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m’a permis de discuter avec lui à chaque fois que j’en ai eu besoin (et ça fait beaucoup de
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Je remercie Isabel Bloch, toujours disponible et prête à aider, surtout quand le thésard
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Une mention spéciale à Arantxa, qui a su me supporter pendant 5 ans déjà, et à laque-
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Notation

R set of real numbers
R

2 Euclidean plane
R

3 Euclidean space
P

2 projective plane
P

3 projective space
M matrix
mij element in row i and column j of matrix M
v vector
vx x component of vector v
v · w dot product between vectors v and w
||v|| Euclidean norm of vector v
vt,M t tranposed vector v and matrix M
s scalar
0n vector of n zeros
In identity matrix of size n
� equal up to a scale
∇ gradient operator
∇2, ∆ Laplacian operator
∆2 biharmonic operator
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Résumé

L’évolution très rapide des logiciels et matériels en informatique graphique nous per-
met de prêter davantage attention à la création ou à l’acquisition de modèles 3D de
haute qualité. En particulier, un effort très important est actuellement réalisé pour
la représentation numérique d’objets 3D du monde réel. Les modèles 3D d’objets
réels sont utilisés dans une grande variété d’applications comme par exemple le di-
vertissement (films et jeux vidéo), la publicité (achat en ligne) ou la conservation et
l’indexation d’oeuvres d’art. Dans le domaine culturel on peut citer les deux exem-
ples d’application suivant : l’acquisition de sites entiers et la constitution de bases de
données 3D à partir des collections des musées.

La plupart des modèles 3D d’objets réels que nous voyons dans la vie quotidienne
sont issus de graphistes qui utilisent des logiciels spécialisés comme 3D Studio ou
Maya. La quantité de travail requise pour obtenir des modèles de haute qualité rend
le processus de création long et cher. Même si les communautés scientifiques de la
vision par ordinateur, de l’infographie et des scanners 3D traitent ce problème depuis
une trentaine d’années, l’acquisition automatique d’objets 3D reste une tache difficile.
En fait, la raison pour laquelle les gens continuent à créer les modèles 3D “à la main”,
même après 30 ans d’expérience dans ce domaine, est qu’il n’y a pas de technique 3D
idéale qui permette de scanner tout objet correctement. La difficulté de trouver un
système approprié de reconstruction 3D fonctionnant pour une large classe d’objets
justifie la littérature abondante qui existe à ce sujet.

Mis à part les techniques de Conception Assistée par Ordinateur (CAO), il existe
deux approches principales au problème de la représentation d’objets 3D réels : les
techniques fondées exclusivement sur le rendu par les images (Image-Based Rendering
ou IBR), et les techniques de reconstruction 3D.

Les techniques fondées sur le rendu par les images permettent de générer des vues
de synthèse à partir d’un ensemble d’images originales. Elles n’estiment pas la vraie
structure 3D à partir des images, mais elles interpolent directement l’ensemble des
vues originales pour générer une nouvelle vue. Dans ce type d’approche, l’objectif est
de générer des vues cohérentes de la scène réelle, pas d’avoir des mesures précises.
Pour beaucoup d’applications comme les effets spéciaux, ces techniques peuvent se
révéler très efficaces.

A l’opposé des techniques IBR, les algorithmes de reconstruction 3D essaient
d’estimer complètement la structure 3D sous-jacente. Parmi les techniques de re-
construction 3D, nous pouvons distinguer deux groupes principaux : les méthodes
actives et les méthodes passives. Les méthodes actives sont utilisées principalement
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Résumé

par la communauté des scanners 3D et utilisent une source de lumière contrôlée tel
qu’un laser ou une lumière structurée pour récupérer l’information 3D (3D scanning).
Les méthodes passives sont développées par la communauté de la vision par ordinateur
et n’utilisent que l’information contenue dans les images de la scène. Dans ce type
d’algorithmes, les seules données en entrée sont les images de l’objet, éventuellement
calibrées. Les principaux avantages sont un coût réduit du système d’acquisition et la
possibilité de capter la couleur directement. Le principal désavantage est la plus faible
résolution des modèles reconstruits comparée à celle des modèles issus des méthodes
actives.

Parmi les techniques de modélisation 3D à partir des images, les approches basées
sur les silhouettes sont couramment utilisées. Elles fournissent généralement un modèle
initial pour d’autres techniques plus avancées de reconstruction 3D et sont également
suffisamment rapides pour des applications temps réel. D’autres types d’information
peuvent être utilisés pour la modélisation 3D, tels que la stéréo ou l’albédo. Nous
proposons une nouvelle technique de modélisation 3D qui est capable de fusionner
les informations liées aux silhouettes et à la stéréo de manière à reconstruire des
objets 3D de haute qualité. Cet algorithme a été testé avec succès dans le cadre du
projet européen SCULPTEUR IST-2001-35372, avec plus de 100 objets de musées
reconstruits par notre méthode. L’algorithme de reconstruction a été amélioré à fin de
simplifier le processus d’acquisition. En particulier, nous nous sommes attaqués à l’une
des étapes les plus critiques pour n’importe quel algorithme de vision par ordinateur
: le calibrage. Nous proposons une nouvelle technique de calibrage qui utilise comme
seule source d’information les silhouettes de l’objet. Cette technique met en oeuvre
une nouvelle façon d’utiliser les silhouettes et nous permet d’estimer les paramètres de
la caméra sous l’hypothèse d’un mouvement circulaire. Le mouvement circulaire, grâce
à sa simplicité de mise en oeuvre, est couramment utilisé pour la modélisation 3D à
partir des images. Supposant les silhouettes correctement extraites, nous définissons
un critère de cohérence d’un ensemble de silhouettes et le proposons comme
mesure globale de qualité pour le calibrage d’un sous-ensemble des paramètres de
la caméra. Le calibrage est accompli en maximisant le critère de cohérence entre
silhouettes. En l’ajoutant à la méthode proposée de reconstruction 3D, le calibrage à
partir des silhouettes nous permet d’obtenir des reconstructions de haute qualité sans
l’utilisation d’une quelconque mire géométrique.

Ce manuscrit est organisé en trois chapitres. Le premier est consacré au problème
du calibrage de la caméra et le second à l’algorithme de reconstruction 3D. Le troisième
chapitre décrit en détail un ensemble de résultats expérimentaux que nous avons
sélectionnés pour illustrer différents points d’intérêt.

Dans le chapitre 1 nous présentons une nouvelle approche pour l’estimation du
mouvement et de la distance focale d’une caméra sous l’hypothèse de mouvement
circulaire. Cette approche s’appuie sur la définition du concept de cohérence d’un
ensemble de silhouettes. La cohérence est définie comme la similitude entre l’ensemble
de silhouettes originales et les silhouettes de leur enveloppe visuelle. Cette approche a
été testée avec succès dans différents problèmes d’optimisation tels que l’estimation du
mouvement et de la distance focale d’une séquence en rotation ou le recalage de deux

10
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séquences indépendantes. La bonne précision des résultats est due à l’utilisation du
contour complet de la silhouette dans le calcul de la cohérence, alors que les méthodes
basées sur les tangentes épipolaires n’emploient qu’un faible nombre de points. Nous
avons validé la méthode en utilisant des séquences réelles, ce qui nous a permis de
reconstruire des objets 3D à partir de séquences d’images en rotation, sans l’utilisation
d’une quelconque information additionnelle telle que la prise de vue d’une mire de
calibrage.

Nos principales contributions sont:

• la définition et l’implantation du nouveau concept de cohérence d’un ensemble
de silhouettes,

• la comparaison entre le nouveau critère proposé de cohérence entre silhouettes,
et le critère des tangences épipolaires proposé par [Wong and Cipolla, 2001],

• la comparaison de la précision du critère des tangences épipolaires en fonction
du nombre de paires de silhouettes utilisées dans le calcul du critère.

Nous prouvons qu’une implantation rapide du critère des tangences épipolaires
à partir d’une représentation polygonale des silhouettes peut fournir de très bons
résultats. De plus, bien que dans l’article original le critère soit seulement employé pour
estimer le mouvement, nos résultats montrent qu’il est également possible d’estimer la
distance focale, comme nous le démontrons avec les nombreux résultats expérimentaux
obtenus sur des données synthétiques et réelles. Finalement, et à la différence de la
formulation originale de [Wong and Cipolla, 2001], nous prouvons que cela vaut la
peine d’employer toutes les paires disponibles de silhouettes pour calculer le critère
plutôt que de n’employer que les paires les plus proches.

Le critère proposé de cohérence d’un ensemble de silhouettes devrait encore pou-
voir bénéficier de plusieurs améliorations. Nous étudierons la robustesse de cette tech-
nique de calibrage pour des mouvements plus complexes que le mouvement circulaire.
D’après la précision obtenue pour l’estimation des différentes variables avec le processus
d’optimisation, nous devrions aussi pouvoir améliorer la convergence de l’algorithme
en employant une technique d’optimisation utilisant des dérivées, avec une évaluation
robuste des dérivées adaptée à ce problème. Un autre point très important à considérer
serait l’aspect discret de l’actuelle implantation du critère de cohérence dont il faudrait
se débarrasser. L’idée principale serait de calculer de manière exacte les silhouettes
de l’enveloppe visuelle comme des polygones fermés. Ceci nous permettrait de définir
un critère de cohérence par la simple comparaison des deux polygones définissant la
silhouette originale et la silhouette de l’enveloppe visuelle. L’algorithme pour calculer
la silhouette de l’enveloppe visuelle serait :

• calcul des surfaces 3D générées par l’intersection de chaque silhouette avec les
n − 1 autres silhouettes,

• projection des arêtes des surfaces 3D dans la vue désirée,

• calcul du polygone minimal contenant toutes les arêtes projetées.
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Le chapitre est organisé de la façon suivante. Nous présentons d’abord le modèle de
caméra et donnons une brève explication des méthodes classiques de calibrage et des
méthodes d’auto calibrage en section 1.1. Ensuite nous décrivons dans la section 1.2 les
techniques existantes qui emploient les silhouettes pour l’estimation de mouvement ou
le calibrage d’une caméra. Dans la section 1.3 nous détaillons le concept de cohérence
d’un ensemble de silhouettes et le proposons comme mesure globale de qualité pour
le calibrage d’un sous-ensemble des paramètres de la caméra. Dans la section 1.4
nous prouvons que le critère de cohérence apparâıt comme une extension naturelle de
l’approche avec les tangences épipolaires. Puisque nous travaillons avec des séquences
en mouvement circulaire, bien connu pour être un mouvement critique pour l’auto
calibrage, nous indiquons en section 1.5 quel est le sous-ensemble des paramètres qui
peuvent être estimés en utilisant la cohérence de silhouettes et précisons pourquoi avec
une explication physique. Dans la section 1.6 nous proposons une implantation rapide
du critère de cohérence et discutons les différentes techniques d’optimisation dans
la section 1.7. Enfin nous présentons des résultats expérimentaux avec des données
synthétiques et réelles dans les sections 1.8 et 1.9.

Dans le Chapitre 2 nous présentons une nouvelle approche pour la modélisation
d’objets 3D basée sur la fusion des informations de texture et des silhouettes. Nous
proposons un système complet où différentes techniques connues sont employées et
améliorées pour fournir des résultats de haute qualité. La méthode utilise un modèle
déformable classique qui nous permet de fusionner les informations de texture et de
silhouettes pour estimer la géométrie et la couleur de l’objet. Nous proposons une
nouvelle formulation de la contrainte des silhouettes et l’utilisation d’une approche
par diffusion multi-résolution du vecteur gradient (GVF) pour la composante stéréo.

Nos contributions principales sont les suivantes:

• l’approche par décision majoritaire 1-D, qui permet de prendre une décision
robuste à partir de n courbes de corrélation stéréo,

• l’implantation d’une technique multi-corrélation par décision majoritaire 3D,
qui nous permet d’extraire l’information géométrique d’un ensemble d’images de
façon robuste, améliorant les résultats dans des conditions réelles d’illumination,
et tout particulièrement dans le cas de reflets spéculaires,

• l’adaptation de la technique de GVF, généralement employé dans le domaine
de l’imagerie médicale, à notre problème spécifique de modélisation 3D. Cette
adaptation a nécessité une implantation sur une grille multi-résolution ce qui,
à notre connaissance, n’a jamais été développé auparavant pour la modélisation
d’objets 3D,

• la définition d’une force définie par les silhouettes qui permet d’intégrer facile-
ment les silhouettes dans l’évolution du modèle déformable,

• l’adaptation à un maillage triangulaire de l’opérateur bi-harmonique classique
généralement utilisé avec les maillages simpliciaux,

12
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• l’implantation d’une technique de placage de texture qui permet de spécifier le
niveau de détail de la texture de chaque triangle, tout en gardant des transitions
douces par interpolation bilinéaire entre des triangles adjacents,

• la définition d’une technique pratique d’échantillonnage de la texture des trian-
gles permettant de créer une carte de texture sans artefacts, en particulier le
long de deux triangles adjacents n’ayant pas la même résolution.

• et pour finir, l’aspect global du système qui a été développé avec soin dans cha-
cune de ses parties et qui fournit des résultats très satisfaisants comme le prouve
la quantité et la qualité des multiples objets reconstruits dans des conditions
expérimentales très variées.

Les deux limitations les plus importantes de cette approche sont aussi ses deux
sources de robustesse : le volume de corrélations de décision majoritaire et l’utilisation
d’un modèle déformable avec une topologie constante. Le cumul des corrélations per-
met d’avoir de bonnes reconstructions en présence de reflets, mais le fait qu’il soit
effectué dans un volume discret limite la résolution maximum du modèle 3D. Cette lim-
itation pourrait être surmontée en introduisant le modèle final dans une autre évolution
où l’énergie liée à la texture prendrait en compte la surface courante du modèle 3D
(corrélation fondée sur le plan tangent ou l’approximation par une quadrique). Étant
donné que le modèle est déjà très près de la solution, nous n’aurions besoin que de
très peu d’itérations. La seconde limitation est celle de la topologie constante. Elle
permet de garantir la topologie du modèle final mais c’est aussi une limitation pour les
objets dont la topologie ne peut pas être captée par l’enveloppe visuelle. Une solution
possible consisterait à détecter les auto-collisions du maillage et, pour récupérer la
bonne topologie, d’effectuer soit une étape fondée sur les ensembles de niveaux, soit
une modification topologique du modèle 3D. En outre, comme déjà discuté en section
3.3, nous voudrions étudier de manière plus approfondie la gestion de la visibilité de
la surface de corrélation, trouver une force de silhouettes plus générale, et avoir une
meilleure gestion des objets possédant des arêtes vives. D’autres améliorations sont
également envisageables :

• une amélioration de la stratégie de convergence afin d’une part d’arrêter l’évolution
du modèle dans les régions qui ont déjà convergées, et d’autre part d’accélérer
son évolution dans les régions vides de l’espace de corrélation,

• l’utilisation de la courbure pour permettre une évolution multi-résolution du
maillage,

• des développements supplémentaires au niveau de la génération de la texture.
En particulier, puisque nous disposons de la géométrie de l’objet, nous pourrions
appliquer des techniques plus avancées de traitement de signal pour mieux fil-
trer les ombres portées et, dans des conditions d’éclairage calibré, pour estimer
partiellement la fonction de distribution bidirectionnelle de réflectance (BDRF)
en chaque point de la surface de l’objet.
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Chaque section du chapitre est consacrée à une brique de base de la théorie des
modèles déformables appliquée à notre problème. Le chapitre est donc organisé de
la façon suivante. Dans la section 2.1 nous décrivons l’état de l’art et comment la
technique proposée se compare aux méthodes existantes. Dans la section 2.2 nous
donnons une vue d’ensemble rapide de la théorie des modèles déformables et justifions
le choix d’un modèle déformable classique par rapport à la méthode d’ensembles de
niveaux qui est plus récente et actuellement très étudiée. Dans la section 2.3 nous
décrivons comment initialiser le modèle déformable tandis que dans les sections 2.4 et
2.5 nous développons les deux forces externes qui vont diriger le modèle déformable
: la force définie par la texture et la force définie par les silhouettes. Dans la section
2.6 nous détaillons les forces de régularisation utilisées et précisons leur formulation
dans le cas d’un maillage triangulaire. La boucle d’itération du modèle déformable est
récapitulée en section 2.7. La dernière étape consistant à calculer une carte de texture
pour un modèle 3D à partir d’un ensemble d’images, est décrite dans la section 2.8.

Enfin nous présentons dans le Chapitre 3 quelques-uns uns des résultats les plus
intéressants obtenus par la combinaison des algorithmes décrits dans les deux chapitres
précédents. Le chapitre est divisé en 5 sections. Les 3 premières sections présentent
des résultats de reconstruction n’utilisant qu’une seule séquence en rotation. Ils sont
classifiés selon la quantité d’information que nous fournissons à l’algorithme allant
de 3 séquences d’images (une séquence pour la texture, une séquence pour les sil-
houettes et une séquence pour le calibrage) à une seule séquence d’images dont sont
automatiquement extraites les silhouettes de l’objet permettant de calibrer le système.
Nous discutons également les limites de la technique proposée, qui sont liées aux types
d’information que nous employons (les silhouettes et la stéréo) et à la manière de
les fusionner (un modèle déformable). Nous présentons finalement des résultats addi-
tionnels qui exploitent deux séquences en rotation du même objet, et un aperçu des
meilleures reconstructions obtenues avec la technique proposée.
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As computer graphics and technology become more powerful, attention is being fo-
cused on the creation or acquisition of high quality 3D models. As a result, a great
effort is being made to exploit the biggest source of 3D models: the real world. 3D
models of real objects are used in a great variety of applications ranging from enter-
tainment (games and movies), to advertising (online shopping) or cultural heritage.
Two examples of cultural heritage applications are the acquisition of entire outdoor
sites, and the construction of 3D databases from museums art collections.

Many of the 3D real models that we see every day have been created by a graphic
designer using specialized tools such as 3D Studio or Maya. However, the required
work to obtain a good quality model makes the entire process very long and expensive.
Although the Computer Vision, Computer Graphics and 3D scanner communities have
been studying the 3D modeling problem for at least 30 years, automatically acquiring
3D models is not an easy task. The reason why, even with 30 years of experience in
this domain, people continue to create themselves by hand the 3D models is that, in
fact, it does not exist any Computer Vision or 3D scanner technique that works “out of
the box” for any object. The difficulty of finding a suitable 3D reconstruction system
that works for a large class of objects justifies the abundant literature that exists on
this subject.

Discarding Computer Aided Design (CAD) tools, there are two major approaches
to the problem of 3D real object representation: image-based rendering techniques
(IBR) and 3D modeling techniques. IBR algorithms do not estimate the real 3D
structure behind the images, they only interpolate a given set of images to generate
a new synthetic view. This kind of techniques may be enough for many applications
and are intensively used by the special effects community. In opposition to IBR, 3D
modeling algorithms try to recover the full 3D structure. Among the 3D modeling
approaches, two main groups are to be distinguished: active methods and passive
ones. Active methods are used by the 3D scanner community and require a controlled
source of light such as a laser or a coded light in order to recover the 3D information.
Passive methods are used by the Computer Vision community and necessitate only
the information contained in the images of the scene. In this last kind of approach,
the only input data to the algorithm are a set of images, possibly calibrated. Its
main advantages are the low cost of the system and the possibility of immediate color.
The main disadvantage is the lower precision of the reconstructions compared to the
precision obtained with active techniques.

