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Abstract

There is a growing demand for automatic
assessment of spoken English proficiency.
These systems need to handle large vari-
ations in input data owing to the wide
range of candidate skill levels and L1s, and
errors from ASR. Some candidates will
be a poor match to the training data set,
undermining the validity of the predicted
grade. For high stakes tests it is essen-
tial for such systems not only to grade
well, but also to provide a measure of
their uncertainty in their predictions, en-
abling rejection to human graders. Pre-
vious work examined Gaussian Process
(GP) graders which, though successful,
do not scale well with large data sets.
Deep Neural Network (DNN) may also be
used to provide uncertainty using Monte-
Carlo Dropout (MCD). This paper pro-
poses a novel method to yield uncertainty
and compares it to GPs and DNNs with
MCD. The proposed approach explicitly
teaches a DNN to have low uncertainty
on training data and high uncertainty on
generated artificial data. On experiments
conducted on data from the Business Lan-
guage Testing Service (BULATS), the pro-
posed approach is found to outperform
GPs and DNNs with MCD in uncertainty-
based rejection whilst achieving compara-
ble grading performance.

1 Introduction

Systems for automatic assessment of spontaneous
spoken language proficiency are becoming in-
creasingly important to meet the demand for En-
glish second language learning. Such systems are
able to provide throughput and consistency which

are unachievable with human examiners.
This is a challenging task. There is a large vari-

ation in the quality of the spoken English across
all proficiency levels. In addition, candidates of
the same skill level will have different accents,
voices, mispronunciations, and sentence construc-
tion errors. All of which are heavily influenced by
the candidate’s L1 language and compounded by
ASR errors. It is therefore impossible in practice
to observe all these variants in training. At test
time, the predicted grade’s validity will decrease
the more the candidate is mismatched to the data
used to train the system. For deployment of these
systems to high-stakes tests the performance on all
candidates needs to be consistent and highly cor-
related with human graders. To achieve this it is
important that these systems can detect “outlier”
speakers who need to be examined by, for exam-
ple, human graders.

Previously, separate models were used to fil-
ter out ”non-scorable” candidates (Yoon and Xie,
2014; Zechner et al., 2009; Higgins et al., 2011;
Xie et al., 2012). However, such models reject
candidates based on whether they can be scored at
all, rather than an automatic grader’s uncertainty 1

in its predictions. It was shown by van Dalen et al.
(2015) that Gaussian Process (GP) graders give
state-of-the-art performance for automatic assess-
ment and yield meaningful uncertainty estimates
for rejection of candidates. There are, however,
computational constraints on training set sizes for
GPs. In contrast, Deep Neural Networks (DNNs)
are able to scale to large data sets, but lack a na-
tive measure of uncertainty. However, Gal and
Ghahramani (2016) have shown that Monte-Carlo
Dropout (MCD) can be used to derive an uncer-
tainty estimate for a DNN.

1Uncertainty is used in the sense of the inverse of confi-
dence to be consistent with Gal and Ghahramani (2016) and
van Dalen et al. (2015)
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Alternatively, a Deep Density Network (DDN),
which is a Mixture Density Network (Bishop,
1994) with only one mixture component, may be
used to yield a mean and variance corresponding
to the predicted grade and the uncertainty in the
prediction. Similar to GP and DNNs with MCD,
a standard DDN provides an implicit modelling of
uncertainty in its prediction. This implicit model
may not be optimal for the task at hand. Hence,
a novel approach to explicitly model uncertainty is
proposed in which the DDN is trained in a multi-
task fashion to model a low variance real data dis-
tribution and a high variance artificial data dis-
tribution which represents candidates with unseen
characteristics.

2 Prediction Uncertainty

The principled method for dealing with uncer-
tainty in statistical modelling is the Bayesian ap-
proach, where a conditional posterior distribution
over grades, g, given inputs, x, and training data
D = {ĝ, x̂} is computed by marginalizing over all
models:

p(g|x,D) =
∫

p(g|x,M)p(M|D)dM (1)

where p(M|D) is a prior over a model given the
data. Given the posterior, the predictive mean and
the variance (uncertainty) can be computed using:

µg(x) =

∫
p(g|x,D)gdg

σ2g(x) =

∫
p(g|x,D)g2dg − µ2g(x)

(2)

(3)

2.1 Gaussian Processes
Eq. 2, 3 can be analytically solved for a class
of models called Gaussian Processes (GP) (Ras-
mussen and Williams, 2006), a powerful non-
parametric model for regression. The GP induces
a conditional posterior in the form of a normal dis-
tribution over grades g given an input x and train-
ing data D:

p(g|x;D) = N (g;µg(x|D), σ2g(x|D)) (4)

With mean function µg(x|D) and variance func-
tion σ2g(x|D) variance, which is a function of the
similarity of an input x to the training data inputs
x̂, where the similarity metric is defined by a co-
variance function k(., .). The nature of GP vari-
ance means that the model is uncertain in predic-
tions for inputs far away from the training data,

given appropriate choice of k(., .). Unfortunately,
without sparsification approaches, the computa-
tional and memory requirements of GPs become
prohibitively expensive for large data sets. Fur-
thermore, GPs are known to scale poorly to higher
dimensional features (Rasmussen and Williams,
2006).

