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Abstract
Making predictions of the following word given the back his-
tory of words may be challenging without meta-information
such as the topic. Standard neural network language models
have an implicit representation of the topic via the back history
of words. In this work a more explicit form of topic represen-
tation is used via an attention mechanism. Though this makes
use of the same information as the standard model, it allows
parameters of the network to focus on different aspects of the
task. The attention model provides a form of topic representa-
tion that is automatically learned from the data. Whereas the
recurrent model deals with the (conditional) history represen-
tation. The combined model is expected to reduce the stress
on the standard model to handle multiple aspects. Experiments
were conducted on the Penn Tree Bank and BBC Multi-Genre
Broadcast News (MGB) corpora, where the proposed approach
significantly outperforms standard forms of recurrent models in
perplexity. Finally, N-best list rescoring for speech recognition
in the MGB3 task shows word error rate improvements over
comparable standard form of recurrent models.
Index Terms: language model, recurrent neural network, mem-
ory networks, attention, speech recognition, ASR

1. Introduction
Language models form a crucial component of many speech
and language processing pipelines, such as in speech recogni-
tion and machine translation. In many state-of-the-art systems,
a recurrent neural network language model (RNNLM) is com-
bined with a n-gram language model [1] to obtain the best per-
formance. The advantage of the RNNLM approach is the use of
a long word history within a continuous hidden representation.
Making accurate predictions of the following word given the
back word history may be challenging without access to meta
information. This limitation is particularly evident for tasks
where the back word history is either ambiguous or can take
on multiple meanings, such as in the case of topic modeling.
The standard RNNLM only has an implicit topic representation
via the back word history and may struggle to correctly learn
this representation, unless provided explicit guidance [2, 3].

This paper introduces a novel recurrent network architec-
ture, referred to as an Active Memory Network (AMN), that
introduces a more explicit topic representation to the standard
RNNLM structure via an attention mechanism. An AMN uses a
recurrent attention mechanism to actively attend to K dynamic
memory cells, where each memory cell may hold an eigen topic
representation when trained to do so. At each time-step, an opti-
mal topic representation for word-prediction can be obtained by
interpolating the memory cells. Furthermore, a time-dependent
regularization term is introduced to improve the training of an
AMN. A high-level overview of the AMN architecture is shown
in Figure 1, with further details in the following sections.

The model presented in this work is related to a range of

attention and memory based models in the existing literature
such as Neural Turing Machines [4] and memory networks for
question answering [5, 6]. However, unlike previous works, a
simpler approach is presented here for incorporating memory
and attention into the model.

The rest of this paper is organised as follows. Section
2 gives a brief overview of neural network LMs. Section 3
presents the AMN architecture. The training and regularization
methods are discussed in Section 4 and 5. Experimental results
are presented in Section 6 with the Conclusion in Section 7.

Figure 1: Active Memory Network

2. Neural Network Language Models
Language models (LMs) are generally classified as either
discrete-space models such as n-grams, or continuous-space
models such as neural networks [7]. Continuous-space models
can be further divided between ones that assumes the Markov
property to limit the word-history from wt−k to wt (feedfor-
ward neural networks) versus models that use the complete
word-history from w1 to wt (RNNLMs).

Unlike n-gram LMs, RNNLMs models the complete word-
history by computing a continuous hidden vector ht [8].

P (w) =

T∏
t=1

P (wt|wt−1, ...,w1) ≈
T∏

t=1

P (wt|ht) (1)

The hidden vector ht is computed by:

xt = Cwt (2)
ht = tanh(Wxxt +Whht−1) (3)

where xt is the word-embedding for the word wt obtained us-
ing an embedding matrix C, Wx is the input-to-hidden weight



matrix, and Wh is the hidden-to-hidden weight matrix. Com-
puting the probability of the next word at time t is given by:

ŷt = Softmax(Woht) (4)

where Wo is the hidden-to-output weight matrix, and ŷt =
P (wt|ht) is the word probability distribution vector.

RNNLMs have been successfully applied in many language
modeling applications [8, 9, 10, 11, 12]. Most state-of-the-art
LMs are based on RNNs and their variants, such as GRUs or
LSTMs [13, 14].