Among the 3D image-based modeling techniques, silhouette-based approaches
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are very popular since they provide good initial models for further processing in 3D
reconstruction algorithms and are efficient enough for real time applications. Other
types of information are also used in 3D reconstruction such as stereo or albedo. We
propose a new 3D modeling algorithm that is able to efficiently fuse silhouettes and
stereo for high quality 3D object reconstruction. This algorithm has been successfully
tested in real life in the framework of the SCULPTEUR European project IST-2001-
35372, where more than 100 objects have been acquired using the proposed technique.
This reconstruction technique has been improved in order to simplify the overall acqui-
sition process. As a result, we have simplified one of the critical steps of any Computer
Vision technique: camera calibration. We have proposed a new camera calibration al-
gorithm that uses silhouettes as the only input data. This technique makes use of the
silhouettes in a novel way in order to recover the camera parameters under circular
motion, which is commonly used for image-based 3D object modeling. Assuming that
the silhouettes are “sufficiently” well extracted, we propose the silhouette coherence
as a global quality measure for the calibration of a subset of the camera parameters by
maximizing the overall silhouette coherence. Together with the proposed reconstruc-
tion method, silhouette-based camera calibration allows us to obtain high quality 3D
reconstructions without the use of any calibration pattern.

This manuscript is organized in three chapters, one dedicated to the camera cali-
bration problem, another for the 3D reconstruction algorithm and a final chapter that
describes in detail some of the most interesting experimental results.

Chapter 1 addresses the problem of camera calibration, which is fundamental be-
fore any attempt of 3D reconstruction. A quick review of classic and auto-calibration
methods is first discussed. Then the core of the proposed calibration method is pre-
sented with the notion of silhouette coherence that appears as an extension of the
epipolar tangency approach. A fast implementation of the silhouette coherence is de-
veloped, which allows comparing the proposed algorithm with the epipolar tangency
approach using both synthetic and real data.

In Chapter 2 we describe the proposed 3D object modeling algorithm as a de-
formable model evolution that allows mixing silhouettes and stereo. We first discuss
the main existing techniques for 3D object modeling and how the proposed method
compares to them. Then, the complete algorithm pipeline is described. Since the
main algorithm is a deformable model, we start by the model initialization, followed
by the description of the two external forces that will drive the evolution process: one
texture-based force and one silhouette-based force. We end with the regularization
forces and the creation of a texture map once the deformable model has converged.

Finally we present in Chapter 3 some of the most relevant results obtained by
combining the algorithms described in the two previous chapters. The chapter is
divided into 5 sections. The 3 first sections present reconstruction results using one
circular sequence. They are classified depending on how much information we provide
to the algorithm: from 3 image sequences (one sequence for the texture, one sequence
for the silhouettes and a final sequence of a calibration pattern to use it with a classic
calibration technique), to a single color sequence that permits automatically extracting
the object silhouettes, and calibrating the system with them. We also discuss the limits
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of the proposed technique related to the types of information we use (silhouettes and
stereo) and the way they are fused (a deformable model). We finally present additional
results that exploit two circular motion sequences of a same object and a snapshot of
the best reconstructions obtained with the proposed technique.
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Chapter 1

Silhouette-based Motion
Estimation and Camera Calibration

In this chapter we present the concept of silhouette coherence and its application to
motion estimation and camera calibration under circular motion. In Section 1.1 we
shortly recall the classical pinhole camera model and we give a brief explanation of
classic and auto calibration methods. In Section 1.2 we describe existing techniques
that use silhouettes for motion estimation or camera calibration. In Section 1.3 we
introduce the new concept of silhouette coherence of a set of silhouettes and propose it
as a global quality measure for the calibration of a subset of the camera parameters by
maximizing the overall silhouette coherence. In Section 1.4 we show that the silhouette
coherence criterion can be seen as an extension to the epipolar tangency criterion.
Since we work with circular motion sequences, which is known to be a critical motion
for auto-calibration, we discuss in Section 1.5 which subset of the camera parameters
can be recovered using silhouette coherence and why. In Section 1.6 we propose a fast
implementation of the silhouette coherence criterion and discuss different optimization
techniques in Section 1.7. Finally we present experimental results with synthetic and
real silhouettes in Sections 1.8 and 1.9.

1.1 Introduction to Camera Calibration

Camera calibration is a very important initial step for Computer Vision, especially for
3D modeling, pattern recognition or robot navigation. By calibration we mean the
determination of the full set of parameters of the image formation model. Although
camera calibration can be decomposed into radiometric and geometric calibration,
we are mainly interested in geometric calibration. The geometric calibration can be
defined as finding the mathematical relationship between the 3D coordinates of a point
of the scene, and the 2D coordinates of the projected point into the image. There
exist many different methods for geometric calibration (see [Hartley and Zisserman,
2000] or [Faugeras and Luong, 2001] for a detailed description of the theory and the
algorithms), but they can be classified into two main groups:

• photogrammetric calibration,
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Figure 1.1: Pinhole camera model. Left: perspective law by the Renaissance painters [Dürer,
1977]. Right: geometrical model.

• auto calibration (also known as self calibration).

Photogrammetric methods use the known geometry of a calibration pattern to calibrate
the cameras. Self calibration methods use only image information and some previous
knowledge of the scene to calibrate the system up to a scale factor.

In the following subsections we introduce the classic pinhole camera model and
present briefly the basic methods of photogrammetric calibration and self calibration.

1.1.1 Camera Model

A camera can be seen as a device that transforms the Euclidean space of a scene
R

3 into the camera image space R
2. This transformation is not linear in the general

case. However, If we suppose perfect lenses, the transformation is projective linear.
Because the Euclidean space can be seen as a specialization of the projective space,
we can embed the Euclidean space into the more general projective space in order to
linearize the camera transformation. This embedding action increases the dimension
of the space by one (for any point of the Euclidean space, the new last coordinate is
1). The embedding action permits seeing a camera as a device that linearly maps the
projective space P

3 into the projective plane P
2.

A simple model to describe the formation of an image is the so called pinhole
camera (see Fig.1.1). The model is completely described with the choice of a retina
plane R and a projection center C (see Fig. 1.1 right). For a given 3D point M =
(Mx,My,Mz)

t, its corresponding 2D projection m = (mx,my)
t is simply computed

as the intersection of the optic ray defined by the point M and the projection center
C with the retinal plane R. For the simplest case, the camera projection center is
located at the origin and the retinal plane is located at a distance f along the z axis,
which gives the following projection equations for the point M:

mx = fMx/Mz, my = fMy/Mz. (1.1)
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If we use homogeneous coordinates, we get:

 mx

my

1

 �
 fMx

fMy

Mz

 =

 f 0 0 0
0 f 0 0
0 0 1 0




Mx

My

Mz

1

 , (1.2)

where “�” means ”equality up to a scale”. If we generalize the equations for a general
camera position t and a general viewing direction represented by the rotation matrix
R, we obtain:

m �
 f 0 0 0

0 f 0 0
0 0 1 0

[ R t
0t

3 1

]
M. (1.3)

The last step to completely describe the camera model is that, in general, the 2D
coordinates suffer a last transformation that depends only on the camera itself. This
transformation allows passing from the world units, e.g. millimeters, to the camera
units: the pixel. Although this transformation is not always linear due to imperfect
lenses, there is a more simple model called the intrinsic matrix K that is an affine
model composed of 5 parameters. Since the focal distance f appears as a scale factor
in the projection equation, it can be incorporated in the intrinsic matrix, which gives:

K =

 f −f cot θ u0

0 αf
sin θ

v0

0 0 1

 . (1.4)

The new 2D axes have a different scale along the x axis and the y axis that is controlled
by the aspect ratio parameter α, and may not be orthogonal, the angle between both
axes being θ. Finally, there is also a pixel offset called the principal point: (u0, v0)

t.
The complete projection model is defined as:

m � K[I3 03]

[
R t
0t

3 1

]
M = K[R t]︸ ︷︷ ︸

P

M, (1.5)

where the matrix P is commonly called the camera projection matrix. The decompo-
sition of the projection matrix P into intrinsic parameters (matrix K) and extrinsic
parameters (matrix [R t]) is known as the Euclidean camera model. Since the 3 × 4
projection matrix P is defined up to a scale, it has a total of 11 degrees of freedom
(dof), just like the Euclidean decomposition (5 for K + 6 for [R t]). In fact, for any
projection matrix P , we can always find an Euclidean decomposition, and what is even
better, this decomposition is unique. This argument can be easily demonstrated by
using a QR decomposition on the most left 3 × 3 submatrix of P , which corresponds
to the product KR.

We have just described the most complete linear model of a pinhole camera. How-
ever, depending on the real conditions, simpler models can also produce very good
results. In the following subsection we discuss some of the most common simplifica-
tions that will be useful in the rest of the chapter.
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1.1.2 Simplifications of the projective camera model

One of the first simplifications consists of using ideal values for the aspect ratio α and
the skew factor θ, i.e., α = 1 and θ = π

2
. This approximation is of special interest for

CCD or CMOS cameras, since the deviation from the ideal values is very small. It
just considers the pixels as perfectly square and the CCD matrix (the retinal plane)
aligned with the xy plane. This gives us a simplified intrinsic matrix K with only 3
dof:

K =

 f 0 u0

0 f v0

0 0 1

 . (1.6)

The second simplification concerns the camera projection model itself. As we
have seen in Eqn. 1.1, the 2D projection m of a 3D point M depends on the depth
from the point to the camera, which is why the model is projective linear. However,
under the assumption that the depth variation of the scene is small compared to
the distance to the camera, there exist several linear camera models known as affine
camera models that approximate the perspective camera model. The relation between
the world coordinates and the pixel coordinates is affine. The general form of an affine
projection matrix is as follows:

P �
[

PA pA

0t
3 1

]
, (1.7)

where PA is a 2 × 3 matrix of rank 2 and pA is a 2x1 vector. There exist some well
known affine camera models such as the orthographic camera, the weak perspective
camera or the para-perspective camera. Of particular interest is the weak perspective
model, whose general form is:

P �
 f 0 u0

0 f v0

0 0 1

 1 0 0 0
0 1 0 0
0 0 0 d

[ R t
0t

3 1

]
,

�
 f 0 u0 + f

d
tx

0 f v0 + f
d
ty

0 0 1

 rt
1 0

rt
2 0

0t
3 d

 ,

(1.8)

where d is the mean depth to the scene, the rotation matrix being decomposed as
R = [r1r2r3]

t. If M is the centroid of the scene, the mean depth d can be found
as d = rt

3 · M + tz. This model simplifies the projection equations by replacing the
individual depth to the camera by the mean depth to the camera, i.e., all the points
are projected as if they were at the same depth from the camera. As shown in Eqn.
1.7, there is one interesting consequence of this simplification: we cannot distinguish
between the pixel offset f

d
(tx, ty)

t and the principal point (u0, v0)
t when using a weak

perspective model. This is a very interesting point since, as we will see in the rest
of this chapter, it is very difficult to recover at the same time the principal point
and the translation of a circular motion using only silhouettes. This is caused by
the fact that the depth variation along the silhouette contour is in general very small
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compared to the mean depth to the object, i.e, ∆d � d. This would suggest employing
a weak perspective camera model when calibrating with silhouettes. However, there
is another similar simplification that we can use for the camera model under the
assumption ∆d � d under circular motion: using the center of the image as principal
point. It allows calibrating with silhouettes while using a perspective camera model.
This results from the assumption of ∆d � d, which validates the approximation of the
principal point by the center of the image under circular motion, since the principal
point error can be compensated by the translation. This will be shown in Section 1.5.
For silhouette-based calibration, we have then preferred to keep using a perspective
model while fixing the principal point to the center of the image. However, it would
be useful to compare the principal point approximation with the weak perspective
approximation in terms of calibration results, which we have not done yet.

1.1.3 Classic Camera Pose and Calibration Methods

Once we have chosen a camera model, the camera calibration process simply consists of
recovering the 11 parameters that define the camera projection matrix P in Eqn. 1.5.
Classic calibration methods are issued from the photogrammetry community, where a
calibration target with a known geometry is needed in order to completely calibrate
the camera. Although the use of a calibration pattern imposes more constraints on the
acquisition process, the resulting calibration is very accurate. The basic input of the
calibration algorithm is the set of 3D points of the pattern and their corresponding 2D
projections. All the methods are based on the optimization of a cost criterion and can
be classified into two main groups: linear methods and non-linear methods. Linear
methods were the first to appear. They allow recovering the projection matrix in a
direct way. However, the calibration results are not very accurate. This is mainly
due to the rotation parameterization and to the fact that the optimized criterion
has no geometrical meaning. In order to solve these problems, non-linear methods
allow decomposing the projection matrix into its Euclidean form, parameterizing the
rotation (e.g. Euler angles), using more complex non-linear camera models such as
those including lenses distortion, and using more complex cost functions.

Bellow we give a brief description of the different classic calibration techniques.

Linear Methods

The basic linear method, also known as DLT (Direct Linear Transform), was first
proposed by [Abdel-Aziz and Karara, 1971], but the same basic idea was already
developed by the photogrammetry community about 20 years before [Das, 1949]. This
method permits formulating the calibration problem as the solution of a system of
linear equations.

The first step is to write down the so called collinearity equations between a 3D
point M and its projection m. This is accomplished by simply developing the projec-
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tion equation Eqn. 1.5: mx

my

1

 �
 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34




Mx

My

Mz

1

 ,


mx = p11Mx+p12My+p13Mz+p14

p31Mx+p32My+p33Mz+p34

my = p21Mx+p22My+p23Mz+p24

p31Mx+p32My+p33Mz+p34

(1.9)

If we dispose of a calibration pattern defined by n 3D Points Mi, and their correspond-
ing observed 2D projections m̃i, each observation provides two equations as in Eqn.
1.9, one per coordinate. The problem now is to find a linear error criterion. [Abdel-Aziz
and Karara, 1971] propose to use the following error criterion:

εi
x = p11M

i
x + p12M

i
y + p13M

i
z + p14 − m̃i

x(p31M
i
x + p32M

i
y + p33M

i
z + p34)

εi
y = p21M

i
x + p22M

i
y + p23M

i
z + p24 − m̃i

y(p31M
i
x + p32M

i
y + p33M

i
z + p34).

(1.10)

Although this error criterion has not a geometric meaning (it cannot be seen as a 2D
geometric measure), the equations are linear and so they can written as a linear system
of the type Ap = 0:
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(1.11)

This system can be solved using the SVD algorithm (Singular Value Decomposition),
which imposes the additional constraint ||p|| = 1.

The last step concerns the passage from the recovered vector of parameters to the
projection matrix. Since the projection matrix is defined up to a scale factor, we need
an additional constraint in order to recover the Euclidean camera parameters. Different
constraints have been proposed by different authors in the literature: the authors
of [Abdel-Aziz and Karara, 1971] use the constraint p34 = 1, [Faugeras and Toscani,
1986] propose the most robust constraint ||(p31, p32, p33)

t|| = 1, and finally [Melen,
1994] proposes a QR matrix decomposition.

The DLT algorithm needs a minimum of 6 points (12 equations) in order to solve
the 11 dof of the projection matrix. Starting from this basic method, different authors
have proposed algorithms using a lower number of points at the cost of not recovering
all the parameters. Typically, if we only want to estimate the camera pose, only
3 points suffice [Haralick et al., 1991], but the solution is not unique and additional
information is needed. [Quan and Lan, 1998] propose a linear algorithm using 4 or more
points that provides a unique solution. Recovering some of the internal parameters is
also possible with fewer than 6 points. [Triggs, 1999] proposes a 4-point algorithm to
recover the pose and the focal length, and a 5-point algorithm to recover the pose, the
focal length and the principal point.
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Non-Linear Methods

The main advantages of non-linear methods against linear ones are that they have no
restrictions regarding the complexity of the camera model, the cost function or the
rotation parameterization. The main disadvantage is that, since non-linear methods
are iterative methods, computation time is higher and they need an initial solution that
has to be close enough to the real solution to avoid local minima. This is why linear
methods are still useful in order to be used as an initial solution for the non-linear
problem.

The first application of a non-linear calibration method for Computer Vision is
owed to [Tsai, 1987]. He addresses all the previous problems of linear methods:

• separation of the intrinsic and extrinsic parameters according to the Euclidean
model,

• parameterization of the rotation matrix (Euler angles),

• minimization of a true 2D distance,

• inclusion of radial and tangential distortion terms due to imperfect lenses.

The collinearity equations become non-linear: mx = F (Φ,M), my = G(Φ,M), where
F and G are non-linear functions and Φ is the vector of parameters: rotation Euler
angles, translation, intrinsic parameters and lenses distortion parameters. The cost
criterion is simply defined as the SSE (Sum of Squared error):

∑
i(m

i
x − m̃i

x)
2 +

(mi
y − m̃i

y)
2. Although the problem is non-linear, we can easily compute the analytic

derivative equations, which allows using derivative-based optimization techniques such
as the Levenberg-Marquardt algorithm.

Starting from Tsai’s method, non-linear camera calibration has been extensively
treated in the literature. Among the different extensions, there is one that has special
interest: the recovery of the 3D structure at the same time as the camera parameters.
This method was first developed in the photogrammetry community [Brown, 1976].
It consists of refining at the same time the 3D structure and the camera parameters.
Basically it introduces the calibration pattern Mi inside the optimization algorithm
in order to improve the accuracy even more. In this case, the parameter vector Φ
also contains the 3D coordinates of the calibration pattern. The only problem with
this algorithm is that, since we increase the number of parameters to optimize, we
need to be sure there is enough redundancy in the system to be able to recover all
the parameters. Redundancy is typically obtained by adding multiple views of the
same calibration pattern inside the optimization algorithm. If we dispose of a calibra-
tion pattern with n points, seen from m different views, and the intrinsic parameters
remain constant, the total number of dof will be 5 + 5 + 6m + 3n, i.e., for a typical
model of 5 classic intrinsic parameters, plus 5 parameters for the lens distortion model,
plus 6m parameters for the m different camera poses and 3n parameters describing
the calibration pattern geometry. For typical calibration targets of tens of points,
3 images suffice to over-determine the system. An excellent survey of the theory of
bundle adjustment can be found in [Triggs et al., 2000], where they discuss different
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parameterizations, cost functions and optimization algorithms. Something important
to note is that, since we optimize also the geometry of the calibration pattern, we
lose the metric information, since the system cannot recover the global scale. This
information has to be introduced externally, e.g., with the exact distance between two
given points of the calibration pattern.

A good example of a camera pose and calibration algorithm that recovers the 3D
structure is the algorithm developed by [Lavest et al., 1998], where they study the
calibration accuracy relative to the calibration pattern accuracy. Since they optimize
the geometry of the calibration pattern as well, they show that we can obtain a good
calibration accuracy with a relatively low accuracy on the construction of the calibra-
tion pattern. In fact, the main bottleneck to obtain a good calibration is the accuracy
of the 2D feature detector. For a good calibration, typical detection errors need to
be smaller than 0.05 pixels, which generally needs the use of an intensity-model-based
feature detector.

The method described in [Lavest et al., 1998] can be considered to be between clas-
sic calibration methods and auto-calibration methods: it needs a calibration pattern
but it is able to optimize it as well. The following section describes a completely differ-
ent type of calibration methods, where only the uncalibrated images and the rigidity
of the scene are required.