2.2 Monte-Carlo Dropout
Alternatively, a grader can be constructed using
Deep Neural Networks (DNNs) which have a very
flexible architecture and scale well to large data
sets. However, DNNs lack a native measure of un-
certainty. Uncertainty estimates for DNNs can be
computed using a Monte-Carlo ensemble approx-
imation to eq. 2, 3:

µ̂g(x) =
1

N

N∑
i=1

f(x;M(i))

σ̂2g(x) =
1

N

N∑
i=1

(
f(x;M(i))

)2
− µ̂2g(x)

(5)

(6)

where M(i) is a DNN with a particular architec-
ture and parameters sampled from p(M|D) using
Monte Carlo Dropout (MCD) (Srivastava et al.,
2014), and f(x;M(i)) are the DNN predictions.
Recent work by Gal and Ghahramani (2016)
showed that MCD is equivalent to approximate
variational inference in GPs, and can be used to
yield meaningful uncertainty estimates for DNNs.
Furthermore, Gal and Ghahramani (2016) show
that different choices of DNN activation func-
tions correspond to different GP covariance func-
tions. MCD uncertainty assumes that for inputs
further from the training data, different subnets
will produce increasingly differing outputs, lead-
ing to larger variances. Unfortunately, it is difficult
to know beforehand which activation functions ac-
complish this in practice.

3 Deep Density Networks

Instead of relying on a Monte Carlo approxima-
tion to eq. 1, a DNN can modified to produce a
prediction of both a mean and a variance:

µg(x) = fµ(x;M)

σ2g(x) = fσ2(x;M)

(7)

(8)

parametrising a normal distribution over grades
conditioned on the input, similar to a GP. This
architecture is a Deep Density Network (DDN),
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which is a Mixture Density Network (MDN)
(Bishop, 1994) with only one mixture component.
DDNs are trained by maximizing the likelihood of
the training data. The variance of the DDN repre-
sents the natural spread of grades at a given input.
This is an implicit measure of uncertainty, like GP
and MCD variance, because it is learned automat-
ically as part of the model. However, this doesn’t
enforce higher variance further away from training
points in DDNs. It is possible to explicitly teach a

Figure 1: Desired variance characteristic

DDN to predict a high or low variance for inputs
which are unlike or similar to the training data, re-
spectively (fig. 1). This requires a novel train-
ing procedure. Two normal distributions are con-
structed: a low-variance real (training) data distri-
bution pD and a high-variance artificial data dis-
tribution pN, which models data outside the real
training data region. The DDN needs to model
both distributions in a multi-task fashion. The loss
function for training the DDN with explicitly spec-
ified uncertainty is the expectation over the train-
ing data of the KL divergence between the distri-
bution it parametrizes and both the real and artifi-
cial data distributions:

L = Ex̂[KL(pD||p(g|x̂;M)] +

α · Ex̃[KL(pN||p(g|x̃;M)]
(9)

where α is the multi-task weight.
The DDN with explicit uncertainty is trained in

a two stage fashion. First, a standard DDN M0

is trained, then a DDNM is instantiated using the
parameters ofM0 and trained in a multi-task fash-
ion. The real data distribution pD is defined byM0

(eq. 7, 8). The artificial data distribution pN is con-
structed by generating artificial inputs x̃ and the
associated mean and variance targets µ(x̃), σ2(x̃):

pN = N (g; fµ(x̃;M0), σ
2(x̃)) (10)

The predictions ofM0 are used as the targets for
µ(x̃). The target variance σ2(x̃) should depend

on the similarity of x̃ to the training data. Here,
this variance is modelled by the squared normal-
ized Euclidean distance from the mean of x̂, with
a diagonal covariance matrix, scaled by a hyper-
parameter λ. The artificial inputs x̃ need to be
different to, but related to the real data x̂. Ide-
ally, they should represent candidates with unseen
characteristics, such as L1, accent and proficiency.
A simple approach to generating x̃ is to use a Fac-
tor Analysis (FA) (Murphy, 2012) model trained
on x̂. The generative model of FA is:

x̃ ∼ N (Wz + µ, γΨ), z ∼ N (0, γI) (11)

where W is the loading matrix, Ψ the diagonal
residual noise variance, µ the mean, all derived
from x̂, and γ is used to control the distance of the
generated data from the real training data region.