3. Active Memory Networks
As noted earlier, RNNs make use of a single hidden state to rep-
resent the input history, which implicitly includes any meta in-
formation. For language modeling, this meta information might
correspond to the topics; for acoustic modeling, this meta in-
formation might correspond to speaker acoustic characteristics.
This puts a lot of stress on a single hidden state, which may im-
pair model training. Thus in some situations, it may be better
to represent the meta information more explicitly. This would
require specifying: (i) the model for representing the meta infor-
mation and (ii) the method for training it. The Active Memory
Network (AMN) is introduced as a first step in that direction,
where a model that can learn to represent the meta information
is provided along with a training method that requires no addi-
tional supervision.

At a high-level, an AMN uses a recurrent attention mech-
anism to attend over K parallel, time-dependent memory cells
(abbrv. memcells) that share the same input xt. A diagram
comparing an AMN to a RNN is shown in Figure 2. Unlike a
RNN, an AMN contains multiple internal hidden states in the
form of the memcell vectors {m(i)

t }. m
(i)
t can be interpreted

as the hidden state of a single RNN, as shown by its input-to-
hidden and hidden-to-hidden connections

m
(i)
t = tanh(Wx(i)xt +Wm(i)m

(i)
t−1) (5)

where Wx(i) is the input-to-hidden weight matrix and Wm(i)

is the hidden-to-hidden weight matrix. Note that each mem-
ory cell has their own input-to-hidden weight matrix. Memory
cells are selected by computing a soft-attention vector using a
controller ut implemented by

ut = tanh(Qxxt +Quut−1) (6)

where Qx and Qu are the input-to-hidden and hidden-to-hidden
weight matrix respectively. To generate the attention vector

β
(i)
t = ut ·m(i)

t (7)

is computed and passed through a softmax to obtain the atten-
tion weight α(i)

t for m(i)
t :

α
(i)
t =

exp(β
(i)
t )∑

j exp(β
(j)
t )

(8)

A summation of the memory cell vectors weighted by the
attention weights returns the response output ot.

ot =

K∑
i=1

α
(i)
t ·m

(i)
t (9)

The predicted output at time t can then be computed by:

ŷt = Softmax(Woot) (10)

Finally, the network can be trained using standard RNN algo-
rithms, such as backpropagation-through-time (BPTT) [15].

Figure 2: Comparison of a RNN and AMN for a single time-
step.

4. Training the Attention Mechanism
Given the relatively complex architecture of the AMN model,
training from random initialization using BPTT is unlikely to
yield a robust attention mechanism. In the preliminary experi-
ments, the model often converged to a trivial attention mecha-
nism where many memcells were assigned near-zero attention
weights. To understand this, it is useful to examine the deriva-
tive of the response output o with respect to the weights used to
compute the memcell vector m(k):

∂o

∂w(k)
= α(k) ∂m

(k)

∂w(k)

(
1 + β(k) −

K∑
i=1

α(i)β(i)
)

(11)

Here, ∂m(k)/∂w(k) is the derivative of the kth memcell vec-
tor with respect to its weights. Equation 11 implies that the
weight-update for the kth memory cell is directly proportional
to the attention weight α(k) assigned to it. In particular, when
α(k) = 0, the kth memcell never gets updated because the error
gradient goes to 0. On the other hand, when α(k) = 1, only the
kth memcell gets trained due to the sum to one constraint.

4.1. Attention-weight annealing

One simple remedy to address such greedy training behavior is
to force the model to activate all memcells during the first few
training epochs. This can be enforced implicitly by using an
annealing schedule

α
(i)
t =

exp(β
(i)
t /T )∑

j exp(β
(j)
t /T )

(12)

where T is the “temperature”. As T approaches infinity, α(i)
t

approaches 1/K, which implies that the attention is evenly dis-
tributed across all memcells. As T approaches 0, one of the
weights α(i)

t approaches 1 with the rest approaching 0, which
implies that the model is focused on a single memcell. Thus T
is initially set to a high value to encourage weight-tuning in all
memcells, and slowly lowered at each training epoch by multi-
plying with γ < 1.