1.1.4 Auto-Calibration

Auto-Calibration (or Self-Calibration) is the process of recovering internal camera
parameters directly from multiple uncalibrated images. Compared to the conven-
tional calibration methods, where a higher knowledge of the scene is required, auto-
calibration methods use only the rigidity of the scene and constraints on the intrinsic
or extrinsic parameters, e.g., the intrinsic parameters are unknown but constant for
all the views. Although there exist different ways of imposing the auto-calibration
constraints, the general approach to auto-calibration is almost always the same:

• obtain the projective camera matrices,

• update the projective camera matrices to Euclidean matrices using auto-calibration
constraints.

The projective camera matrices are computed using epipolar geometry from the corre-
spondence of the same features detected in different views, the most common features
being points. Updating the camera matrices from projective to Euclidean can be done
in a ”direct” way or in “stratified” way. Direct methods pass directly from the projec-
tive form to the Euclidean form. Stratified methods first update the projective camera
matrices to affine camera matrices (i.e., find the plane at the infinity) and, from affine
camera matrices to Euclidean camera matrices. Stratified methods are in general more
robust and simplify the passage from the affine stratum to the Euclidean one.
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Direct Methods

• Kruppa equations. The first auto-calibration method is historically due to
[Faugeras et al., 1992], [Maybank and Faugeras, 1992]. They proposed an ap-
proach based on the Kruppa equations [Kruppa, 1914] and established the re-
lation between the camera intrinsic parameters and the absolute conic. The
Kruppa equations use only epipolar geometry, which has two advantages over
other methods: they do not need either to compute the plane at the infinity or
to relate all the projective cameras into a single coordinate system. The cons are
the robustness and the number of possible solutions, which makes this approach
only practical for very few images (3 or 4) since the number of solutions grows
very fast with the number of views. Another problem is that there exist special
critical motions only for the Kruppa equations [Sturm, 2000]. An interesting
point about the Kruppa equations is the fact that, as shown by [Luong and
Faugeras, 1997], they are equivalent to the Trivedi constraints [Trivedi, 1988]
and the Huang and Faugeras constraints [Huang and Faugeras, 1989].

• QR decomposition. Hartley proposed a different technique to self-calibration
based on the QR decomposition of the projection matrix [Hartley, 1994]. This
solution is more robust than using the Kruppa equations and it can be applied
to any number of views.

• Absolute quadric. [Triggs, 1997] proposed two algorithms (one linear and one
non-linear) to directly estimate the absolute quadric from a set of images (the
absolute quadric is the dual of the absolute conic). Similar equations had al-
ready been used by [Heyden and Aström, 1996] but without relating them to the
absolute quadric concept.

Stratified Methods

Even if the direct methods upgrade from projective to Euclidean in a direct way,
the plane at the infinity is still computed either implicitly (e.g. the absolute quadric
definition includes the plane at the infinity) or explicitly (see [Hartley, 1994]). The
only method that actually does not use at all the plane at the infinity is the Kruppa
equations; it manages to eliminate its dependency at the expense of robustness.

Stratified methods, as opposed to direct ones, first recover the plane at the infinity
and then find the intrinsic parameters. The idea of separating the computation of
the plane at the infinity from the intrinsic parameters appears already in the methods
of [Hartley, 1994], [Armstrong et al., 1994] and [Faugeras, 1995]. One of the best
results on stratified methods is due to [Pollefeys and Van-Gool, 1997], who developed
a complete stratified auto-calibration approach based on the recovery of the plane at
the infinity using the“modulus constraint” [Pollefeys et al., 1996].
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1.2 Related Work

We present a new approach to silhouette-based calibration that deals with the notion
of silhouette coherence. Roughly speaking, we exploit the rigidity property of 3D
objects to impose the only possible constraint between the silhouettes of the same 3D
object: they must be coherent, meaning that it must exist a 3D object that might
have generated these silhouettes. Bottino and Laurentini study the same problem
in [Bottino and Laurentini, 2003] but with a different point of view. They provide
the notion of silhouette compatibility to state if a given set of silhouettes of the same
3D object are possible or not. They give some rules to state if a set of silhouettes is
compatible or not, but only for the special case of orthographic cameras and without
providing a means to compute their amount of incompatibility.

In his PhD thesis [Cheung, 2003], Cheung uses the term of consistent alignment for
the registration of two visual hulls. However, he discards using it in an optimization
algorithm because he considers it too computational expensive to be used in practice.

We describe next a criterion of silhouette coherence that allows us to measure a
degree of coherence and thus offers us the possibility of using optimization methods to
recover some of the camera parameters. The silhouette coherence approach is related
to three different kinds of techniques: i) camera calibration and motion estimation,
ii) texture registration between a set of images and a 3D model, and iii) visual hull
computation and registration (see Eqn. 1.13 for the mathematical definition of the
visual hull concept [Laurentini, 1994]).

• A large collection of methods for camera auto-calibration and motion estima-
tion exists [Faugeras and Luong, 2001]. They rely on correspondences between
the same primitives detected in different images. For the particular case of cir-
cular motion, the methods of [Fitzgibbon et al., 1998] and [Jiang et al., 2002]
work well when the images contain enough texture to make a robust detection
of the primitives. Otherwise, silhouettes can be used instead. For the special
case of surfaces of revolution, an auto-calibration method using only silhouettes
has been proposed by [Wong et al., 2003]. For general surfaces, silhouettes have
been mainly used for camera motion estimation. For general surfaces, silhouettes
have been mainly used for camera motion estimation. In [Mendonça et al., 2001],
the circular motion of a general object is recovered by considering the symme-
try properties of the surface of revolution induced by the rotation of the object.
In [Wong and Cipolla, 2001] motion recovery is achieved by using the notion of
epipolar tangencies [Rieger, 1986], [Porrill and Pollard, 1991], i.e., points on the
silhouette contours that belong to an epipolar line tangent to the silhouette (see
Fig. 1.2). More recently, [Furukawa et al., 2004] propose recovering the general
motion of an affine camera using also epipolar tangencies. Although these meth-
ods give good results, their main drawback is the limited number of epipolar
tangencies per pair of images, generally only two: one at the top and one at the
bottom of the silhouette. When additional epipolar tangencies are available, the
problem is to match them between different views and handle their visibility, as
proposed in [Furukawa et al., 2004].
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epipolar plane

epipolar tangents
epipolar tangencies

silhouette

frontier points

camera centers

Figure 1.2: Two views of the two epipolar planes (red and green) that are tangent to the
surface. The epipolar tangents correspond to the intersection between the epipolar planes
tangent to the surface and the retinal planes. The epipolar tangencies are defined as the
tangent points between the silhouettes and the epipolar tangents. By construction, an epipolar
tangency is the projection of the corresponding frontier point.

• Concerning texture registration, there exists a number of algorithms that try
to register a 3D representation of an object with a set of textured views of the
same object using silhouettes. Calibration is accomplished by minimizing the
error between the contours of the silhouettes and the contours of the projected
object. In [Matsushita and Kanedo, 1999] and [Neugebauer and Klein, 1999] the
error is defined as the sum of the distances between a number of sample points
on one contour and their nearest points on the other. In [Lensch et al., 2001]
a hardware-accelerated method is used to compute the similarity between two
silhouettes as the area of their intersection.

• Visual hull computation and registration. Visual hull computation is a
very active area since it is one of the fastest and most robust ways of obtaining
an initial estimation of a 3D object. It can be precise enough for real time render-
ing applications such as the one proposed by [Li et al., 2003] or used as an initial
estimation for further processing in 3D reconstruction algorithms such as the
one that we have developed and which is described in chapter 2. When several
unregistered silhouette sequences of the same object are available, the problem
of registering the corresponding visual hulls appears. Although [Sullivan and
Ponce, 1998] do not explicitly propose the registration of two different sequences
of silhouettes, they propose a way of estimating the pose of a 3D model relative
to a set of silhouettes, so silhouette registration can in fact be achieved by first
reconstructing a 3D model using one of the sequences followed by a pose estima-
tion relative to the second sequence of silhouettes. In [Park and Subbarao, 2002]
two different reconstructions are obtained from each silhouette sequence. Then,
the two 3D reconstructed models are matched using tangent planes and stability
constraints. The authors of [Cheung et al., 2003] also start with two different
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Figure 1.3: Computation of the 3D optic ray intersection by back projection of the silhouette
intervals. Top: intersection of the optic ray with the real object. Bottom: intersection of an
optic ray with the visual hull using silhouette intervals.

reconstructions. They use them to speed up a stereo matching algorithm to
locate 3D surface points, which are then used to find the rigid motion between
the two sequences.

The proposed silhouette coherence criterion is inspired from the texture registration
approach proposed by [Lensch et al., 2001]. But the main difference is that we do not
need a known 3D model corresponding to the real object. The 3D model is implicitly
reconstructed from the silhouettes at the same time as the camera calibration by a
visual hull method. Specifically, the use of the technique described by [Matusik et al.,
2000] allows all the computations to be done in the image domain, which overcomes
the need for a 3D representation as in [Sullivan and Ponce, 1998], [Park and Subbarao,
2002] or [Cheung et al., 2003].
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a b

Figure 1.4: 2D examples of different silhouette coherences. The reconstructed visual hulls
are the black polygons. a) Perfectly coherent silhouette set. b) Set of 3 silhouettes with low
silhouette coherence. The arrows indicate incoherent optic ray pencils.

1.3 A Measure of Silhouette Coherence

Given a set of silhouettes of the same 3D object taken from different points of view,
and the corresponding set of camera projection matrices, we would like to measure
the coherence of both the silhouette segmentation and the camera projection matrices.
The only information contained in a silhouette is a classification into two categories
of all the optic rays that go through the optic center of the associated view: those
that intersect the object and those that do not, depending if the pixel that defines
the optic ray belongs to the silhouette or not. Let us consider an optic ray defined by
a silhouette pixel and thus intersecting the object. If the silhouettes and the camera
projection matrices are perfect, it is obvious that the projection of the optic ray into
any other view must intersect the corresponding silhouette. The back projection of
this intersection onto the 3D optic ray defines one or several 3D intervals where we
know that the optic ray intersects the real object surface (see Fig.1.3). In the case
of only two views, the corresponding silhouettes will not be coherent if there exists
at least one optic ray classified as intersecting the object by one of the silhouettes
and whose projection does not intersect the other silhouette. In the case of n views,
the lack of coherence is defined by the existence of at least one optic ray where the
depth intervals defined by the n−1 other silhouettes have an empty intersection. This
lack of coherence can be measured simply by counting how many optic rays in each
silhouette are not coherent with the other silhouettes. Two examples of coherent and
non-coherent silhouettes in the 2D case are shown in Fig.1.4. The optic ray pencils
that are not coherent with the other silhouettes are shown by an arrow in Fig.1.4.b.

A first way of computing a coherence measure is as follows:

• compute the reconstructed visual hull defined by the silhouettes,

• project the reconstructed visual hull back into the cameras, and

• compare the reconstructed visual hull silhouettes to the original ones.

31



1.3 A Measure of Silhouette Coherence

In the situation of ideal data, i.e., perfect segmentation and perfect projection matrices,
the reconstructed visual hull silhouettes and the original silhouettes will be exactly the
same (see Fig. 1.4.a). With real data, both the silhouettes and the projection matrices
will not be perfect. As a consequence, the original silhouettes and the reconstructed
visual hull silhouettes will not be the same, the reconstructed visual hull silhouettes
being always contained in the original ones. This can be explained mathematically
in the following way:

Let Si be the ith image silhouette and Pi the corresponding camera projection
matrix. We can define the cone Ci generated by the silhouette Si as the set of 3D
points M that verifies:

Ci = {M ∈ R
3 : PiM ∈ Si}. (1.12)

The reconstructed visual hull V defined by the silhouette set Si, i = 1, . . . , n can be
written as the following cone intersection:

V =
⋂

i=1,...,n

Ci = {M ∈ R
3 : PiM ∈ Si ∀i}. (1.13)

The silhouette of V into the ith image, noted SV
i , is defined as the set of 2D image

points m such as:

SV
i = {m = PiM : M ∈

⋂
i=1,...,n

Ci}. (1.14)

According to Eqn. 1.12, we can separate the contribution of silhouette Si to SV
i as

follows:
SV

i = {m = PiM : M ∈
⋂
j �=i

Cj} ∩ Si. (1.15)

Hence, by construction SV
i ⊆ Si ∀i. If the silhouettes and the projection matrices are

perfect, then SV
i = Si ∀i.

The next question is how to measure the similarity C between a given silhouette
Si and its corresponding reconstructed visual hull silhouette SV

i . A first quick answer
would be to use the ratio of areas between the two silhouettes:

C(Si, S
V
i ) =

∫
SV

i∫
Si

∈ [0, 1]. (1.16)

However, this measure has two important drawbacks: the dynamic range and the
implementation cost. The dynamic range is a problem because the silhouette areas
can be very large for big images and, for small differences between silhouettes, the
dynamic range of this measure will be very small and not accurate enough for the
applications we are considering. As we will see in the implementation of the algorithm,
there is also a performance reason for this choice since we will need to discretize the
evaluation of the measure, and the computation time will be proportional to the size
of the silhouette area to evaluate.

To solve these two important issues we propose using the ratio of the silhouette
contour lengths rather than the ratio of the silhouette areas. Let ∂i denote the contour
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Figure 1.5: Different scenarios for silhouette comparison. The visual hull silhouette is
shown in gray. The common contour ∂V

i ∩ ∂i is drawn with a thick stroke. (a) Normal
scenario. (b) Special case where the coherence computed using only contours is zero whereas
the coherence using areas is much greater. (c) Special case where the coherence using contours
is 100% whereas the coherence using areas is very low.

of the original silhouette Si, and ∂V
i the contour of the reconstructed visual hull sil-

houette SV
i . A measure Csc of coherence between these two silhouettes can be defined

as the ratio between the length of their common contours ∂V
i ∩ ∂i and the total length

of ∂i:

Csc(Si, S
V
i ) =

∫
(∂V

i ∩ ∂i)∫
∂i

∈ [0, 1]. (1.17)

An interesting question about using the contours rather than areas is the fact that
both measures might greatly differ for some special cases as shown in Fig.1.5.b and
Fig.1.5.c. Using the contour-based measure will penalize scenarios such as in Fig.1.5.b
while encouraging scenarios such as in Fig.1.5.c. But it happens that case b is much
more common than case c for the problem of silhouette coherence. In fact, if none
of the silhouettes has interior holes, case c is impossible by construction of the visual
hull. As discussed in section 1.6, we use only the exterior contour of the silhouettes,
which implies that case c will never be encountered in practice. However, case b can
be easily reproduced by simply having an erroneous smaller focal length for one of
the views. The weakness of using contours instead of areas in case Fig.1.5.b can be
avoided by using a multi-resolution approach (see Section 1.6.2) that allows a better
handling of the scenario of Fig.1.5.b.

The measure Csc(Si, S
V
i ) evaluates the coherence between the silhouette Si and

all the other silhouettes Sj,j �=i that contributed to the reconstructed visual hull. To
compute the total coherence between all the silhouettes, we can just compute the mean
coherence of each silhouette with the n − 1 other silhouettes:

Csc(S1, . . . , Sn) =
1

n

n∑
i=1

Csc(Si, S
V
i ) (1.18)
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Figure 1.6: Epipolar tangency and silhouette coherence criteria for a pair of silhouettes.

1.4 Silhouette Coherence: an Extension to the Epipo-

lar Tangency Criterion

In the case of a sequence of cameras under circular motion with constant intrinsic
parameters, [Wong and Cipolla, 2001] demonstrate the feasibility of recovering the
motion using epipolar tangencies. We show below that the proposed silhouette co-
herence criterion is a more general approach that extends the criterion of epipolar
tangencies.

For a given pair of views, as shown in Fig.1.6, the epipolar tangency approach
minimizes the square distance between epipolar tangents of one view (la and lb in view
i, lc and ld in view j) and the transformed epipolar tangents of the other view (l′c and
l′d in view i, l′a and l′b in view j). That is, it minimizes Cet = d2

ac′ +d2
bd′ +d2

ca′ +d2
db′ . For

the same pair of silhouettes, the optimization of the coherence criterion corresponds
to minimizing the length of the contours cca′ and dbd′ . So we can see that, except for
pathological configurations, both criteria try to minimize the sectors defined by the
epipolar tangents in one view and their corresponding epipolar tangents in the other
view. This implies that, if we optimize our coherence criterion on a set of silhouettes
by pairs, we get the same behavior as [Wong and Cipolla, 2001], and thus we are also
able to recover the camera motion using the silhouette coherence. Furthermore, the
epipolar tangency criterion can actually also recover some intrinsic parameters such as
the focal length, even if [Wong and Cipolla, 2001] only use this criterion to estimate
the camera motion.

When using the proposed silhouette coherence, silhouettes are not just taken by
pairs but all at the same time. This makes that the information we exploit is not only
on the outer epipolar tangencies but all over the silhouette contour. As a result, even
if we dispose of silhouettes where the outer epipolar tangencies are not available, the
silhouette coherence criterion is still valid. We present an example in Section 3.4.1
where we do not dispose of the bottom of the silhouettes but for which we are still
able to estimate the camera parameters with very good accuracy. This scenario is
quite common in practice, since sometimes it is very difficult to correctly separate the
object from its support or from the turntable.
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Although we have the theoretical possibility of recovering some of the intrinsic
parameters, it is well known that the circular motion is a critical motion for self-
calibration [Sturm, 1997a, Sturm, 1997b]. The question is which parameters can be
theoretically recovered and if in practice they affect the coherence criterion enough to
be retrieved by optimization. This point is addressed in the next Section.

1.5 Validity of the Coherence Measure

To be able to efficiently exploit the coherence measure we need first to know its appli-
cation limits. As we stated above, if we have perfect silhouettes and perfect camera
matrices, then Csc(S1, . . . , Sn) = 1. This never happens in practice. Let us assume that
the silhouettes are perfectly segmented. We can maximize the silhouette coherence by
adjusting the camera parameters in order to reduce mismatches between silhouettes.
But maximizing coherence between silhouettes does not mean finding the right camera
parameters [Cheung, 2003]. This depends on:

• the object shape. The worst case corresponds to a sphere turning around
its center. In this particular case all the silhouettes are the same and therefore
there is no unique solution to the problem of silhouette coherence maximization
because of the sphere symmetry. Thus, in general, we can not guarantee the
uniqueness of the solution.

• the number of silhouettes. If we use only a small number of silhouettes, then
the coherence criterion is less accurate and may be maximized for a large class
of solutions. However, if we take a sufficient number of pictures, real objects are
generally asymmetric enough to guarantee a unique solution as will be shown in
the practical examples.

• the interdependence between parameters of the camera. Some parame-
ters can affect the coherence criterion in a similar way such that it is impossible
to distinguish between them during the coherence maximization.

So the coherence criterion is not the ultimate criterion for recovering all the parameters
in a global optimization, but it can work quite well for some particular scenarios where
the number of parameters to recover is not very high and silhouettes provide enough
information to optimize them.

