX_1w \rangle$:
$\langle w+ qAl X_1, the X_1said \rangle$

Pattern $\langle wX_1w, wX_1 \rangle$:
$\langle fy X_1kAnwn Al>wl, on december X_1 \rangle$

Pattern $\langle wX_1wX_2, wX_1wX_2w \rangle$:
$\langle HI X_1lAzmp X_2, a X_1solution to the X_2crisis \rangle$

Rules can be classed by their number of non-terminals, N_{nt}, and their number of elements, N_e (source side).

There are 5 possible classes:
$N_{nt}N_e = 1.2, 1.3, 2.3, 2.4, 2.5.$
Rule Patterns III

<table>
<thead>
<tr>
<th>Class</th>
<th>Rule Pattern</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{nt} N_e$</td>
<td>$\langle \text{source} , \text{target} \rangle$</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>$\langle wX_1 , wX_1 \rangle$, (\langle wX_1 , wX_1 w \rangle), (\langle wX_1 , X_1 w \rangle)</td>
<td>1185028, 153130, 97889</td>
</tr>
<tr>
<td>1.3</td>
<td>$\langle wX_1 w , wX_1 w \rangle$, (\langle wX_1 w , wX_1 \rangle)</td>
<td>32903522, 989540</td>
</tr>
<tr>
<td>2.3</td>
<td>$\langle X_1 wX_2 , X_1 wX_2 \rangle$, (\langle X_2 wX_1 , X_1 wX_2 \rangle)</td>
<td>1554656, 39163</td>
</tr>
<tr>
<td>2.4</td>
<td>$\langle X_1 wX_2 w , X_1 wX_2 w \rangle$, (\langle wX_1 wX_2 , wX_1 wX_2 w \rangle), (\langle wX_2 wX_1 , wX_1 wX_2 \rangle)</td>
<td>26053969, 2534510, 349176</td>
</tr>
<tr>
<td>2.5</td>
<td>$\langle wX_1 wX_2 w , wX_1 X_2 w \rangle$, (\langle wX_1 wX_2 w , X_1 wX_2 w \rangle), (\langle wX_2 wX_1 w , X_1 wX_2 w \rangle)</td>
<td>3149516, 2330797, 275810</td>
</tr>
</tbody>
</table>
Towards a more Workable Rule Set I

- Greedy approach to building a rule set:
- Rules belonging to a pattern are added to the rule set guided by the improvements relative to Hiero Monotone
- Certain patterns seem not to contribute to any improvement.
 - No improvement when adding $\langle X_1 w, X_1 w \rangle$ (1.2M)
 - Adding $\langle wX_1, X_1 w \rangle$ (0.01M), provides substantial gains.
 - Situation is analogous two non-terminals ($N_{nt}=2$).
Towards a more Workable Rule Set II

<table>
<thead>
<tr>
<th>Types</th>
<th>Excluded Rules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(\langle X_1w,X_1w \rangle, \langle wX_1,wX_1 \rangle)</td>
<td>2332604</td>
</tr>
<tr>
<td>b</td>
<td>(\langle X_1wX_2,* \rangle)</td>
<td>2121594</td>
</tr>
<tr>
<td>c</td>
<td>(\langle X_1wX_2w,X_1wX_2w \rangle, \langle wX_1wX_2,wX_1wX_2 \rangle)</td>
<td>52955792</td>
</tr>
<tr>
<td>d</td>
<td>(\langle wX_1wX_2w,* \rangle)</td>
<td>69437146</td>
</tr>
<tr>
<td>e</td>
<td>(N_{nt}N_e = 1.3) (w) (\text{mincount}=5)</td>
<td>32394578</td>
</tr>
<tr>
<td>f</td>
<td>(N_{nt}N_e = 2.3) (w) (\text{mincount}=5)</td>
<td>166969</td>
</tr>
<tr>
<td>g</td>
<td>(N_{nt}N_e = 2.4) (w) (\text{mincount}=10)</td>
<td>11465410</td>
</tr>
<tr>
<td>h</td>
<td>(N_{nt}N_e = 2.5) (w) (\text{mincount}=5)</td>
<td>688804</td>
</tr>
</tbody>
</table>