4.2. Dropout

Another technique that can prevent strong co-adaptation of at-
tention weights is dropout [16, 17]. For the controller, this can
be implemented using:

ut = tanh(Qx(xt � zut) +Quut−1) (13)

where zut is a bit-mask vector sampled anew at each time-step.
For the memcells, this can be similarly implemented by:

m
(i)
t = tanh(Wx(xt � z

m
(i)
t

) +Wm(i)m
(i)
t−1) (14)

Figure 3 shows how each component of the model is af-
fected by dropout in the controller and dropout in the memcells.
For the memcells, the response output is changed by both the
attention weights and the memcells. For the controller, the re-
sponse output is only changed by the attention weights. This is
shown by the dotted lines in the figure. This subtle difference
in how dropout affects each model component leads to drasti-
cally different regularization behaviors. In particular, dropout
in the memcells has the desirable property of regularizing both
the memcell vectors and the attention mechanism. Note that

Figure 3: Dropout in controller (left) versus dropout in mem-
cells (right). Dotted lines indicates computation paths affected
by noise injection from dropout.

these regularization effects are due to the structural properties
of AMN, and not the particular dropout method used. Thus, the
regularization effects of dropout in the memcell will still hold
even when an alternative method, such as [17], is used.

Figure 4: Weight-update in original error function (left) and
weight-update with ITL (right).

5. Regularization with Implicit Target Loss
Given the use of attention and memory in the AMN model,
a natural question which arises is: what should the memcells

model? The original formulation of the model is quite uncon-
strained in that there are no training signals that dictates what
the memcells should model. This can lead to a high-degree of
co-adaptation in the memcells during training. An example is
illustrated in Figure 4, where a weight-update pushes the re-
sponse vector towards the desired target vector t, even though
the memcells are pushed towards different points. A reasonable
prior in this situation is to have one of the memcells focus on
modeling t and let the other memcell model some other vector.

To remedy this problem, a regularization term can be intro-
duced to encourage memcell specialization during training:

R(θ) = λ

K∑
i=1

α
(i)
t ‖ot −m

(i)
t ‖

2 (15)

where R(θ) is the regularization term and λ is the tunable reg-
ularization penalty. This regularization term – referred to as
the implicit-target loss (abbrv. ITL) – directly minimizes the
loss between the memcell vector m(i)

t and the response output
ot. Intuitively, ot provides a time-varying implicit-target for the
memcells to directly model, where the quantity of the error con-
tributed by each memcell is proportional to its attention value
α
(i)
t . The right hand side of Figure 4 shows how the weight-

updates are changed by ITL. Instead of having both memcells
weakly pushed towards t, ITL induces a strong push towards t
in one of the memcells, and allows the other one to wander.

In the special case of R(θ) = 0, either (i) a single mem-
cell is activated or (ii) the memcells are identical. Case (ii) is
interesting since it suggests that ITL may encourage the model
to train the memcells to be identical. However, if noise was in-
jected into the computation of the memcells, it is highly unlikely
that any of the memcells will ever be identical. In particular, the
dropout technique for AMN discussed earlier will achieve pre-
cisely this effect. Consequently,R(θ) will be non-zero for most
training cases when used in conjunction with memcell-dropout.

5.1. Interpreting ITL as MoE

The AMN model in equation (9) can also be viewed as a pseudo
mixture-of-experts (MoE) [18, 19], with the gating function im-
plemented using the controller and the memcells acting as the
experts. However, unlike a typical MoE model, the memcell-
experts do not directly model an output class-probability distri-
bution y. Instead, each memcell learns a hidden representation
which is indirectly used to compute y via the interpolated re-
sponse vector o. To minimize the error, each memcell-expert
needs to output a vector that is both useful for predicting y and
accounts for the residual errors of the other memcell-experts.
In this context, ITL can be interpreted as a way to de-couple
the memcell interactions. Co-adaptation is discouraged because
ITL will penalize the activation of memcells that are contribut-
ing a high residual error towards o. This in turn frees the re-
maining memcells to further specialize for y without needing
to account for the errors made by the non-specialized experts.

5.2. Interpreting ITL as L2 regularization

Alternatively, one can also interpret ITL as a form of L2 regular-
ization on the memcells. This can be shown by setting ot = 0

and assuming that α(i)
t = 1/K.

R(θ) = λ̃

K∑
i=1

‖m(i)
t ‖

2 (16)



where λ̃ is a scaled regularization penalty. This has implications
for setting the initial weights, since smaller weights will likely
push ot towards 0 thus pushing ITL towards L2 regularization.