Recovering the camera principal point (u0, v0)
t and translation vector t = (tx, ty, tz)

t

under circular motion at the same time is a very difficult task. This is due to the fact
that the translation introduces in the projection equation a pixel offset similar to
the principal point. If we look at the projection equation for circular motion of a
3D point M into a pixel point m (see Section 1.6.3 for a discussion of the different
parameterizations), we have:

m � K[R(θ)|t]
(

M
1

)
, (1.19)
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where K is the intrinsic matrix, t the translation vector and R(θ) the rotation matrix
around the rotation axis, θ being the angle of rotation. The only parameter that
changes between two cameras under circular motion is the angle of rotation θ. Let
R(θ) = [r1r2r3], then the projective equation can be written in the following way:

mx = f
rt
1M + tx

rt
3M + tz

+ u0 = f
rt
1M + tx

rt
3∆M + rt

3M + tz
+ u0,

my = f
rt
2M + ty

rt
3M + tz

+ v0 = f
rt
2M + ty

rt
3∆M + rt

3M + tz
+ v0,

where d = rt
3M + tz is the average depth of the scene along the line of sight and

∆d = rt
3∆M is the deviation from the average depth for a particular 3D point M,

i.e. M = ∆M + M for any 3D point M. If we are projecting a 3D object, rt
3M + tz

will correspond to the average depth of the 3D object relative to the camera. After
developing the Taylor series:

1

∆d + d
=

1

d

(
1 − ∆d

d
+

(
∆d

d

)2

− · · ·
)

,

we obtain:

mx = f
rt
1M

d
+ f

tx
d

+ u0 + O(
∆d

d
),

my = f
rt
2M

d
+ f

ty
d

+ v0 + O(
∆d

d
).

We can notice that if ∆d is small compared to d, then the effect of the translation t can
be interpreted as a pixel offset of value (fx

tx
d
, fy

ty
d
)t up to an error O(∆d

d
). If instead

of projecting the entire object, we project only the contour generators (to construct
silhouettes), then the condition to hold the above statement is more easily achieved. It
suffices that the depth variation along the contour generators remains small compared
to the distance between the object and the camera, which happens rather commonly
in practice. This explains why the translation and the principal point are very difficult
to recover at the same time using silhouettes and why it is so difficult to separate their
contribution in the silhouette coherence measure.

The focal length is a different case. Its main problem is that very large variations
of the focal length can produce only small variations of the silhouette coherence. Even
with an infinite focal length (orthographic projection) high values of coherence can still
be obtained (see Fig. 1.7 left). For this reason, it is recommendable to initialize the
focal length with a lower bound of its expected value or to use another parameterization
such as the logarithm of the focal length (Fig. 1.7 center) or the field of view (fov)
(Fig. 1.7 right).

1.6 Coherence Criterion Implementation

The silhouette coherence criterion C being defined, a first implementation, and prob-
ably the simplest, would be the following:
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Figure 1.7: Silhouette coherence variation with focal length. Discontinuous line represents
the coherence for orthographic projection: focal length=∞, (fov=0). Left: plot of silhouette
coherence as a function of the focal length in pixels. Center: same plot using a logarithmic
axis. Right: plot of the silhouette coherence as a function of the field of view: fov=2 ·
atan(sizeretina/(2 · focal)), with sizeretina = 768 pixels.

• for a given set of cameras and silhouettes, compute the reconstructed 3D visual
hull by using any of the multiple existing techniques,

• project the reconstructed visual hull into the cameras,

• compute the coherence criterion.

This approach has two drawbacks: computation time and volume sampling. The
former may be a problem since it may take several minutes to compute a 3D visual
hull, and the latter because constructing a 3D visual hull usually needs a discrete 3D
representation, such as a volume grid or an octree. If we want a highly accurate visual
hull, we need a high resolution 3D model of the visual hull, which is computationally
very expensive and not appropriate for an iterative optimization process. In addition,
we are not interested in a 3D representation in itself but in comparing 2D views of
it with the original silhouettes. Therefore, it seems a waste of time to reconstruct
the visual hull completely when only some views of it are required. The imaged-
based visual hull (IBVH) technique [Matusik et al., 2000] does not compute a 3D
representation of the reconstructed visual hull but only 2D views of it. The key idea
is as follows: for any 2D point in an image, we can compute the intersection between
its corresponding optic ray and the visual hull by a ray-casting approach. According
to the definition of the visual hull, this is equivalent to (see Fig. 1.3):

• projecting the optic ray into each silhouette,

• computing the 2D intersection intervals between the projected ray and each
silhouette,

• back projecting all the 2D intervals onto the original 3D optic ray,

• computing the intersection on the 3D optic ray of all the intervals of all the
silhouettes.
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e

max

min

Figure 1.8: Simplified intersection algorithm.

For any optic ray, we have a set of remaining depth intervals, possibly empty, which
represent the intersection between the optic rays and the implicit visual hull.

To compute the 2D intersection between the projected ray and a silhouette, we
use an interval intersection algorithm. With the approach of interval intersection, the
silhouette contours are coded as a closed sequence of segments. For a given projected
ray, we compute the intersection of the half line with the sequence of segments, which
gives us the 2D intervals directly.

In order to accelerate computations, we use a simplified version of the algorithm
described in [Matusik et al., 2000]. The first simplification is that we do not take
into account contours inside the silhouettes, i.e., we only consider genus-0 silhouettes.
Furthermore, we do not compute all the intersecting intervals for a given optic ray.
We just compute the min and max of the interval intersection with each silhouette
(see Fig. 1.8). This is a conservative approximation of the real coherence, i.e., the
coherence score that we obtain by storing only the min and max depth is always equal
to or greater than the real one. However, in practice, the deviation from the coherence
computed with all the intervals is small.

1.6.1 Interval Intersection Algorithm

Let us consider a closed polygonal silhouette contour P defined by a sequence of N
points pi={0,...,N−1} and an epipolar line l (half-line having its origin at the epipole
e). The goal is to compute the intersection of the epipolar line with the polygonal
contour as a set of intervals, possibly empty. The greedy algorithm consists of testing
the intersection against each edge of the polygon [pi,pi+1], with i = {0, . . . , N − 1},
assuming pN = p0. The resulting intersection points are then sorted along their
distance to the epipole e. This allows recovering the ordered list of intersections
which define the intersection intervals. Since the polygon is closed, the number of
intersections will be odd if the epipole e is outside the polygon and even if it is inside the
polygon, excluding the special tangent case. This algorithm runs in linear time O(N).
If we have M epipolar lines to intersect with the same contour P , the complexity of
the problem is O(MN), which can be very large for big values of M and N . [Matusik
et al., 2000] propose breaking this complexity using epipolar geometry constraints.
They exploit, in particular, the fact that all the epipolar lines have the same origin,
i.e., the epipole e. They propose sorting the contour points pi according to their slope
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Figure 1.9: Polygon decomposition into bins for a given epipole e.

relative to the epipole e. This sorting divides the contour into N − 1 bins. They store
inside each bin all the edges that traverse it and sort them along their distance to the
epipole. In the example of figure 1.9, we have a contour of N = 5 points. Given an
epipole e, the contour can be decomposed into 4 different bins bi={0,1,2,3}. Now, if we
wanted to compute all the interval intersections as in [Matusik et al., 2000], we would
need to attach to each bin bi the ordered list of segments [pj,pj+1] that traverse it.
However, because we only need the min/max intervals (see Fig.1.8), we actually just
need to attach the closest and farthest segments from the epipole that traverse the
bin. For a given epipolar line l, we compute its slope and recover the bin to which
the epipolar line belongs to (b2 in the example of Fig. 1.9). The last operation is the
computation of the intersection between the line and the edges contained in that bin.
The crucial point to accelerate this computation is to sort the bins. The bin-retrieval
operation can then be done only in O(log(N)). Moreover, if epipolar lines are generated
in an ordered way, we can cache the last bin-retrieval operation and linearly search
the next bin starting from the old one, which requires in general a smaller number
of operations than log(N). As a consequence, the algorithm is basically running in
O(M log(N)) plus the additional overhead due to the bin creation. The bin creation
computation time corresponds to two sorting operations over N elements, one to create
the bins (slope sorting) and another to sort the list of segments that traverse it (depth
sorting). If we assume the complexity of the sorting algorithm to be N log(N)1 , and
the number of sampling points per silhouette equal to the number of points defining
the silhouette (M ≈ N), the total complexity of the algorithm will be O(N log(N)).
If we dispose of n silhouettes, the complexity of computing the coherence between a
silhouette and its corresponding reconstructed visual hull silhouette is O(nN log(N)).

The pseudo code of the coherence algorithm Csc(Si, S
V
i ) between a silhouette Si

and its corresponding reconstructed visual hull silhouette SV
i is as follows:

1Radix Sort or Byte Sort algorithms have a complexity of only O((k +1)N) with k the number of
radices of the input values (e.g. k=4 for floats and k=8 for doubles). Therefore, when working with
floats, radix sort has a better performance when N > 32 (excluding the sorting overhead).
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pseudo code of the silhouette coherence algorithm

1 FLOAT Coherence (SILHOUETTE silRef,SILLIST silList)
2 INTEGER emptySamples = 0
3 INTEGER totalSamples = 0
4 For each VEC2D p in Contours(silRef)
5 INTERVAL interval = [0,inf]
6 VEC3D ray = InverseProjection(silRef,p)
7 For each SILHOUETTE sil in silList, sil 
= silRef
8 VEC2D epipole = Projection(sil,CameraOrigin(silRef))
9 VEC2D direction = Projection(sil,ray)

10 INTERVAL int2D = Intersect(sil,epipole,direction)
11 INTERVAL int3D = InverseProjection(sil,int2D)
12 interval = Intersect(interval,int3D)
13 If interval = void, then emptySamples++; break
14 end
15 totalSamples++
16 end
17 return (totalSamples-emptySamples)/totalSamples

1.6.2 δ-Offset Silhouette Contour Approach

In the two last subsections we have explained how to compute the silhouette coherence
on a given set of 2D points. In the formulation, these 2D points do not need to be
actually on a grid (like pixels). However, the discrete nature of the algorithm appears
in two ways: i) we need a finite set of 2D points where to compute the coherence, ii)
the silhouettes actually need to be coded with a finite number of segments in order to
benefit from the low complexity of the algorithm described in [Matusik et al., 2000].
Silhouettes can be obtained by any segmentation method and delivered in various
representations such as images or closed spline curves. However, if we want to be fast,
in the end, we need to convert them into polygons. Concerning the 2D points where
to sample the coherence criterion, we recall that we want to test the coherence only
along the contours of the silhouette, as stated in Section 1.3. Since all the silhouettes
are defined as polygons, a first solution would be to select the 2D sampling points
equally spaced along each silhouette polygon. But this is not such a good idea. The
main reason is that the resulting coherence measure is very noisy. The depth of the
intervals on the silhouette contours is small and the floating point computation error
can be enough to change a valid interval into an empty interval. A more interesting
way to generate the sampling points is to choose them also equally spaced but at a
given distance δ from the silhouette contour (see Fig. 1.10).

Sampling at a given distance δ from the contours has the advantage of making
the coherence measure more robust to silhouette segmentation noise. Although the
distance δ is limited by the thickness of the silhouette itself (see Fig. 1.10 right), this
is not a problem in practice because the structures we encounter in real silhouettes
have a width of at least a dozen pixels, which is enough for the δ values we consider.
Since silhouettes are usually issued from an image segmentation algorithm, we can
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δ δ

Figure 1.10: Contour sampling for coherence computation.

expect to have a segmentation precision of about 0.5 pixels, which is a good δ value
for an accurate coherence measure. Moreover, we can select δ to take into account
the noise of the silhouette segmentation algorithm. The larger δ is, the more robust
the algorithm is against bad segmentation. But robustness is obtained at the expense
of accuracy. For a given δ, the silhouette coherence will not distinguish between the
original silhouettes and the reconstructed visual hull silhouettes that have an error
smaller than δ (see Fig. 1.11).

In order to improve the convergence properties of an optimization algorithm using
the coherence measure, we can link together a multi-resolution algorithm with
a decreasing δ approach. The idea is to optimize the coherence measure in a
hierarchical way. Instead of using the original silhouettes, we start with a subsampled
version of the silhouettes. Upon convergence, we move forward to the next higher
level of resolution and we iterate until we use the original silhouettes. Using different
levels of resolution allows an automatic scaling of the three parameters that define
how the coherence measure is computed: number of silhouette segments, number of
sampling points and distance δ between silhouette segments and sampling points. If
we consider 4 levels of resolution, with a scale factor of 2 between consecutive levels,
the first level will use silhouettes subsampled by a factor of 8. Next levels will use a
factor of 4, 2 and 1 respectively. In practice, 2 or 3 different resolution levels suffice.
This way of proceeding has two advantages over using the original silhouettes without
subsampling:

• Better convergence properties. Using different levels of resolution allows
using different δ distances and filtering the original silhouettes at the same time.
It smoothes the coherence measure and helps to avoid possible local minima.

• Faster computation time. Reducing the resolution of the silhouettes by a
factor of 2 reduces also by a factor of 2 the number of silhouette segments N and
sampling points M . Since the computation time is O(M log(N)), each level of
resolution improves the computation time by a factor a little bit better than 2.
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coherence of 100% coherence of 70% coherence of 50%

Figure 1.11: Comparison of the coherence measure for different δ values. The original
silhouette is shown in blue. We show at the same time the projection of the reconstructed
visual hull in black. The sample points are chosen along the red contour for a decreasing δ
distance from left to right.

1.6.3 Circular Motion Parameterization

There exist different parameterizations of the circular motion characterized by the
camera rotating around a fixed axis (see Fig. 1.12). The degrees of freedom of this
motion are the fixed distance t of the camera to the rotation axis a (1 dof), the camera
rotation Rcam (3 dof) and the relative angle ω to the (arbitrary) initial position. If we
dispose of k cameras, the total number of extrinsic dof will be 1 + 3 + (k − 1) = k + 3
dof. The reason why the translation direction has only 1 dof, and not 2, is that we have
the freedom to choose the origin o of the world coordinate system (xyz) anywhere on
the rotation axis. The choice of the origin cancels out one degree of the translation
direction.

Axis-based Parameterization

We give here a brief description of the circular motion parameterization used in
[Fitzgibbon et al., 1998]. Given any arbitrary initial position of the camera, we can
choose the origin of the world coordinate system o as the projection of the camera
center c onto the rotation axis a, the y world axis aligned with the rotation axis a
and the z world axis aligned with the vector o − c. With this parameterization, the
camera pose is computed as:

[RcamRy(ω)|Rcamtz], (1.20)

where

Ry(ω) =

 cos(ω) 0 sin(ω)
0 1 0

−sin(ω) 0 cos(ω)

 . (1.21)

The rotation matrix Rcam captures both the rotation axis (2 dof) and the translation
direction (1 dof). But the separability between the rotation axis parameterization
and the translation parameterization is highly desirable since, as we will see in the
experiments, the sensibility of the silhouette coherence to the translation is much
higher than to the rotation axis.
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Figure 1.12: Circular motion configuration.

Camera-based Parameterization

We propose a different parameterization that has the advantage of separating the
rotation axis parameterization and the translation parameterization. Instead of pa-
rameterizing the rotation axis and the translation with a single rotation matrix Rcam,
we choose another type of parameterization where the first camera defines the world
axes. The camera pose is described as:

[Ra(ω)|t], (1.22)

where Ra(ω) is written as a function of ω and a = (ax, ay, az)
t as follows:

Ra(ω) = (1−cos(ω))

 a2
x axay axaz

axay a2
y ayaz

axaz ayaz a2
z

+

 cos(ω) −az sin(ω) ay sin(ω)
az sin(ω) cos(ω) −ax sin(ω)

−ay sin(ω) ax sin(ω) cos(ω)

 .

(1.23)
The rotation axis is no longer aligned with the y axis and is coded using the

spherical coordinates (θa, φa):

a(θa, φa) = (sin(θa) cos(φa), sin(θa) sin(φa), cos(θa))
t. (1.24)

The translation is coded with a single angle αt that simply accounts for the deviation
between the camera viewing direction (the z axis) and the rotation axis (see Fig.
1.13). If the angle αt is zero, the camera viewing direction intersects the rotation axis.
Different parameterizations can be found for the translation t depending where the
origin of the world is chosen on the rotation axis a. If the origin is located at the
intersection of the xz plane with the rotation axis a, we have (see Fig. 1.13.a):

t(αt) = t(sin(αt), 0, cos(αt))
t. (1.25)

The only drawback of this new parameterization is that, in order to compute αt

accurately, the projection of the rotation axis needs to be close to vertical (see Fig.
1.13.a). To solve this problem, another parameterization is proposed in figure 1.13.b.
The world origin is located at the intersection of the rotation axis with the plane
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Figure 1.13: Different parameterizations of t as a function of αt.

defined by the z axis and perpendicular to the projection of the rotation axis a into
the xy plane, which gives the following equation for the translation:

t(αt) = t(sin(αt) sin(φa),− sin(αt) cos(φa), cos(αt))
t. (1.26)

Since, in practice, the projection of the rotation axis is not far from being vertical,
the parameterization in Eqn. 1.26 is not necessary and we can use equation 1.25,
which is simpler.

The initialization is simple because the coordinate system is related to the camera.
Since the camera y axis is usually aligned with the rotation axis a, initializing the
rotation axis with the y axis is a good approximation, i.e., θa = φa = 90 degrees.
Translation is also simple to initialize since objects are in general centered around the
rotation axis, with the camera pointing to it, so an initial value of αt = 0 is not very
bad.

In addition to the extrinsic parameters, we also have the intrinsic parameters K
(see Eqn. 1.6). The complete projection matrix P of a particular camera under circular
motion has the following form:

P (ω) = K [Ra(ω)|t]. (1.27)

1.7 Optimization of the Cost Criterion

In order to maximize our silhouette coherence criterion we need to use a numerical op-
timization algorithm. In this section we give a rapid overview of the different available
non-linear optimization techniques. We need to minimize a cost function f(x) over
parameters x, starting from some given initial estimate x of the minimum. We try to
find a displacement x → x + δx that locally minimizes the cost function. Although
this does not usually give the exact minimum, it will improve the initial parameter
estimate and allow us to iterate until convergence.

Historically, most approaches to optimization take advantage of a familiar tech-
nique of classical analysis: the Taylor’s series expansion of the objective function. One
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can classify most methods for numerical optimization according to how many terms of
the expansion are exploited. Newton’s method, which assumes the availability of first
and second derivatives and uses the second-order Taylor polynomial to construct local
quadratic approximations of f , is a second-order method. Steepest descent, which
assumes the availability of first derivatives and uses the first-order Taylor polynomial
to construct local linear approximations of f , is a first-order method. In this taxon-
omy, zero-order methods do not require derivative information and do not construct
approximations of f . They are direct search methods, which indeed are often called
zero-order methods in the engineering optimization community.

We have tested both direct search methods and derivative-based methods for the
optimization of the silhouette coherence criterion. Although we have not the possibility
of computing the analytic derivatives of the silhouette coherence criterion, this does not
prevent us from using derivative-based methods to optimize it, since we can estimate
the derivatives numerically [Griewank, 2000].