4 Experimental Results

As previously stated, the operating scenario is to
use a model’s estimate of the uncertainty in its pre-
diction to reject candidates to be assessed by hu-
man graders for high-stakes tests, maximizing the
increase in performance while rejecting the least
number of candidates. The rejection process is
illustrated using a rejection plot (fig 2). As the
rejection fraction is increased, model predictions
are replaced with human scores in some particular
order, increasing overall correlation with human
graders. Fig. 2 has 3 curves representing differ-
ent orderings: expected random rejection, optimal
rejection and model rejection. The expected ran-
dom performance curve is a straight line from the
base predictive performance to 1.0, representing
rejection in a random order. The optimal rejec-
tion curve is constructed by rejecting predictions
in order of decreasing mean square error relative
to human graders. A rejection curve derived from
a model should sit between the random and op-
timal curves. In this work, model rejection is in
order of decreasing predicted variance.

The following metrics are used to assess and
compare models: Pearson Correlation Coefficient
(PCC) with human graders, the standard perfor-
mance metric in assessment (Zechner et al., 2009;
Higgins et al., 2011); 10% rejection PCC, which
illustrates the predictive performance at a partic-
ular operating point, i.e. rejecting 10% of candi-
dates; and Area under a model’s rejection curve
(AUC) (fig 2). However, AUC is influenced by
the base PCC of a model, making it difficult to
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compare the rejection performance. Thus, a metric
independent of predictive performance is needed.
The proposed metric, AUCRR (eq 13), is the ratio
of the areas under the actual (AUCvar) and optimal
(AUCmax) rejection curves relative to the random re-
jection curve. Ratios of 1.0 and 0.0 correspond to
perfect and random rejection, respectively.

All experiments were done using 33-
dimensional pronunciation, fluency and acoustic
features derived from ASR transcriptions of
responses to questions from the BULATS exam
(Chambers and Ingham, 2011). The ASR sys-
tem has a WER of 32% on a development set.
The training and test sets have 4300 and 224
candidates, respectively. Candidates are equally
distributed across CEFR grade levels (Europe,
2001).

AUCRR =
AUCvar

AUCmax
(12)

Figure 2: An example Rejection Plot

Grader PCC
10% Rej.

AUC AUCRRPCC
GP 0.876 0.897 0.942 0.233
MCD 0.879 0.892 0.937 0.040
MCDtanh 0.865 0.886 0.938 0.226
DDN 0.871 0.887 0.941 0.230

+MT 0.871 0.902 0.947 0.364

Table 1: Grading and rejection performance

The Gaussian Process grader, GP, is a com-
petitive baseline (tab. 1). GP variance clearly
yields uncertainty which is useful for rejection. A
DNN with ReLU activation, MCD, achieves grad-
ing performance similar to the GP. However, MCD
fails to yield an informative uncertainty for rejec-
tion, with performance barely above random. If
the tanh activation function, MCDtanh, is used in-
stead, then a DNN is able to provide a meaningful
measure of uncertainty using MCD, at the cost of

(a) GP (b) MCD

(c) DDN (d) DDN+MT

Figure 3: Rejection Plots for models

grading performance. It is likely that ReLU ac-
tivations correspond to a GP covariance function
which is not suited for rejection on this data.

The standard DDN has comparable grading per-
formance to the GP and DNNs. AUCRR of the DDN
is on par with the GP, but the 10% rejection PCC is
lower, indicating that the DDN is not as effective
at rejecting the worst outlier candidates. The ap-
proach proposed in this work, DDN+MT, achieves
significantly higher rejection performance, result-
ing in the best AUCRR and 10% rejection PCC,
showing capability to detect outlier candidates bet-
ter. Note, AUC reflects similar trends to AUCRR,
but not as clearly, which is demonstrated by Fig.
3. The model was found to be insensitive to the
choice of hyper-parameters α and γ, but λ needed
to be set to produce target noise variances σ2(x̃)
larger than data variances σ2(x̂).

5 Conclusions and Future Work

A novel method for explicitly training DDNs
to yield uncertainty estimates is proposed.
This method outperforms GPs and Monte-Carlo
Dropout in uncertainty based rejection for auto-
matic assessment. However, the effect of the
nature of artificial data on rejection performance
should be further investigated and other data
generation methods, such as Variational Auto-
Encoders (Kingma and Welling, 2014), and met-
rics to assess similarity between artificial and real
training data, examined. The proposed approach
must also be assessed on other tasks and datasets.
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A Model Training and Preprocessing
Details

33 dimensional input features where whitened by
subtracting means and dividing each dimension by
the corresponding standard deviation.

The Adam optimizer (Kingma and Ba, 2015),
Dropout (Srivastava et al., 2014) regularization
with a dropout keep probability of 0.6 and an ex-
ponentially decaying learning rate are used with
decay factor of 0.86 per epoch, batch size 50. Net-
works have 2 hidden layers with 180 rectified lin-
ear units (ReLU) in each layer. DNN and DDN
models were implemented in Tensorflow (Abadi
et al., 2015). A validation set of 100 candidates
was extracted from the training data to tune the
model and hyper-parameters.

GPs were run using Scikit-Learn (Pedregosa
et al., 2011) using a squared exponential covari-
ance function.