6. Experiments
Language modeling experiments were performed using the
Penn TreeBank (PTB) dataset [16]. PTB consists mainly of
text related to finance, politics and business. Speech recog-
nition experiments were conducted on the BBC Multi-Genre
Broadcast News (MGB) dataset [20] using an HTK [21] hybrid
acoustic model trained on 275 hours of audio. MGB consists
of both manually-transcribed and automatically-generated sub-
titles drawn from seven weeks of BBC broadcasts, and contains
many genres/topics that can be learned by a LM.

All models were trained with roughly 16–20 million param-
eters to perform a fair comparison. The baseline RNN, GRU,
and LSTM each had a single recurrent layer containing 750 hid-
den units. The AMN contained five memcells, where both the
controller and the memcells were implemented using a GRU re-
current layer with 500 hidden units. Tensorflow [22] was used
for all code implementation. More details on the experimental
setup can be found in [23].

Model Valid Eval
RNN + Dropout 146 139
GRU + Dropout 115 114
LSTM + Dropout 127 117
AMN + Anneal + Drop-Mem 102 96
AMN + Anneal + Drop-Mem + ITL 98 91

Table 1: PTB perplexity.

Table 1 shows consistent perplexity deductions from the
AMN model on PTB, with a relative test perplexity decrease
of roughly 25% compared with the best performing baselines
(GRU and LSTM). Training AMN with implicit target loss reg-
ularisation (ITL) resulted in the best performing model, be-
lieved to be due to the better regularization of the attention
mechanism from ITL.

Model Valid Eval
KN-5 (Mikolov et. al 2012) 148 141
RNN + LDA (Mikolov et. al 2012) 132 126
TopicRNN (Dieng et. al 2017) 129 122
TopicGRU (Dieng et. al 2017) 118 112
TopicLSTM (Dieng et. al 2017) 126 118
AMN + Drop-Mem 108 103
AMN + Drop-Mem + ITL 104 97
AMN + Anneal + Drop-Mem + ITL 103 95

Table 2: Comparison with explicit topic models on PTB.

A comparison of AMN against models that perform explicit
topic modeling is shown in Table 2. The AMN model for these
experiments were trained with 100 recurrent units to compare
with existing results. The perplexity results suggest that the
topic modeling approach espoused by AMN provides a pow-
erful alternative to the explicit topic modeling approach used
by the other models. Moreover, the AMN modeling approach
has the benefit of avoiding the need to set up the topic space,
such as choosing the number of topics.

Perplexity and word error rate (WER) results on the MGB
task are shown in Table 3. RNNLMs were trained on a smaller

Model Datasets Perplexity WER
3-gram Man+Sub 127 28.5
RNN Man 198 27.8
GRU Man 164 27.2
AMN Man 142 27.0

Table 3: MGB perplexity and WER from 100-best rescoring. All
models were trained with 512 recurrent units.

Figure 5: Heatmap of genre distribution across memcells.

dataset due to computational constraints, which is why their per-
plexity results were worse than the tri-gram model – otherwise
the perplexity results were similar to the results for PTB. Sig-
nificant WER improvements were observed after interpolating
with the n-gram LM for n-best rescoring – a common practice
for speech recognition [8, 24, 25]. The best results were given
by the AMNLM, which obtained a 0.2 WER absolute improve-
ment over the GRU model. Figure 5 gives an example of the
genre distribution among the memcells in MGB based on topic
word-rankings. The genre word-ranking for memcell m(i) was
computed by ranking words in the genre-specific vocabulary ac-
cording to their attention α(i) averaged across all observations.
The figure shows that at least one memcell was highly active
for all genres. Note that no genre supervision was given to the
AMNLM, so any genre specialization behaviors in the mem-
cells were learned implicitly by the model.

7. Conclusions
Current forms of recurrent neural networks store an implicit
representation of the meta information, such as the topic, in
the back word history. In certain situations it may be advanta-
geous to model such representation more explicitly. This paper
proposed a model which stored multiple representations within
memory cells and used a (soft) attention mechanism to select
the most appropriate representation at each time-step. Since
training these models from random initialization tend to lead
the model to learn poor attention mechanisms, this paper in-
troduced several training methods for yielding robust attention
mechanisms. Experiments conducted on PTB and the MGB
tasks show that this new model can outperform various stan-
dard recurrent language models in terms of perplexity and word
error rate.
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pur, “Recurrent neural network based language model.” in Inter-
speech, vol. 2, 2010, p. 3.

[9] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudan-
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