Based on the results that we have obtained, we can make some remarks about
the different tested methods. Concerning the direct search methods, we have tested
simplex and Powell methods from [Press et al., 1992] and the pattern-based optimiza-
tion method APPS described by [Hough et al., 2001], whose software is available at
software.sandia.gov/appspack. Both Powell’s and APPS provide the best results
of the three of them. Powell’s has slightly better convergence properties while APPS
is much more efficient in the number of total function evaluations. Something remark-
able about Powell’s algorithm is its ability to work “out of the box”, without the need
of any other information, whereas APPS is a constrained optimization technique and
requires the definition of both the scale and the limits of the search space.

Concerning the derivative-based methods, their implementation is much trickier
than for direct search ones. A very important aspect is the need of variable scaling
and more generally preconditioning, since derivative-based methods are very sensitive
to a bad scaling of the variables. We have tested the conjugate gradient and BFGS
from [Press et al., 1992] and the Levenberg-Marquardt from netlib at www.netlib.org.
The general conclusion is that they actually reach better convergence rates than direct
methods when they are close enough to the optimum. However, as we will see in
Section 1.8.4, the cost functions that we are considering are noisy, which implies that
derivative-based methods are not well adapted when starting far from the optimum: we
need to filter the function to obtain a reliable gradient. The implicit filtering algorithm
IFFCO has also been tested [Gilmore and Kelley, 1995], but results are comparable
to the ones obtained with Powell’s method, and many more parameters need to be
adjusted. In fact, we do not discard obtaining better results with a better parameter
selection, but this is not an easy task since they are not very intuitive.

In the following we present a rapid sketch of both direct search and derivative-based
methods.

1.7.1 Direct Search Methods

The first direct search methods were proposed during the 50s and the 60s (see [Fletcher,
1965] for a review). The optimization community scorned direct search methods due
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to the lack of convergence results. A regained interest in direct search methods ap-
peared after the thesis of [Torczon, 1989], where she proposed a multi-directional search
method and the associated convergence proof [Torczon, 1997], formalized the concept
of pattern search methods, and proposed a convergence analysis.

A historical perspective of different direct search methods is presented by [Wright,
1996] or more recently by [Kolda et al., 2003]. Direct search methods can be generally
classified into 3 main groups, namely pattern search methods, simplex methods, and
methods with adaptive sets of search directions.

Pattern search methods

Pattern search methods are characterized by a series of exploratory moves that consider
the behavior of the objective function at a pattern of points, all of which lie on a
rational lattice. Methods proposed previously by [Hooke and Jeeves, 1961] or [Polak,
1971] can be categorized as pattern search methods. They are based on a smart
exploration of a grid based on a predefined geometrical pattern. Recent pattern-based
optimization methods such as [Hough et al., 2001] allow taking advantage of parallel
computing interfaces as MPI (Message Passing Interface) to accelerate computations.

Simplex search methods

Simplex search methods are based on the vertices of a simplex, which is updated
to reflect the local geometry of the objective function. The first simplex method was
proposed by [Spendley et al., 1962], but the most popular was proposed by [Nelder and
Mead, 1965], even if it was proved not to converge in some circumstances [Mckinnon,
1998].

Methods with adaptive sets of search directions

This family includes Rosenbrock’s method [Rosenbrock, 1960] and Powell’s method
[Powell, 1964]. These algorithms attempt to accelerate the search by constructing
directions designed to use information about the curvature of the objective obtained
during the course of the search.

1.7.2 Derivative-based Methods

There exist a great variety of optimization algorithms that use function derivatives
(see [Fletcher, 1987] or [Nocedal and Wright, 1999] for more details). As mentioned
previously, they can be classified according to how many terms of the Taylor decom-
position they use. If we develop the quadratic Taylor series, we get:

f(x + δx) ≈ f(x) + gtδx +
1

2
δxtHδx, (1.28)

where g is the gradient vector and H is the Hessian matrix. The simplest methods
use only first derivatives, which gives the greedy steepest descent method [Morse and
Feshbach, 1953] or the more advanced conjugate gradient method [Fletcher and Reeves,
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1964]. They basically follow a direction related to the gradient vector. More advanced
methods require the use of the second order derivatives (the Hessian matrix). When
using second order derivatives, the local model of the objective function (see Eqn.
1.28) is a simple quadric with a unique global minimum that can be found explicitly
by setting df(x + δx) ≈ Hδx + g to zero, which gives the so called Newton step:

δx = −H−1g. (1.29)

Iterating the Newton step gives the Newton’s method. Since computing the real Hes-
sian matrix can be hard for complex cost functions, there exists a family of algorithms
called quasi-Newton methods (such as BFGS), that actually estimate H from the vari-
ations of g during the iteration. Newton’s methods may have convergence problems
(e.g., convergence to a saddle point). In order to improve the convergence, it is prefer-
able to use the Newton step as a descent direction for a line search algorithm rather
than as the exact displacement at each iteration. Finally, in order to best exploit the
convergence properties of first order and second order methods, the Damped Newton
methods use as descent direction a combination of the Newton and gradient directions:

(H + λW )δx = −g, (1.30)

where λ is a weighting factor and W is a weighting matrix (often the identity) between
the gradient and Newton directions: a large λ gives the gradient direction while λ = 0
gives us the original Newton step. A very well known example of a Damped Newton
method is the Levenberg-Marquardt method [Levenberg, 1944], [Marquardt, 1963].

1.8 Experiments with One Rotation Sequence

We have tested and compared the proposed discrete measure of silhouette coherence
with the epipolar tangency criterion using synthetic exact silhouettes, synthetic noisy
silhouettes and real silhouettes.

The implemented epipolar tangency criterion has the following form:

Cet =
1∑n

i=1

∑
j∈N (i) Kij

n∑
i=1

∑
j∈N (i)

KijCet(Si, Sj), (1.31)

Kij =

{
0 if eij ∈ Si or eji ∈ Sj

1 else
,

where n is the number of available silhouettes, N (i) is the subset of peer silhouettes
associated to the silhouette i, Cet(Si, Sj) is the epipolar tangency coherence between
two silhouettes as defined in section 1.3, and Kij takes into account whether we can
compute Cet(Si, Sj) or not. In the particular case where the epipole is inside the
silhouette, Cet(Si, Sj) cannot be computed, so Cet is weighted accordingly. We have to
precise the meaning of N in Eqn. 1.31. If we want to compare each silhouette with the
n− 1 others, then Nall(i) = {i + 1, · · · , n}. However, this is not the original definition
given in [Wong and Cipolla, 2001]. They use N3(i) = {i + 1, · · · , min(i + 3, n)}.
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Figure 1.14: Contour generator de-
tection.

Figure 1.15: Computation of the outer silhouette
polygon.

Although they do not justify this choice, it is probably due to the resulting com-
putating time saving (N3 is faster than Nall) and to the convergence properties of
Cet: using a small number of silhouettes around the current silhouette should help to
smooth the energy shape. But this leads to a worse accuracy than when using all the
silhouettes. Furthermore, in the experiments described in subsection 1.8.4, both N3

and Nall exhibit very similar convergence properties. Then, to speed up the algorithm,
we have first used N3(i) to get close to the optimum and then Nall to reach a better
accuracy.The optimization method used with both the epipolar tangency criterion and
the silhouette coherence criterion is Powell’s conjugate directions algorithm [Powell,
1964].

For all the examples, we have used single axis rotation sequences with constant
intrinsic parameters. Although at first sight this can seem a little bit constraining, it
is a really useful configuration commonly used in practice. In addition, using single
axis rotation sequences does not mean using only one rotation sequence. We can
in fact use several rotation sequences from the same object, which improves the 3D
reconstruction results as we will see in Section 1.9.

1.8.1 Synthetic Exact Silhouettes

In this experiment, we dispose of a synthetic Teapot represented by a triangle mesh.
We want to obtain an exact set of silhouettes by computing the 2D polygons generated
by the projection of the 3D mesh. This is accomplished in the following two steps:

• detection and projection of the edges that are contour generators,

• extraction of the minimal polygon that contains all the 2D projected segments.

Edges belonging to the contour generators are defined as those that share two triangles
with different visibility, i.e., edges that share one front triangle and one back triangle.
Mathematically, an edge e is a contour generator if, given the two face normals n1 and
n2, and the two corresponding viewing directions d1 and d2, the following relation
holds: s1s2 < 0, with s1 = n1 · d1 and s2 = n2 · d2 (see Fig. 1.14).

Once we have the 2D segment soup, we need to construct the silhouette polygon
defined by an ordered list of segments. This can be done by using an automate that
iteratively marches along the oriented edges, cutting and pruning if necessary. We can
see in Fig. 1.15 left an example of the input to the state machine algorithm and the
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Figure 1.16: The two steps to compute exact silhouettes from a 3D mesh. From left to
right, original Teapot mesh, apparent contours and extracted outer contour.

0 deg 20 deg 40 deg 60 deg 80 deg 100 deg

120 deg 140 deg 160 deg 180 deg 200 deg 220 deg

Figure 1.17: Example of a sequence of the Teapot with 12 views, their corresponding exact
silhouettes and their absolute camera angles.

output we want in Fig. 1.15 right. The algorithm is initialized with a segment (in
red) that belongs to the outside contour of the silhouette. This initialization segment
can be found simply by a scan line approach. Starting from the origin of the current
oriented segment, the state machine looks for the closest intersection or contact point
and updates the old segment (cuts out the used parts). We iterate this procedure until
the state machine comes back to the initialization segment. We can see in Fig. 1.16
an example of the entire procedure, with the original synthetic Teapot on the left, the
projection of the contour generator edges in the middle, and the final silhouette contour
on the right. We show in Fig. 1.17 a sequence of 12 exact silhouettes generated with
the synthetic Teapot. The retinal plane is 1024x768 pixels size and the focal length is
f = 9000 pixels, as defined in equation 1.6 (fov = 4.89 degrees).

Next we present an experiment using the exact silhouettes of Fig. 1.17. We compare
the accuracy of the motion and focal length estimation for the epipolar tangency and
the silhouette coherence criterion. We assume that the rest of the intrinsic parameters
are known. Since we dispose of 12 silhouettes, the total dof is 15: the relative angles
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rotation axis translation focal
Teapot (degrees) (degrees) (pixels)

θa φa αt f
initial 106.0000 110.0000 1.4 6000
real 86.6265 90.5757 0.0 9000

Cet
recovered 86.6265 90.5757 0.0 9000
error < 10−6 < 10−6 < 10−6 0.02

Csc
recovered 86.6255 90.5757 2.7 · 10−5 8997
error 9.7 · 10−4 < 10−6 2.7 · 10−5 3.14
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Camera angle step error

initial angle steps
epipolar tangency criterion
silhouette coherence criterion

Table 1.1: Motion and focal estimation with exact silhouettes. Mean camera step error of
3.2 · 10−5 degrees with the epipolar tangency criterion (solid blue) and 3.9 · 10−3 degrees
with the silhouette coherence criterion (dashed green), δ = 10−3 pixels.

∆ωi (11 dof) plus the rotation axis (θa, φa) (2 dof), the translation direction αt (1
dof) and the focal length f (1 dof). Obviously, since we only have image information,
we cannot recover the distance to the rotation axis t. It is worth noting that, because
the original synthetic Teapot is a triangle mesh, coding the silhouettes as a polygons
does not introduce any representation noise since silhouettes really are polygons. As a
result, due to the absence of noise, the epipolar tangency measure performs perfectly
(see Table 1.1).

Since silhouettes are exact, we have used a very small offset of δ = 10−3 pixels
in order to maximize the accuracy of the silhouette coherence criterion (see Section
1.6.2). Although the proposed silhouette coherence measure performs well too (see
Table 1.1), the epipolar tangency criterion achieves better results (mean camera step
error of 3.2 · 10−5 against 3.9 · 10−3 with the silhouette coherence criterion). This is
simply due to the fact that, when silhouettes are exact, the epipolar tangency criterion
is a much more accurate measure of the silhouette coherence between two silhouettes
than the discrete silhouette coherence measure we use, the silhouette criterion being
computed by sampling points along the silhouette contours.

1.8.2 Synthetic Noisy Silhouettes

In the next experiment we add some noise to the silhouettes. This is not an easy task
since there is no simple model of the silhouette segmentation process. However, in
practice, there is one type of noise that is easy to reproduce and is present in real
images: the camera sampling. Even if we manage to obtain very accurate silhouettes
of an object, we always have the limitation of the camera resolution. Because we use
pixels to capture the scene, we implicitly introduce a silhouette representation error
of a maximum of 0.5 pixels (see Fig. 1.18).

We have performed two types of experiments with noisy silhouettes. In the first
experiment we have used pixelized silhouettes that simulate the camera sampling pro-
cess. In the second kind of experiments we have tested the exact silhouettes with
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Figure 1.18: Silhouette contour discretization. Left: original exact contour (blue) super-
posed to the binary silhouette. Middle: extracted contour passing through the border of the
contour pixels. Right: extracted contour after a curvature-driven regularization.

additive random noise in order to better study the precision of the algorithms in a
statistical way.

Pixelized Silhouettes

We can use many different techniques to extract a continuous contour from a binary
image, e.g. snakes [Kass et al., 1988] or splines [Plass and Stone, 1983]. However,
since we want to test the accuracy in the presence of noise, we have tested both
pixelized and regularized silhouette contours. In figure 1.18 left we can see the original
contour (in blue) and the corresponding pixelized silhouette (in black). In Fig. 1.18
middle we have the contour extracted from the pixelized silhouette and on the right
we have the same contour regularized by a curvature-driven snake. We can compare
the quality of the extracted contours with the exact ones using simple statistics such
as the Root Mean Square Error (RMSE) or the Mean Absolute Error (MAE). If we
want to compare a given polygon P = {pi, i = 0, · · · , N −1} with a reference polygon
P ref = {pref

i , i = 0 · · · , N ref − 1}, we can define the RMSE and MAE as follows:

RMSE =

√√√√ 1

N

N−1∑
i=0

d(pi, P ref )2, (1.32)

MAE =
1

N

N−1∑
i=0

d(pi, P
ref ), (1.33)

where the distance between a 2D point and the reference polygon is the minimum
distance between the 2D point and the 2D segments defining the polygon:

d(p, P ref ) = min
i

d(p, [pref
i , pref

i+1]). (1.34)

For the example of Fig. 1.18, the pixelized segmentation gives a MAE of 0.33 pixels
and a RMSE of 0.39 pixels. The regularized version achieves a MAE of only 0.1
pixels and a RMSE of 0.13 pixels.

When using the pixelized silhouettes (see Fig. 1.18 middle), the epipolar tangency
criterion does not perform very well, especially for the camera angle steps where it
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rotation axis translation focal
Teapot (degrees) (degrees) (pixels)

θa φa αt f
initial 106.0000 110.0000 1.4 6000
real 86.6265 90.5757 0.0 9000

Cet
recovered 86.6052 90.5604 0.0003 9055
error 0.0212 0.0153 0.0003 55

Csc
recovered 86.6104 90.5718 0.0006 9057
error 0.0161 0.004 0.0006 57
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Table 1.2: Motion and focal estimation with pixelized silhouettes. Mean camera step
error of 0.24 degrees with the epipolar tangency criterion and 0.11 degrees with the
silhouette coherence criterion, δ = 0.5 pixels.

gets a mean error of 0.24 degrees (see Table 1.2). The silhouette coherence criterion
behaves much better, obtaining a mean camera step error of only 0.11 degrees (see
Table 1.2).

Regularized Silhouettes

Concerning the regularized silhouettes (see Fig. 1.18 right), we could expect a better
precision of both criteria since the RMSE and MAE are smaller. It turns out that
this not true fot the epipolar tangency criterion. The error is simply “distributed” dif-
ferently. The estimation of the rotation axis is slightly improved while the translation
and the focal length are worse and the camera angles remain almost the same (see
Table 1.3). Somehow, this distribution of the error is not completely unexpected since
the amount of information contained in the pixelized silhouettes and in the regular-
ized silhouettes is the same: the regularized silhouettes are obtained from the pixelized
silhouettes, no other information being added.

The silhouette coherence criterion behaves in a different way. It has better results
when using regularized silhouettes, and this is mainly due to a less noisy computation of
the depth intervals than when using pixelized silhouettes. Regularizing the silhouette
contours allows using a small contour offset δ = 0.25 pixels, while the offset used for
the pixelized silhouettes is δ = 0.5 pixels. We show in subsection 1.8.4 (see Fig. 1.29)
the effect of regularizing the silhouette contours when computing the depth intervals.
For both cases, the sampling points are chosen equally spaced, with a distance of 1
pixel between samples, which gives approximately 2000 sampling points per silhouette.

Exact Silhouettes + Random Noise

In this experiment we have added noise to the exact silhouettes in order to statistically
measure the precision of the epipolar tangency criterion and the discrete silhouette co-
herence criterion. The noise has been simply added along the normal of the contours.
The amplitude of the noise is computed in the same way as in [Wong et al., 2003],
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rotation axis translation focal
Teapot (degrees) (degrees) (pixels)

θa φa αt f
initial 106.0000 110.0000 1.4 6000
real 86.6265 90.5757 0.0 9000

Cet
recovered 86.6067 90.5617 0.0018 9060
error 0.0197 0.0140 0.0018 60

Csc
recovered 86.6040 90.5776 0.0001 9013
error 0.0224 0.0019 0.0001 13

1 2 3 4 5 6 7 8 9 10 11
−4

−3

−2

−1

0

1

2

3

Camera number

D
eg

re
es

Camera angle step error

initial angle steps
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silhouette coherence criterion

Table 1.3: Motion and focal estimation with regularized silhouettes. Mean camera step
error of 0.24 degrees with the epipolar tangency criterion and 0.06 degrees with the
silhouette coherence criterion, δ = 0.25 pixels.

i.e., as a uniform noise smoothed by a Gaussian filter, which avoids unrealistic jagged-
ness along the silhouette contour. The noise variance is computed after the Gaussian
filtering. For each noise variance, we have computed 200 samples in order to obtain
reliable results. We have estimated both the motion and the focal length. Due to the
non-linear energy shapes, we have supposed the camera angle steps known to avoid
too many outliers due to local minima. The estimated motion is therefore composed
of the rotation axis and the translation direction. The criterion used to measure the
error between the recovered rotation axis arecovered and the real axis a is the angle
between both axes: ∆a = acos(arecovered · a).

We show a total of 4 figures, Fig. 1.19 for the rotation axis estimation, figures 1.20
and 1.21 for the translation angle recovery results, and Fig. 1.22 for the focal length
estimation results. We have tested the epipolar tangency criterion with 4 different sets
of peer silhouettes N in Eqn. 1.31: 1 silhouette N1(i) = {min(i + 1, n)}, 3 silhouettes
N3(i) = {i+1, · · · , min(i+3, n)}, 6 silhouettes N6(i) = {i+1, · · · , min(i+6, n)} and
all the silhouettes Nall(i) = {i + 1, · · · , n}. Note that, although the total number of
silhouettes is 12, N6 and Nall are not the same: silhouette 1 and silhouette 12 will never
be compared using N6 but they will using Nall. Concerning the silhouette coherence
criterion, we have tested two different values of δ (see Section 1.6.2): δ = 0.5 pixels
and δ = 1 pixels.