Table: Rules excluded from the initial rule set. 171M filtered out, 3.5 hierarchical rules, 4.2 including phrase-based rules.
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Hiero Full versus Hiero Shallow I

<table>
<thead>
<tr>
<th>HIERO</th>
<th>HIERO SHALLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \rightarrow \langle \gamma, \alpha \rangle$</td>
<td>$X \rightarrow \langle \gamma_s, \alpha_s \rangle$</td>
</tr>
<tr>
<td>$\gamma, \alpha \in ({X} \cup T)^+$</td>
<td>$X \rightarrow \langle V, V \rangle$</td>
</tr>
<tr>
<td></td>
<td>$V \rightarrow \langle s, t \rangle$</td>
</tr>
<tr>
<td></td>
<td>$s, t \in T^+$; $\gamma_s, \alpha_s \in ({V} \cup T)^+$</td>
</tr>
</tbody>
</table>

Table: Hierarchical grammars, Shallow versus Full
Hiero Full versus Hiero Shallow II

<table>
<thead>
<tr>
<th>System</th>
<th>-tune</th>
<th>-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIERO</td>
<td>14.0</td>
<td>52.1</td>
</tr>
<tr>
<td>HIERO - shallow</td>
<td>2.0</td>
<td>52.1</td>
</tr>
</tbody>
</table>

Table: Translation performance and time (in seconds per word) for full vs. shallow Hiero. Arabic-to-English task, kbest=10000, SNE=20
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Filtering by Number of Translations I

- \(\forall \gamma \not\in T^+ \) filter \(X \rightarrow \langle \gamma, \alpha \rangle \) with the following criteria:
 - Keep the \(\text{NT} \) most frequent \(\alpha \), i.e. each \(\gamma \) is allowed to have at most \(\text{NT} \) rules.
 - Keep the \(\text{NRT} \) most frequent \(\alpha \) with monotonic non-terminals and the \(\text{NRT} \) most frequent \(\alpha \) with reordered non-terminals.
 - Keep the most frequent \(\alpha \) until their aggregated number of counts reaches a certain percentage \(\text{CP} \) of the total counts of \(X \rightarrow \langle \gamma, * \rangle \).
Filtering by Number of Translations II

<table>
<thead>
<tr>
<th>Filter</th>
<th>Time</th>
<th>Rules</th>
<th>BLEU</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>2.0</td>
<td>4.20</td>
<td>52.1</td>
<td>51.4</td>
</tr>
<tr>
<td>NT=10</td>
<td>0.8</td>
<td>3.25</td>
<td>52.0</td>
<td>51.3</td>
</tr>
<tr>
<td>NT=15</td>
<td>0.8</td>
<td>3.43</td>
<td>52.0</td>
<td>51.3</td>
</tr>
<tr>
<td>NT=20</td>
<td>0.8</td>
<td>3.56</td>
<td>52.1</td>
<td>51.4</td>
</tr>
<tr>
<td>NRT=10</td>
<td>0.9</td>
<td>3.29</td>
<td>52.0</td>
<td>51.3</td>
</tr>
<tr>
<td>NRT=15</td>
<td>1.0</td>
<td>3.48</td>
<td>52.0</td>
<td>51.4</td>
</tr>
<tr>
<td>NRT=20</td>
<td>1.0</td>
<td>3.59</td>
<td>52.1</td>
<td>51.4</td>
</tr>
<tr>
<td>CP=50</td>
<td>0.7</td>
<td>2.56</td>
<td>51.4</td>
<td>50.9</td>
</tr>
<tr>
<td>CP=90</td>
<td>1.0</td>
<td>3.60</td>
<td>52.0</td>
<td>51.3</td>
</tr>
</tbody>
</table>

Table: Impact of general rule filters on translation (IBM BLEU), time (in seconds per word) and number of rules (in millions).
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Revisiting Pattern Filtering Strategies I

- As many decisions were based on the initial greedy approach, we revisit our strategy.
- Different (class) mincount filterings.
- Rule pattern filterings: Reintroduce different monotone patterns.
Revisiting Pattern Filtering Strategies II