According to the estimation results of the camera motion (rotation axis and trans-
lation direction) shown in figures 1.19 and 1.20, the silhouette coherence performs
better than any of the epipolar tangency criteria for large noise variances, and for
both δ distances. This is justified by the fact that the silhouette coherence criterion
uses the entire contours for the computation while the epipolar tangency criterion is
actually using only the epipolar tangent points. However, the behavior of the silhou-
ette coherence changes with low noise, where the epipolar tangency criterion performs
better and, what is even surprising, the silhouette coherence curves are not monotone
with the noise standard deviation: e.g., for δ = 1, we obtain better accuracy with a
noise of 0.3 than with a noise of 0.1. This unexpected behavior is caused by the rapid
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Figure 1.19: Rotation axis recovery precision as a function of the noise standard deviation.
Left: mean error. Right: standard deviation.
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Figure 1.20: Translation direction recovery precision as a function of the noise standard
deviation. Left: mean error. Right: standard deviation.

saturation of the silhouette coherence criterion. For low noise, the silhouette coherence
is very easily maximized if δ is not small enough. As a result, the silhouette coherence
criterion shows a constant platform around the optimum whose size depends on the
value of δ and the noise of the silhouettes.

If we compare the results for the translation estimation, i.e., the αt parameter, we
can appreciate a strong dependence of the epipolar tangency criterion on the number
of silhouettes used (see figure 1.20). As we will discuss in the next Section 1.8.4, the
epipolar tangency criterion needs a large baseline to estimate αt with accuracy. This
is justified by the fact that, when the baseline is small, the epipolar tangencies change
very little with large variations of αt. Even when using all the possible silhouette
pairs for the epipolar tangency criterion (N = Nall), the silhouette coherence criterion
performs far better than the epipolar tangency one (see Fig. 1.21).

Finally, we show the focal length estimation results in Fig. 1.22. Both the epipolar
tangency criterion (with Nall) and the silhouette coherence criterion perform very well,
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Figure 1.21: Detail of the translation direction recovery precision as a function of the noise
standard deviation. Left: mean error. Right: standard deviation.
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Figure 1.22: Focal length recovery precision as a function of the noise standard deviation.
Left: mean error. Right: standard deviation.

with less than 3% of error for a noise standard deviation of 1 pixel. An interesting
remark about the silhouette coherence criterion is that, with δ = 1 pixel, the focal
length error is almost the same with a noise standard deviation of 0.1 and 1.0 pixels.
As explained before, it shows the saturation effect of the silhouette coherence criterion
when the values of δ are large compared to the noise of the silhouettes.
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1.8 Experiments with One Rotation Sequence

Figure 1.23: Some of the original images of the Pitcher sequence (of a total of 36 im-
ages). From top to bottom: calibration target images, color images, binarized silhouettes and
extracted smooth polygon silhouettes.

1.8.3 Real Silhouettes

In this subsection we present a real case of a Pitcher sequence. We do not present any
of the multiple objects that will be discussed in Chapter 3 due to the uncertainty on
the accuracy of their classic calibration step. Obtaining very good accuracy requires
perfectly controlling the acquisition environment and most of the reconstructed objects
have been acquired by professional photographers that are not necessarily computer
vision experts. This is important since the precision we obtain for some parameters
using silhouettes (in particular, for the translation direction αt) has the same order of
magnitude as with the classic calibration method.

We dispose of a sequence of 36 color images of 2008x3040 pixels that have been
binarized by an automatic color-segmentation algorithm (see Fig. 1.23). We also
dispose of a sequence of a calibration pattern in order to accurately recover the intrinsic
parameters and the circular motion using [Lavest et al., 1998]. In particular, the 4 first
images of the calibration pattern (see Fig. Fig. 1.23 top) belong to a longer sequence
under pure circular motion that allows recovering the rotation axis and the translation
direction. The remaining images provide redundancy and accuracy to the estimation
by exploring the entire 3D volume. In order to extract smooth contours from the
silhouettes, we have used a GVF 2D snake [Xu and Prince, 1998], where the GVF has
been computed from the gradient contours of the color images. The sampling distance
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rotation axis translation focal
Pitcher (degrees) (degrees) (pixels)

θa φa αt f
initial 90.000 90.000 0.0 2000

calibrated 99.671 90.343 0.4266 6606

Cet
recovered 99.639 90.319 0.4290 6589
error 0.032 0.024 0.0024 17

Csc
recovered 99.654 90.335 0.4286 6580
error 0.017 0.008 0.0020 26

Table 1.4: Rotation axis, translation direction and focal length recovery for the Pitcher
sequence.

used for the silhouette coherence criterion is δ = 0.25 pixels.

We have performed two different tests with the silhouette coherence and the epipo-
lar tangency criteria. The first one consists of estimating only the rotation axis, the
translation and the focal length with all the silhouettes available. In the second test
we have taken 9 views regularly spaced of 20 degrees and we have computed the full
circular motion, i.e., rotation axis, translation direction and camera angles by fixing
the focal length to its calibrated value.

We show in Table 1.4 the results of the estimation of the rotation axis, the trans-
lation direction and the focal length. The results are good for both criteria. The
silhouette coherence criterion performs better than the epipolar tangency criterion
when computing the rotation axis and the translation direction. This is especially
true for the rotation axis, with an overall axis error ∆a of 0.018 degrees for the sil-
houette coherence and 0.040 degrees for the epipolar tangency. The epipolar tangency
criterion is slightly better when computing the focal length.

If we compute the complete circular motion using 9 views, the results using the
silhouette coherence are very satisfactory as the mean angle step error is only of 0.13
degrees, which is a good result compared with the mean angle step error of 0.26
degrees obtained with the epipolar tangency criterion (see Table 1.5). Although these
results are good, they confirm an important aspect about the expected accuracy of the
camera angles recovery, for which silhouette-based criteria are not very accurate. This
is mainly due to two reasons: the sensivity to silhouette noise, and the weak angle
information contained in the silhouettes. This second point is important point and
depends on how much the silhouette changes when turning the object. As we can see
in Fig. 1.23 bottom, the silhouettes of the Pitcher sequence are pretty similar when
the object turns. It is easy to deduce that, if the silhouette does not change when the
angle varies, we will not be able to recover the angles. As a consequence, if we want to
have better accuracy when estimating the camera angles, the image sequence should
ensure that silhouettes change a maximum from one silhouette to another. In the case
of the Pitcher sequence, this could be done by separating the object from the rotation
axis, which would produce a silhouette that “walks” all around the image when the
object turns.
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1.8 Experiments with One Rotation Sequence

rotation axis translation
Pitcher (degrees) (degrees)

θa φa αt

initial 90.000 90.0000 0.0
calibrated 99.671 90.3431 0.4266

Cet
recovered 99.596 90.2799 0.4307
error 0.075 0.0632 0.0041

Csc
recovered 99.714 90.3434 0.4259
error 0.043 0.0003 0.0007
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Table 1.5: Complete circular motion estimation with known focal for the Pitcher sequence.
Mean camera step error of 0.26 degrees with the epipolar tangency criterion and 0.13 degrees
with the silhouette coherence criterion.

1.8.4 Energy Shape

One of the critical points of the optimization procedure is the existence of local min-
ima. Both the epipolar tangency method and the silhouette coherence method suffer
from non-convex energy maps. In order to visualize the energy shape of the epipolar
tangency and the silhouette coherence criteria, we have computed some 2D slices of
the energy shape for the camera motion problem with two cases of noisy silhouettes
(the synthetic Teapot with a noise standard deviation of 1 pixel, and real Pitcher
sequence). In Fig. 1.24 we show a rendered view of the energy corresponding to the
rotation axis estimation (θa, φa) for the silhouette coherence criterion with δ = 0.5
pixels (left) and the epipolar tangency criterion with Nall (right). We can clearly dis-
tinguish two main optima that correspond to the correct direction but with opposite
signs. The highest peak roughly corresponds to a = (0, 1, 0)t while the second peak
corresponds to a = (0,−1, 0)t. A first conclusion about the behavior of both criteria
is that they are in fact quite similar at a global scale. However, once it is near the
optimum, the energy shape of the epipolar tangency around the optimum is perfectly
convex, which is not completely true for the silhouette coherence criterion.

In 1.25 we compare the energy of the epipolar tangency criterion for the rotation
axis estimation with different sets of peer silhouettes N . The energy shape does not
change very much when using different N . In particular, the energies computed with
N3 and Nall look very similar, which indicates similar convergence properties of the
optimization algorithm for both criteria. We present in Fig. 1.26 a detail around
the maximum peak of the Teapot energy shape, for different sets N , and for the
couple of parameters (αt, θa), i.e, the translation direction and one of the rotation
axis parameters. The shape of the energy function confirms and explains the results
of the translation estimation that already appear in Fig. 1.20: the epipolar tangency
criterion is extremely non-sensitive to variations of αt compared to the silhouette
coherence criterion shown in Fig. 1.27. However, this result is expected if we consider
that, when varying αt, the epipoles move along a line that is almost perpendicular to
the projection of the rotation axis. This implies that the epipolar tangency criterion
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��
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Figure 1.24: Energy shape of the silhouette coherence criterion with δ = 0.5 pixels (left)
and the epipolar tangency criterion with Nall (right) for the rotation axis estimation of
the Teapot (top) and the Pitcher (bottom). The energy domain corresponds to the entire
Gauss sphere, i.e., θa ∈ [0, π], φa ∈ [0, 2π].

will not be sensitive to αt if the epipoles are very far away, since the epipolar tangencies
will change very little. The criterion will be more sensitive if the epipoles are near
the silhouettes, which corresponds to large camera angles between pairs of cameras.
This explains why the epipolar tangency criterion is more sensitive when using all the
possible silhouette pairs Nall (Fig. 1.26 right).

The discrete silhouette coherence behaves in a different way depending on the
scale. At a global scale, the criterion is similar to the epipolar tangency criterion, as
shown in Fig. 1.24. However, if we look carefully, the energy surface is not completely
smooth, there is a noise due to the discrete nature of the current silhouette coherence
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Figure 1.25: Energy shape of the epipolar tangency criterion for the rotation axis es-
timation of the Teapot (top) and the Pitcher (bottom). The energy domain corresponds to
the entire Gauss sphere, i.e., θa ∈ [0, π], φa ∈ [0, 2π]. From left to right, energy shapes for
3 different sets of peer silhouettes N1, N3, and Nall respectively (see Eqn. 1.31).

implementation: the silhouette coherence is computed as a ratio between the number
of sample points with non empty intervals among a finite set of sample points. In fact,
the noise of the silhouette coherence criterion greatly depends on the number of sample
points per silhouette that we use (see Fig. 1.27). At this point, the discrete nature of
the approach limits its accuracy. This discretization problem has been already quoted
in the example using synthetic exact data in Section 1.8.1, where the epipolar tangency
criterion performs really well while the silhouette coherence criterion remains limited.

In Fig. 1.28 we show a detail of the energy function of Fig. 1.24 top for the
couple of parameters (θa, φa). We observe how the silhouette coherence is smoothed
when adding more samples (see Fig. 1.28 left and middle). This suggests that the
number of samples should be adapted to the desired accuracy, i.e., we should use a
small number of samples to accelerate computations at a global scale, and then, once
we are near the optimum, we should increase the number of samples to improve the
accuracy. This technique is implicitly used in the multi-resolution approach proposed
in section 1.6.2. Also, the optimization method should be adapted to the number of
samples: a derivative-based method will hardly optimize an energy as the one shown in
Fig. 1.28 left, while a direct search method such as Powell’s one will be more efficient.
Concerning the epipolar tangency criterion, it shows a very smooth and convex energy
function since we are near the optimum (see Fig. 1.28 right).
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Figure 1.26: Detail around the maximum peak of the energy shape of the epipolar tan-
gency criterion for the couple of parameters (αt, θa), Teapot sequence. From left to right,
energy shapes for 4 different sets of peer silhouettes N1, N3, N6, and Nall respectively. Top:
rendered views. Bottom: corresponding isoconstours of the energy functions.

Figure 1.27: Detail of the energy shape of the silhouette coherence criterion for the
couple of parameters (αt, θa). Teapot sequence with δ = 0.5 pixels. From left to right, energy
shapes for 350, 1400, 5600 and 11200 samples per silhouette respectively. Top: rendered
views. Bottom: corresponding isocontours of the energy functions.
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Figure 1.28: Detail of the energy shapes and corresponding isocontours for the couple of
parameters (θa, φa). Left and middle: silhouette coherence criterion computed with 350
and 11200 samples per silhouette respectively. Right: epipolar tangency criterion.

Another important factor that contributes to the shape of the silhouette coherence
criterion is the quality of the silhouette extraction. This can be easily illustrated with
the synthetic Teapot sequence by drawing the depth intervals computed along the first
silhouette S1, i.e., the depth intervals used to compute Csc(S1, S

V
1 ) in subsection 1.6.1.

We show in Fig. 1.29 the depth intervals corresponding to the exact, pixelized and
regularized silhouettes. We can appreciate how noisy the depth intervals are for the
pixelized silhouettes (see Fig. 1.29 middle) in comparison with the exact ones (see
Fig. 1.29 left). In figure 1.29 right we observe that much of the noise is filtered when
the regularized silhouettes are used.

0 0.2 0.4 0.6 0.8 1
1760

1770

1780

1790

1800

1810

1820

1830

normalized contour length

de
pt

h 
(m

m
)

Coherence intervals

min depth
max depth

0 0.2 0.4 0.6 0.8 1
1760

1770

1780

1790

1800

1810

1820

1830

normalized contour length

de
pt

h 
(m

m
)

Coherence intervals

min depth
max depth

0 0.2 0.4 0.6 0.8 1
1760

1770

1780

1790

1800

1810

1820

1830

normalized contour length

de
pt

h 
(m

m
)

Coherence intervals

min depth
max depth

Figure 1.29: Depth intervals used in the computation of the silhouette coherence with δ = 0.5
pixels. From left to right, exact silhouettes, pixelized silhouettes and regularized silhouettes.
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Figure 1.30: Two different sequences of the Teapot and their corresponding visual hulls.
Top: first sequence and the corresponding silhouettes. Middle: second sequence and the
corresponding silhouettes. Bottom: from left to right, visual hull of the first sequence, visual
hull of the second sequence and visual hull defined by both sequences (intersection of the two
first visual hulls).

1.9 Registration of two Calibrated Sequences

We consider the silhouettes of two different rotation sequences S1 and S2 of the same
object, each sequence being calibrated independently. We would like to register both
sequences in order to reconstruct the object using all the views available. The two
sequences are related by: a rotation (Euler angles (α, β, γ)), a translation (tx, ty, tz),
and a scaling factor s. This makes 7 parameters to optimize v = (α, β, γ, tx, ty, tz, s).
The mutual silhouette coherence function can be defined as:

Csc(S1,S2) =
1

2
(

1

N1

N1∑
i=1

C(S1
i ,S2) +

1

N2

N2∑
j=1

C(S2
j ,S1)). (1.35)

We present here the results for two different objects: the synthetic Teapot, which
we use to evaluate the algorithm (Fig. 1.30), and the Pitcher object (Fig. 1.34).
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1.9 Registration of two Calibrated Sequences

1.9.1 Synthetic Exact Silhouettes

The Teapot object allows us to measure the theoretical precision of the algorithm.
Although we could have used sequences of 36 silhouettes, we have preferred to use
only sequences of 6 silhouettes with an angle step of 60 degrees (see Fig. 1.30 top
and middle), which gives the corresponding visual hulls shown in Fig. 1.30 bottom,
where the rightmost visual hull is defined by the two silhouette sequences, i.e., it is
the intersection of the two first visual hulls. left and middle. It is worth noting that,
although the original silhouettes have holes (and so do the visual hulls), the silhouettes
shown in Fig. 1.30 have only the external contour of the silhouette. Using a small
number of silhouettes allows us to show how different the two registered visual hulls
can be and how, even if the number of silhouettes is not very high, we can get already
good registration accuracy.

As already described in subsection 1.8.2, we have added random noise to the exact
silhouettes in order to statistically measure the precision of the discrete silhouette
coherence criterion. For each noise variance, we have computed 200 samples in order
to obtain reliable results.

Concerning the registration results, we have performed two tests: recovering the
Euler angles and the translation (6 parameters), and recovering also the scale (7 pa-
rameters).

The results for the Euler angles and translation estimation are shown in Fig. 1.31.
For small noise variances, the curves show the same behaviour as when estimating the
circular motion, i.e., they are not monotone. As already pointed out in subsection
1.8.2, this is explained by the saturation of the silhouette coherence criterion for a δ
value that is large compared with the noise standard deviation. This is confirmed by
the shape of the energy near the optimum in Fig. 1.32. When the noise standard
deviation is small (0.1 pixels), the silhouette coherence saturates near the optimum
(see Fig. 1.32.b). This saturation effect makes that the standard deviation of the
recovered parameters is directly related to the size of the saturated plateau in Fig.
1.32.b.

In figure 1.33 we show the registration results when we recover simultaneously the
Euler angles, the translation and the scale. The results are slightly worse than when
estimating only the Euler angles and the translation. However, the accuracy is still
very good. The results of the Euler angles estimation are even improved while the
translation is a little bit more penalized by the inclusion of the scale in the set of
parameters to optimize.
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Figure 1.31: Registration of the Teapot sequences as a function of the noise standard devi-
ation, δ = 0.5 pixels. Top: Euler angles error. Bottom: translation error (percentage of the
bounding box diagonal, equal to 161 mm). Left: mean error. Right: standard deviation.
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Figure 1.32: Energy shapes of the Teapot sequences for parameters α and β with noisy exact
silhouettes (standard deviation of 0.1 pixels), δ = 0.5 pixels. a) Left: silhouette coherence
energy shape, right: corresponding isocontours. b) Detail around the optimum.
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Figure 1.33: Registration of the Teapot sequences as a function of the noise standard devi-
ation, δ = 0.5 pixels. Top: Euler angles error. Middle: translation error (percentage of the
bounding box diagonal, equal to 161 mm). Bottom: scale error. Left: mean error. Right:
standard deviation.
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Figure 1.34: Some of the original images of the second Pitcher sequence (of a total of 36
images). From top to bottom: calibration target images, color images, binarized silhouettes
and extracted smooth polygon silhouettes. The first Pitcher sequence is shown in Fig. 1.23.

1.9.2 Real Silhouettes

We have used the Pitcher sequence shown in Fig. 1.23 and a second sequence of the
Pitcher object (see Fig. 1.34). The second sequence is composed of 36 images of
3040x2008 pixels and the silhouettes have been binarized with the same automatic
color-segmentation technique as for the first sequence. The object has not been moved
between both acquisitions, only the camera. In fact, to recover the relative motion
between both sequences, two pictures of a fixed calibration pattern (one with the
first camera position and another with the new camera position) have been used in
the calibration algorithm. These two pictures correspond to the rightmost calibration
image in Fig. 1.23 top, and the rightmost calibration image in Fig. 1.34 top. Note that
the relative position of the Pitcher to the calibration pattern is the same in both images,
so we can recover the transformation between the sequences and compare it with
the one obtained by maximizing the silhouette coherence criterion. We observe the
difference between the silhouette coherences obtained for the two sequences: 98.19%
and 90.99% respectively (see Fig. 1.35.a and Fig. 1.35.b. The lower score of the
second sequence is due to the worse quality of its extracted silhouettes. Despite these
segmentation errors, the accuracy obtained after optimization is rather good (see table
1.6). As we can appreciate in figure 1.35.b, the huge disparity of the reconstructed
visual hulls makes the use of other registration methods such as the ICP [Besl and
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Pitcher rotation (degrees) translation (mm) scale
α β γ tx ty tz s

initial 103.000 6.000 8.000 -10.000 460.000 650.000 1.20000
calibrated 63.776 -4.605 -2.497 -36.680 478.329 656.895 1.00000
recovered 63.813 -4.560 -2.487 -36.492 478.125 656.915 1.00014
error 0.037 0.045 0.009 0.188 0.204 0.020 0.00014

Table 1.6: Registration results for the Pitcher sequence.

a b c d

Figure 1.35: Pitcher of 30 cm bounding size. (a) First reconstructed visual hull; coherence
of 98.19%. (b) Unregistered second reconstructed visual hull; coherence of 90.99%; mutual
coherence of 54.46%. (c) Reconstructed visual hulls after registration; mutual coherence of
95.66%. (d) Resulting reconstructed visual hull after registration.

McKay, 1992] very difficult.
Once we have registered the two sequences, we can compute a more accurate vi-

sual hull using the silhouettes of both sequences, which improves the quality of the
reconstructed models see (Fig. 1.35.d).

1.10 Conclusions

A new approach to silhouette-based camera motion and focal length estimation under
circular motion has been developed. It is based on the definition of the silhouette co-
herence concept, defined as a similarity between a set of silhouettes and the silhouettes
of their visual hull. This approach has been successfully tested for different estimation
problems such as motion and focal recovery from a single rotation sequence or inde-
pendent sequence registration. The high precision of the estimation results are due
to the use of the full silhouette contour in the computation, whereas classic methods
based on epipolar tangencies use a few tangent points at most. We have validated the
method using real sequences, which enables us to reconstruct 3D objects using the 3D
object modeling technique developed in the next chapter. It allows us to completely
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reconstruct a 3D object only from a sequence of images under circular motion, without
the need of a calibration target.

Our main contributions are:

• the definition and implementation of the concept of silhouette coherence,

• the detailed comparison between the epipolar tangency criterion and the pro-
posed silhouette coherence criterion,

• the study of the accuracy of the epipolar tangency criterion as a function of the
number of pairs of silhouettes we use in the criterion.

Concerning the epipolar tangency criterion, we show that a fast implementation
based on a polygonal representation of the silhouettes can provide very good results.
Also, although in the original paper of [Wong and Cipolla, 2001] the criterion is only
used to estimate camera motion, we show that it is in fact also possible to estimate
the focal length, as demonstrated by the numerous experiments with synthetic and
real silhouettes. Finally, as a difference with the original formulation of [Wong and
Cipolla, 2001], we show that it is worth using all the available pairs of silhouettes to
compute the criterion rather than using the closest pairs, but at the price of a more
expensive computation.

As a perspective, the proposed silhouette coherence criterion can still benefit
from several improvements. An important issue is to get rid of the discrete nature of
the current implementation of the silhouette coherence criterion. The main idea would
be to compute the exact visual hull silhouettes as closed polygons. It would allow us to
define a continuous silhouette coherence by just comparing the two polygons defining
the original silhouette and the visual hull silhouette. To compute the exact silhouette
of the visual hull, we can proceed as in [Franco and Boyer, 2003], using the existing
technique of ray casting. The greedy algorithm would be:

• compute the 3D visual hull patches generated by intersecting each silhouette
with the other n − 1 silhouettes,

• project the edges of the 3D patches into the desired view,

• compute the minimal polygon that contains all the 2D projected edges.

Finally, based on the accuracy results for the different variables in the optimization
process, we should be able to improve the optimization algorithm by using a derivative-
based optimization algorithm with a robust estimation of the derivatives adapted to
this problem. Also, we will further investigate the robustness of this technique for
more complicated scenarios than circular motion.
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Chapter 2

Silhouette and Stereo Fusion for 3D
Object Modeling

In this chapter we present the proposed 3D object modeling technique. Since the method
is based on a deformable model, each section of the chapter addresses one basic block of
the deformable model framework applied to our problem. In Section 2.1 we describe the
related work and how our proposed technique compares to it. In Section 2.2 we give
a fast overview of the basis of deformable models and justify the choice of a classic
deformable model instead of a more recent and popular level-set method. In Section
2.3 we describe how to initialize the deformable model while in Sections 2.4 and 2.5 we
develop the two external forces that will drive the deformable model: a texture-based
force and a silhouette-based force. In Section 2.6 we explain the regularization forces
and how to formulate them in the case of a triangle mesh. The complete iteration
process is summarized in Section 2.7. The last step consists of computing a texture
map from a given set of images and a 3D model, which is described in Section 2.8.

2.1 Related Work

Acquiring 3D models is not an easy task and abundant literature exists on this subject.
There are three major approaches to the problem of 3D real model representation: pure
image-based rendering techniques, hybrid image-based techniques, and 3D modeling
techniques.

Pure image-based rendering techniques as [Chen and Williams, 1993] and [McMillan
and Bishop, 1995] try to generate synthetic views from a given set of original images.
They do not estimate the real 3D structure behind the images, they only interpolate
the given set of images to generate a synthetic view.

Hybrid methods make a rough estimation of the 3D geometry and mix it with a
traditional image-based rendering algorithm in order to obtain more accurate results.
The authors of [Debevec et al., 1996] propose the FAÇADE algorithm that allows
modeling architectural scenes from a sparse set of still photographs. They reconstruct
a rough estimation of the geometry and use it to produce renderings of the scene with a
view-dependent texture mapping technique. In [Matusik et al., 2000], an image-based
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Figure 2.1: Overview of existing 3D real model representation techniques.

rendering technique is proposed to generate additional views starting from a set of
images based on the concept of visual hull without an explicit 3D reconstruction. This
method has been extended by [Slabaugh et al., 2002] and [Li et al., 2002] by improving
the visual hull with stereo information. For both pure and hybrid IBR methods, the
goal is to generate coherent views of the real scene, rather than obtain metric measures
of it.

In opposition to these techniques, the third class of algorithms tries to recover
the full 3D structure. Among the 3D modeling techniques, two main groups are to
be distinguished: active methods and passive ones. Active methods use a controlled
source of light such as a laser or a coded light in order to recover the 3D information
[Schmitt et al., 1986,Curless and Levoy, 1996,Levoy et al., 2000]. Passive methods use
only the information contained in the images of the scene [Slabaugh et al., 2001]. They
can be classified according to the type of information they use. A first class consists
of the shape from silhouette methods. The first time that silhouettes were used for
3D modeling is the Ph.D. thesis of [Baumgart, 1974], where he proposed to construct
the surface defined by a set of silhouettes using polyhedra. Starting from that, there
has been a wide variety of methods to construct 3D models from silhouettes, ranging
from octrees [Potmesil, 1987], differential analysis [Vaillant and Faugeras, 1992], 3d
grid [Niem and Wingbermuhle, 1997,Matsumoto et al., 1997] or splines [Sullivan and
Ponce, 1998]. However, the theoretical properties of the surface defined by a set of
silhouettes were first studied by [Laurentini, 1994] with the definition of the visual hull
concept. It is shown that the visual hull is an upper bound of the real object and that
it offers a better approximation than the convex hull, i.e., the visual hull is contained
between the convex hull and the real surface. Methods based on silhouettes are fast and
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robust but, because of the type of information used, they are limited to simple shaped
objects. We can find commercial products based on this technique. Another approach
includes the shape from shading methods [Horn and Brooks, 1989]. They are based on
the diffusing properties of Lambertian surfaces. They mainly work for 2.5D surfaces
and need very constraining hypotheses such as the use of orthographic cameras or
punctual light sources. In fact, the strength of the constraints required for this kind of
methods to work makes them useless under realistic conditions. Recent improvements
on the algorithms, in particular, the case of projective cameras as in [Prados and
Faugeras, 2003] or [Courteille et al., 2004], open some new possibilities for practical
applications. A third class of methods uses the color information of the scene. The
color information can be used in different ways, depending on the type of scene we try
to reconstruct. A first way is to measure color consistency to carve a voxel volume
[Seitz and Dyer, 1997], [Seitz and Kutulakos, 1998] or [Matsumoto et al., 1999]. But
they only provide an output model composed of a set of voxels, which makes it difficult
to obtain a good 3D mesh representation. In order to solve this problem, the authors
of [Zhang and Seitz, 2001] and [Yezzi et al., 2002] propose using the color consistency
measure to guide a deformable model. An additional problem of color consistency
algorithms is that they compare absolute color values, which makes them sensitive
to light condition variations. A different way of exploiting color is to compare local
variations of the texture, as done in cross-correlation methods [Faugeras and Keriven,
1998,Sarti and Tubaro, 2002]. As a specialization of the color-based group, there are
specific methods that try to use, at the same time, another type of information such as
silhouettes [Liedtke et al., 1991,Fua and Leclerc, 1996,Matsumoto et al., 1999,Cross
and Zisserman, 2000, Isidoro and Sclaroff, 2003], shading [Fua and Leclerc, 1995, Jin
et al., 2000] or radiance [Yezzi and Soatto, 2001, Soatto et al., 2003]. Although very
good results are obtained, the quality is still limited, the two main problems being
the extraction of the 3D data from the images and the way the fusion of different
data is done. The authors of [Matsumoto et al., 1999] use a 3D volume that they
first carve with silhouettes and then use a photo-consistency measure to carve away
additional voxels. The same procedure is used by [Cross and Zisserman, 2000], but the
photo-consistency measure used is in fact a cross-correlation measure, which increases
the robustness. These two last algorithms use a volume grid for the fusion of data.
In [Liedtke et al., 1991], a 3D model is initialized with the visual hull and then each
vertex is displaced to maximize a photo-consistency measure. The main problems of
this method are the lack of robustness of the photo-consistency measure employed and
the poor quality of the deformed mesh. In [Isidoro and Sclaroff, 2003] the 3D model
is also initialized with the visual hull. Then the model is iteratively deformed, where
the force at each vertex is computed using the shortest displacement that maximizes
a photo-consistency criterion along several epipolar rays. Concerning the fusion of
silhouettes and stereo, the authors [Ilic and Fua, 2003a, Ilic and Fua, 2003b,Plänkers
and Fua, 2003] have recently proposed an interesting fusion framework using implicit
surfaces. The authors [Fua and Leclerc, 1995] use a deformable model to combine
stereo and shading. The fusion is performed by weighting two complementary terms:
a stereo-based force and a shading-based force. In [Soatto et al., 2003] the approach
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is extended to deal with the more general concept of radiance, which gives quite good
results.

According to the presented taxonomy, the algorithm of 3D reconstruction that we
present in this chapter can be classified as a passive multimodal method that uses
silhouettes and stereo information. We perform the fusion of both silhouettes and
texture information by a deformable model evolution. The main difference with the
methods mentioned above is the way the fusion is accomplished, which enables us to
obtain very high quality reconstructions. A similar approach to our work has been
recently proposed by [Nobuhara and Matsuyama, 2003]. A deformable model is also
used to fuse texture and silhouette information. However, the objectives of their work
are not the same as ours. They are interested in dynamic 3D shape reconstruction of
moving persons while our specific aim is high quality 3D and color reconstructions of
museological objects. In their case they need fast reconstructions, which implies low
resolution. In our case the reconstruction can be made off-line, so we can afford high
quality models.

2.2 Algorithm Overview

The goal of the system is to be able to reconstruct a 3D object from a sequence of
geometrically calibrated images. To do so, we dispose of several types of information
contained in the images. Among all the information available, shading, silhouettes
and features of the object are the most useful for shape retrieval. Shading information
needs a calibration of the light sources, which implies an even more controlled environ-
ment for the acquisition. The use of the silhouettes requires a good extraction of the
object from the background, which is not always easy to accomplish. Finally, of all the
features available from an object, such as texture, points, contours, or more compli-
cated forms, we are mainly interested in texture, whenever it exists. Since exploiting
shading imposes heavy constraints in the acquisition process, the information we will
use consists of silhouettes and texture. The next step is to decide how to mix these
two types of information to work together. As we will see, this is not an easy task
because those types of information are very different, almost ”orthogonal”: when we
consider the normal to the surface, silhouettes give a maximum of information about
the surface points whose normal is orthogonal to the viewing direction, whereas image
texture is more useful in regions where the surface normal is parallel to the viewing
direction.

2.2.1 Classical Deformable Models vs. Geometric Deformable
Models

Deformable models offer a well-known framework to optimize a surface under several
kinds of information. Two different related techniques can be used depending on the
way the problem is posed: a classical deformable approach, such as snakes [Kass et al.,
1988] or balloons [Cohen, 1991], or a geometric deformable model approach using level-
sets [Caselles et al., 1993], [Malladi et al., 1995]. The main advantage of the classical
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deformable approach is its simplicity of implementation and parameter tuning. Its
main drawback is the constant topology constraint, i.e., the fact that the genus of the
surface cannot change during the evolution. Level-set based algorithms have the advan-
tage of an intrinsic capability to overcome this problem but its main disadvantages are
the computation time and the difficulty to control the topology. Computation time
can be addressed using a narrow band implementation [Adalsteinsson and Sethian,
1995]. Controlling the topology is a more difficult problem but, the authors [Han
et al., 2003] have recently proposed an interesting way of avoiding topology changes
in level set methods. Despite these improvements, level-set methods remain complex
and expensive when dealing with high resolution deformable models (volume grids of
9 to 11 levels, i.e., volumes of 512x512x512 to 2048x2048x2048). Since this is our
main objective, we have chosen to use the classical 3D deformable model [Terzopoulos
et al., 1987, Cohen et al., 1992] as framework for the fusion of silhouette and stereo
data. This implies that the topology has to be completely recovered before the de-
formable model evolution occurs as discussed in Section 4. Since the proposed way to
recover the right topology is the visual hull concept, the topology recovery will depend
on the intrinsic limitations of the visual hull. This implies that there exist objects
for which we are unable to recover the correct topology (no silhouettes seeing a hole)
that could be potentially reconstructed using a level-set method (the correct topology
being recovered with the stereo information). However, we observe that, in practice,
if we dispose of enough views, the visual hull provides the correct topology for most
of the common objects; therefore, this is not a severe handicap.

2.2.2 The Classical Deformable Model Approach

The deformable model framework allows us to formulate our problem as a global
energy minimization problem. The total energy term E is composed of two different
types of energy: an internal energy Eint, and an external energy Eext. The internal
energy measures how regular the surface is while the external energy depends only on
the external data related to the particular problem we try to solve. In general, this
energy will be non-convex with possible local minima. The internal energy helps to
”convexify” the total energy term and to obtain a final well-shaped surface. Since, as
discussed previously, we want to exploit silhouettes and texture, the external energy for
this particular problem will be composed of two terms, one related to the silhouettes
Esil and another that takes texture into account Etex. The minimization problem is
posed as finding the surface S of R

3 that minimizes the energy E(S) defined as follows:

E(S) = Eext(S) + Eint(S) = Etex(S) + Esil(S) + Eint(S), (2.1)

Minimizing equation 2.1 means finding Sopt so that:

∇E(Sopt)=∇E tex(Sopt)+∇Esil(Sopt)+∇E int(Sopt)= 0,
= Ftex(Sopt) + Fsil(Sopt) + Fint(Sopt) = 0,

(2.2)

where ∇ is the gradient operator, and Ftex, Fsil and Fint represent the forces that
drive the snake. Equation 2.2 establishes the equilibrium condition for an optimal
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Figure 2.2: Different object initializations. From left to right: bounding box+convex hull,
convex hull+visual hull, visual hull + real object.

solution, where the three forces cancel each other out. A solution to equation 2.2 can
be found by introducing a time variable t for the surface S and solving the following
differential equation:

∂S

∂t
= Ftex(S) + Fsil(S) + Fint(S). (2.3)

The discrete version becomes:

Sk+1 = Sk + ∆t(Ftex(S
k) + Fsil(S

k) + Fint(S
k)). (2.4)

Once we have sketched the energies that will drive the process, we need to make
a choice for the representation of the surface S. This representation defines the way
the deformation of the snake is done at each iteration. Among all the possible surface
representations, the triangular mesh and the simplex mesh [Delingette, 1994] are very
common due to their simple implementation and well known properties. Triangular
meshes dispose of powerful operators to add and delete edges, points and triangles.
These operators are very useful to control the deformable surface evolution and keep
the triangular surface within the desired limits of edge size and triangle shape. Simplex
meshes allow computing surface properties more easily since the connectivity of any
point of the mesh is always the same (the simplex mesh is the dual graph of the triangle
mesh: in a triangle mesh, a face has always 3 neighbor faces while in a simplex mesh,
a point has always 3 neighbor points). Simplex meshes are useful for computing the
internal force Fint, however, they are particularly painful to do operations like adding
or deleting points and edges. This is the reason why we prefer to use a traditional
triangle mesh representation and use an internal force whose computation is a little
more complicated, but not in excess as we will show in Section 2.6.

To completely define the deformation framework, we need an initial value of S, i.e.,
an initial surface S0 that will evolve under the different energies until convergence.

We describe the snake initialization in Section 2.3, the force driven by the texture
of the object in Section 2.4 and the force driven by the silhouettes in Section 2.5.
The internal force is detailed in Section 2.6, the mesh evolution in Section 2.7 and the
texture mapping procedure in Section 2.8.
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Figure 2.3: Example of objects whose topology cannot be correctly captured by the visual
hull concept.

2.3 Snake Initialization

The first step in our minimization problem is to find an initial surface close enough
to the object surface in order to guarantee a good convergence of the algorithm. This
step is not trivial since a deformable model can easily get stuck into a local minima
[Berger and Mohr, 1990]. Close has to be considered in a geometrical and topological
sense. The geometric distance between the initial and the object surfaces has to
be reduced in order to limit the number of iterations in the surface mesh evolution
process and thereby the computation time. The topology of the initial surface is also
very important since classical deformable models maintain the topology of the mesh
during its evolution. On the one hand, this imposes a strong constraint that makes the
initialization a very important step since the initial surface must capture the topology
of the object surface. On the other hand, the topology-constant property of a classical
snake provides more robustness to the evolution process.

If we make a list of possible initializations (see Fig. 2.2), we can establish an ordered
list, where the first and simplest initialization is the bounding box of the object. The
next simplest surface is the convex hull of the object. Both the bounding box and
the convex hull are unable to represent surfaces with a genus greater than 0. A more
refined initialization, which lies between the convex hull and the real object surface is
the visual hull [Laurentini, 1994]. The visual hull can be defined as the intersection of
all the possible cones containing the object. In practice, a discrete version is usually
obtained by intersecting the cones generated by back projecting the object silhouettes
of a given set of views (see Section 2.3.1). As a difference with the convex hull, it can
represent surfaces with an arbitrary number of holes. However, this does not imply
that it is able to completely recover the topology of the object and, what is even worse,
the topology of the visual hull depends on the discretization of the views (see Fig. 2.4).

Computing the visual hull from a sequence of images is a very well known problem
of computer vision and computer graphics [Martin and Aggarwal, 1983,Potmesil, 1987,
Niem and Wingbermuhle, 1997, Matusik et al., 2000]. Different approaches exist,
depending on the type of output, way of representation and fidelity to the theoretical
visual hull. In our case, we are interested in methods producing good quality meshes
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Figure 2.4: Example of topological problem arising with a finite number of cameras. The
original torus topology on the left is not correctly recovered with the discrete visual hull on
the right.