<table>
<thead>
<tr>
<th>mto2-05-</th>
<th>-tune</th>
<th>-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{nt} \cdot N_e$</td>
<td>Filter</td>
<td>Time</td>
</tr>
<tr>
<td>baseline, NRT=20</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2.3</td>
<td>+monotone</td>
<td>1.1</td>
</tr>
<tr>
<td>2.4</td>
<td>+monotone</td>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>+monotone</td>
<td>1.8</td>
</tr>
</tbody>
</table>

- Reintroducing monotonic rules degrades performance, substantial increase of n of rules.
Revisiting Pattern Filtering Strategies III

<table>
<thead>
<tr>
<th>$N_{nt} \cdot N_e$</th>
<th>Filter</th>
<th>Time</th>
<th>Rules</th>
<th>BLEU</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline $NRT=20$</td>
<td></td>
<td>1.0</td>
<td>3.59</td>
<td>52.1</td>
<td>51.4</td>
</tr>
<tr>
<td>1.3</td>
<td>mincount=3</td>
<td>1.0</td>
<td>5.61</td>
<td>52.1</td>
<td>51.3</td>
</tr>
<tr>
<td>2.3</td>
<td>mincount=1</td>
<td>1.2</td>
<td>3.70</td>
<td>52.1</td>
<td>51.4</td>
</tr>
<tr>
<td>2.4</td>
<td>mincount=5</td>
<td>1.8</td>
<td>4.62</td>
<td>52.0</td>
<td>51.3</td>
</tr>
<tr>
<td>2.4</td>
<td>mincount=15</td>
<td>1.0</td>
<td>3.37</td>
<td>52.0</td>
<td>51.4</td>
</tr>
<tr>
<td>2.5</td>
<td>mincount=1</td>
<td>1.1</td>
<td>4.27</td>
<td>52.2</td>
<td>51.5</td>
</tr>
<tr>
<td>1.2</td>
<td>mincount=5</td>
<td>1.0</td>
<td>3.51</td>
<td>51.8</td>
<td>51.3</td>
</tr>
<tr>
<td>1.2</td>
<td>mincount=10</td>
<td>1.0</td>
<td>3.50</td>
<td>51.7</td>
<td>51.2</td>
</tr>
</tbody>
</table>
Outline

1. Refinements in the Cube Pruning Decoder
 - Hiero Cube Pruning
 - Smart Memoization
 - Spreading Neighborhood Exploration

2. Rule Filtering by Pattern
 - Rule Patterns
 - Hiero Shallow
 - Filtering Translations
 - Rule Patterns Revisited
 - Large Language Models and Evaluation
Rescoring steps:

- *Large-LM rescoring* of 10000-best list with 5-gram language models,
- *Minimum Bayes Risk (MBR)*. Rescore 1000-best hyps

<table>
<thead>
<tr>
<th></th>
<th>mt06-nist-nw</th>
<th>mt06-nist-ng</th>
<th>mt08</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCP+MET</td>
<td>48.4 / 43.6</td>
<td>35.3 / 53.2</td>
<td>42.5 / 48.6</td>
</tr>
<tr>
<td>+rescoring</td>
<td>49.4 / 42.9</td>
<td>36.6 / 53.5</td>
<td>43.4 / 48.1</td>
</tr>
</tbody>
</table>

Table: Arabic-to-English translation results (lower-cased IBM BLEU / TER)

- Mixed case NIST BLEU for *mt08* is 42.5
Summary

- Smart memoization and spreading neighborhood exploration reduce memory consumption and Hiero search errors.
- For Arabic-to-English, Shallow hierarchical decoding is as good as fully hierarchical decoding (and much faster!)
- Filtering Rules by Translations further increases speed with no cost in scores
- For hierarchical rules grouped in classes and patterns:
 - Certain patterns are of much greater value in translation than others
 - Separate minimum count filtering should be applied

Iglesias, de Gispert, R. Banga, Byrne
Thank you!

For further reading, check out NAACL2009 paper: "Hierarchical Phrase-Based Translation with Weighted Finite State Transducers"