(manifold, smooth, triangles with aspect ratio1close to 1), even if the fidelity is not
very high. In addition to a good quality mesh, another primary requirement is to
obtain the right topology. Volume carving methods are a good choice because of the
high quality output meshes that we can obtain through a marching cube [Lorensen and
Cline, 1987] or marching tetrahedron algorithm. The degree of precision is fixed by the
resolution of the volume grid, which can be adapted according to the required output
resolution. But this adaptability can also generate additional problems of topology:
if the resolution of the grid is low compared to the size of the visual hull structures,
the aliasing produced by the sub-sampling may produce topological artifacts that the
theoretic visual hull does not have. To sum up, three different sources of deviation
may arise between the real object topology and the computed visual hull topology:

• Errors due to the nature of the visual hull (see Fig. 2.3). Real objects
may have holes that cannot be seen as a silhouette hole from any point of view.
The visual hull will then fail to represent the correct topology for this kind of
object.

• Errors due to the use of a finite number of views (see Fig. 2.4). They
can be solved by having the adequate points of view that allow recovering the
right topology of the real object.

• Errors due to the implementation algorithm (see Fig. 2.5). They are
caused by the numerical precision or the sub-sampling of the silhouettes. They
can be avoided by increasing the precision of the algorithm or by filtering the
silhouettes.

1The aspect ratio of a triangular element is defined as the ratio of the circumradius of the triangle
to twice its inradius. Hence the aspect ratio of an equilateral triangle is exactly 1.
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Figure 2.5: Bad topology caused by an insufficient resolution of the visual hull construction
algorithm. We show in gray the original silhouette and in black wireframe the reconstructed
visual hull mesh.

2.3.1 Visual Hull Computation

As stated previously, we are mainly interested in computing good quality visual hull
meshes rather than exact visual hull meshes as in [Lazebnik et al., 2001]. In practice,
one of the best ways to obtain good meshes is to first construct a discrete 3D volume
and then mesh it. The main disadvantage of volume-based methods is the sampling
and possible aliasing artifacts that may arise if the volume resolution is not adapted
to the size of the structures we want to recover. Since we do not know the size of
the 3D structures in advance, this 3D constraint has to be translated into an image
constraint: the projection of a voxel into the images gives the size in pixels of the
silhouette structures we can recover. This means that if the voxel size after projection
is 10 pixels, we cannot expect to recover holes or silhouette details smaller than 10
pixels. Moreover, to avoid aliasing artifacts such as the one shown in Fig. 2.5 right,
for a given voxel size, silhouettes have to be filtered using mathematical morphology
operators.

Among all the possible implementations, using an octree for the volume represen-
tation such as in [Potmesil, 1987] provides good computation times and low memory
storage space.

We dispose of a set of n silhouettes Si and their corresponding projection matrices
Pi. In order to construct the octree volume, the algorithm needs two additional input
data: the level of detail, e.g., the size of the voxel, and an initial bounding box. The
level of detail is in general always fixed for a given image size, depending on the
desired resolution and the size of the silhouettes. As an example, a common choice
for 2008x3040 images is 8 to 9 levels of depth, i.e., the equivalent of a voxel grid of
size 256x256x256 or 512x512x512. More difficult is the initial guess of the bounding
box. Since we do not dispose of any 3D information, we have to infer an initial
bounding box only from the set of silhouettes. This can be done by considering the
2D bounding boxes of each silhouette. The 3D back projection of a 2D bounding box
can be seen as the volume defined by 4 3D planes (see Fig. 2.6). As a consequence,
the back projection of n 2D bounding boxes defines a 3D convex hull formed by 4n
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Figure 2.6: Visual hull of a set of 6 silhouettes (left) and the corresponding convex/visual
hull of the silhouette 2D bounding boxes (right). The bounding box of the convex hull defined
by the silhouette 2D bounding boxes can be analytically computed using a simplex algorithm.

planes. The bounding box of the convex hull can be analytically computed by a
simplex optimization method [Press et al., 1992] for each of the 6 variables defining
the bounding box. Each plane pi = (pi

x, p
i
y, p

i
z, p

i
w) induces a linear constraint of the

type:
pix ≤ 0, (2.5)

where the objective function to maximize depends on which variable of the bounding
box we want to recover. If, for example, we want to compute the largest x coordinate of
the bounding box, the linear problem will consist of maximizing the objective function
“fobj = x” subjected to the 4n linear constraints:

pi
x · x + pi

y · y + pi
z · z + pi

w ≤ 0, i = {1, · · · , 4n}. (2.6)

Starting from the 8 children of the cube defined by the bounding box, the octree
approach subdivides a cube into 8 children whenever it is on the isosurface, and iterates
the process recursively until the maximum level of depth is reached. In the case of
a visual hull construction, we have to define an isosurface function that corresponds
to the visual hull surface. As we have seen in Chapter 1, a silhouette is only capable
of telling us which part of the volume is not the object. As a result, if we code a
silhouette image with -1 for the foreground, i.e., the silhouette itself, and 1 for the
background, we can construct a visual hull isolevel function for a given 3D point v as:

fiso(v) = max
i

Si(Piv), i = {1, · · · , n}, (2.7)

the visual hull being defined as the 0-isolevel of fiso. Based on this definition, a given
cube can be tagged with 3 different states according to the fiso value of the corners
ci={1,··· ,8} that define the cube2:

2In order to reduce aliasing effects, the current algorithm oversamples the edges of the cube up
to the maximum octree level such that the cube tag decision is based also on the fiso values of the
intermediate sampled points along the edges and not only on the corner values.
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Figure 2.7: Octree construction of a visual hull. From left to right, the level of detail ranges
from 5 to 8 depth levels.

in fiso(ci) < 0 ∀i all the silhouettes see it in.
on ∃i, j no silhouette sees it completely out but

fiso(ci) < 0, fiso(cj) > 0 at least one silhouette sees it partially out.
out fiso(ci) > 0 ∀i at least one silhouette sees it completely out.

To evaluate a given cube, we project it into all the silhouettes to assign it one of the
3 available tags. If the cube is on and the maximum depth is not still reached, we
subdivide it and recursively test its children. At the end, only the cubes that are on
the visual hull surface have been subdivided. We can see the result of this step for
different levels of resolution in figure 2.7.

Once we have constructed the octree, the next step is to mesh it. The basic
algorithm of marching cubes consists of creating a signature for each cube that defines
its state, i.e, which corners ci are in and which are out, and computing the exact points
where the isosurface cuts the cube edges. Then, based on a look-up table that contains
all the possible configurations (28 = 256 different configurations), each cube is meshed
individually and all the individual patches are fused to create a complete mesh. The
only problem with this procedure is that there exist some ambiguous configurations
for which the cube mesh is not unique, and, if we do not dispose of more information,
we cannot select the right one. The consequence of this ambiguity is the possibility of
generating meshes that are not always manifold, which is very bad for the application
we are considering. The problem resides in the fact that the 12 edges that compose a
cube do not suffice to characterize the surface that traverses it. The best solution to
this problem is a variant of the marching cubes that uses a tetrahedron decomposition.
Each cube is decomposed into 5 tetrahedra and each tetrahedron is meshed individually
(see Fig. 2.8). In practice, the tetrahedron decomposition algorithm is the same as
the classic marching cubes one but, instead of computing only 12 edge intersections,
we need to compute also 6 additional diagonals on the cube faces, which makes a
total of 16 edges. In fact, it is the diagonals that provide enough information to
resolve the ambiguity about where the surface is. However, dealing with diagonals
introduces more complexity in the algorithm since the diagonals are not the same
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Figure 2.8: Marching cubes algorithm using tetrahedron decomposition. The zero level in-
tersection (yellow points) are found using a dichotomy approach.

Figure 2.9: Edge collapse operation. It can be executed only if the only shared neighbors
between the two vertices of the edge to be collapsed belong to the faces attached to the edge
(in green), i.e., no blue neighbor is a red neighbor and vice versa.

for two adjacent cubes, but mirrored. Another issue is the fact that this algorithm
generates many more triangles than the classic marching cubes algorithm, which makes
it even more necessary to use a decimation step. The decimation is based on the edge
collapse operator [Hoppe et al., 1993] (see Fig. 2.9). It is basically a loop where, for
a desired minimum edge size, we select the smallest edge of the mesh and compare it
with the minimum size. If smaller, we collapse the edge (see Fig. 2.9), whenever it is
possible3, and loop until there is no more edges to collapse.

3We need to guarantee that the resulting surface after the edge collapse operation is still manifold.
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Figure 2.10: Main steps in the visual hull mesh construction for 6 levels of resolution. Top:
from left to right, octree construction, marching cubes meshing and decimation. Bottom:
detailed view of the marching cubes mesh before and after decimation.

In Fig. 2.10 we present the main steps in the visual hull mesh construction for
6 levels of resolution. We note the existance of a great quantity of very small edges
in the output of the marching cubes (see Fig. 2.10 bottom left), and how they are
eliminated after the decimation step (see Fig. 2.10 bottom right).

2.4 Texture Driven Force

In this section we further develop the texture force Ftex appearing in equation 2.2.
This force contributes to recovering the 3D object shape by exploiting the texture of
the object. We want this force to maximize the image coherence of all the cameras
that see the same part of the object. It is based on the following projective geometry
property: if two cameras see the same surface, then the two images are related by a
geometric transformation that depends only on the 3D geometry of the object. This
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Figure 2.11: Epipolar geometry.

property is only fully valid under the common hypothesis of perfect projective cameras,
perfect Lambertian surface and same lighting conditions. Different approaches exist
to measure the coherence of a set of images, but they can be classified into two main
groups whether they make a local radiometric comparison (e.g. photo-consistency
measures as in voxel coloring [Seitz and Dyer, 2000]) or a spatial comparison of relative
radiometric distributions (e.g. cross-correlation measures). For a taxonomy of different
stereo algorithms, see [Scharstein and Szeliski, 2002]. We have chosen the normalized
cross-correlation because of its simplicity and robustness in the presence of highlights
and changes of the lighting conditions. Using the example of Fig. 2.11, the normalized
cross-correlation C(m1,m2) between pixels m1 and m2 is defined as follows:

C(m1,m2) = n1 · n2, nj =
Ij(N(mj)) − Ij(N(mj))

||Ij(N(mj)) − Ij(N(mj))||
, j = 1, 2, (2.8)

where N(mj) is a neighborhood around mj in image Ij, and Ij(N(mj)) is the vec-
tor of the image values in this neighborhood. This measure compares the intensity
distributions inside the two neighborhoods. It is invariant to changes of the mean
intensity value and of the dynamic range inside the neighborhoods. Concerning the
shape of the neighborhood N , there exist different types of “windows” depending on
the complexity and knowledge of shape information. The first and simplest neigh-
borhood is the point itself as in [Liedtke et al., 1991] but, obviously, this is not a
cross-correlation measure but rather a photo-consistency measure. If the window size
is bigger than one pixel, the next simplest neighborhood is the square window, which
has been extensively used in computer vision. Another useful correlation window is
the discrete disk, which presents fewer corner artifacts than the square window. Both
the disk and the square window are the same for any image and for any point, since
we do not dispose of any additional information. However, if we dispose of 3D shape
information, e.g., we want to evaluate a 3D surface, then neighborhoods can integrate
the anamorphism induced by projective geometry. The first way to integrate 3D shape
information is to locally estimate the tangent plane to the surface. The tangent plane
induces a homography between different images and between the tangent plane itself
and any image. This allows defining the neighborhood in the tangent plane domain
and ”project” it to the different images. If the reference neighborhood is square, then
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the projected neighborhoods will be quadrangular while, if the original window is a
disk, the projections will be ellipses. Finally, we can fit even more complicated primi-
tives to the surface, such as quadrics [Cross and Zisserman, 2000], which allows using
even more complicated neighborhoods, e.g., quadric patches.

The availability of so many different ways of computing correlations arises an in-
teresting question about which one is the best. In fact, the question can be generalized
to the choice between model-dependent similarity measures (such as tangent plane or
quadric based correlations) or model-independent similarity measures (such as square
window correlation). At first glance, it may seem that using model-dependent cor-
relations will give better results than the greedy square windows. This is true if the
current shape is close to the real surface and thus, the tangent plane or the quadric
have a geometric meaning. However, if the shape is far away from the real surface,
the surface derivatives, such as the tangent plane, have no meaning at all. Another
interesting point is about the choice of more complex models such as quadrics. This
is clearly related to the size of the correlation windows. If the correlation window is
big enough to contain significant variations of the shape, then it is interesting to use
quadrics in order to better model the shape. But current digital cameras have very
high resolutions (from 6 Mpixels to 24 Mpixels), which, even with correlation windows
of tens of pixels, still permits considering the surface as locally flat. Moreover, as
shown in Fig. 2.12, the difference between a square window and a plane-based window
is negligible for small baselines around the reference image (image 0) while it is very
strong for large baselines. We show in figure 2.13 the resulting normalized windows.
It allows better appreciating the deformation induced by the use of a square window
instead of a plane-based window. When using a square window (Fig. 2.13 left), images
close to the reference image have a little deformation. However, for large baselines,
the difference is enormous (compare for instance image 0 with image 6 in both the
square case and the plane case).

The choice of the correlation method is intimately related to the algorithm used to
optimize the correlation score. Two different types of approaches for this optimization
have been proposed in the literature:

• In the first type, the texture similarity is computed using the current shape es-
timation. It permits explicitly computing visibility and using it in the texture
similarity computation. If the measure is improved by deforming the model lo-
cally, then the model is updated and the process iterated as in [Fua and Leclerc,
1995, Isidoro and Sclaroff, 2003, Nobuhara and Matsuyama, 2003]. Level-set
based methods as in [Faugeras and Keriven, 1998, Sarti and Tubaro, 2002] ex-
plore a volumetric band around the current model but they still remain locally
dependent on the current model shape. Since the exploration does not test all
the possible configurations, the algorithm can fail because of local maxima of
the texture coherence criterion. Therefore, computing visibility with the current
shape does not always imply having a more accurate texture criterion. If the
current model is far away from the real shape, the visibility can be wrong and
so can the texture criterion. However, if the current model is close to the real
shape, taking visibility into account can improve the final result.
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image 31 image 32 image 33

image 34 image 35 image 0

image 1 image 2 image 3

image 4 image 5 image 6

Figure 2.12: Some snapshots of the Twins object superposed with a square window (red) and
a tangent plane window (white). The windows size is 21x21 pixels and the baseline between
adjacent images is 10 degrees. Both the 3D position and the surface normal estimate are
supposed to be correct.
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Figure 2.13: Normalized correlation windows of Fig. 2.12 for the square window (left) and
the plane-based window (right).

• The second type of approaches refers to the use of a model-independent texture
criterion to test all the possible configurations. In order to improve the robust-
ness even more, we can accumulate the criterion values into a 3D grid by using
a voting approach as in [Matsumoto et al., 1999,Medioni et al., 2000].

Since our initialization (visual hull) can be far away from the real surface, we believe
that model-dependent criteria may have local minima problems. For this reason,
we prefer to use a model-independent voting approach. Voting favors robustness in
the presence of highlights and passing from the image information to a more usable
information of the sort “probability of finding a surface” [Broadhurst et al., 2001] or
”surface density”. In order to completely define a texture-based force, we compute a
gradient vector flow on the surface density volume, which allows us to define a texture
force in any point of the volume.

We introduce some notions of projective geometry between multiple images in
section 2.4.1, the voting approach in section 2.4.3 and the computation of the gradient
vector flow in section 2.4.4.

2.4.1 Geometric Relation between Multiple Images

We first define the projective geometry relation between any 3D point M and its
projections m1 and m2 in the two images I1 and I2(see Fig. 2.11). Let M(δ) be the
optic ray generated by the optical center O1 and the direction d defined by a pixel m1

of I1 as follows:

M(δ) = O1 + δd, δ ∈ [0,∞). (2.9)

Let P2 be the projection matrix of the second camera, the projection of the optic ray
into I2 can be computed as:

m2(δ) ∼ P2M(δ). (2.10)
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Let d∞ and e21 be the projections in I2 of the infinity point M(δ → ∞) and the origin
O1 of the optic ray respectively:

e21 ∼ P2O1, d∞ ∼ P2M(δ → ∞). (2.11)

We have then the following relations:

m2(δ) ∼ e21 + δd∞ ∼
 e21x + δd∞

x

e21y + δd∞
y

e21z + δd∞
z

 ∼


e21x+δd∞x
e21z +δd∞z
e21y +δd∞y
e21z +δd∞z

1

 . (2.12)

For a given 3D depth δ, its relationship with the 2D distance between the epipole e21

and m2(δ) can be obtained as follows:

||m2(δ) − e21|| =

√(
e21x + δd∞

x

e21z + δd∞
z

− e21x

e21z

)2

+

(
e21y + δd∞

y

e21z + δd∞
z

− e21y

e21z

)2

, (2.13)

and after simplification:

||m2(δ) − e21|| =
δ

e21z + δd∞
z

√
a2 + b2, (2.14)

where
a = d∞

x − d∞
z e21x/e21z ,

b = d∞
y − d∞

z e21y/e21z .
(2.15)

This simple formula allows the passage from the 2D pixel distance ||m2(δ) − e21||
to the 3D metric depth δ. It applies also for any other view Ij seeing the same optic
ray, and links together all the corresponding 2D distances ||mj(δ) − ej1||.

Let us consider our problem of 3D recovery from texture. We want to optimize,
for a given pixel in one image, the texture coherence with the other images. An optic
ray can be defined by the pixel, and we search for the 3D point M belonging to the
optic ray that maximizes the normalized cross-correlation with the other images. This
can be done by sampling the projection of the optic ray in every image. In practice,
the knowledge of the visual hull, which is an upper bound of the object, allows us
to accelerate computations. For a given pixel, the 3D depth to scan is fixed by the
intersection of its optic ray with the visual hull. This intersection gives a depth interval
in which we know that the object is contained. According to equation 2.14, this depth
interval can be translated into pixel intervals for the correlation computation.

Equation 2.14 enables multi-correlation algorithms to stay in the pixel space for all
the computations. For the same optic ray, individual correlations are computed with
the different images and merged into a unique pixel abscissa. Using several correlation
curves for the same optic ray allows us to make a more robust decision. We can see in
Fig. 2.14 the corresponding correlation curves of the example of figures 2.12 and 2.13.
We can appreciate in particular that, for a maximum baseline of ±20◦, (left column of
Fig. 2.14) the correlation curves are quite similar for both square window correlations
and plane-based correlations. Even if the knowledge of the tangent plane provides
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Figure 2.14: Cross correlation curves of the sequence of Fig. 2.12 with a window size of
11x11 pixels for both a square window (top) and a plane-based window (bottom).

additional information, it is mainly translated into a higher correlation score. The
shape of the correlation curves remains quite the same and so does their precision. In
the middle column, we dispose of all the available curves (maximum baseline of ±60◦)
for both the square window (top) and the plane-based window (bottom). On the right
column we have computed the mean correlation curve for the ±20◦ baseline (dashed
red) and the same result for the ±60◦ baseline (solid black). We notice that, when
using square windows, adding new curves improves localization (the peak is narrower)
but it greatly penalizes the correlation score. This is expected since images with a
large baseline are strongly deformed (see images 31, 32, 5, and 6 in Fig. 2.13 left).
Using the plane-based windows with all the curves gives a very good localization and
the correlation score is still very high (almost no difference between 4 or 12 images in
Fig. 2.13 bottom right). Based on this behavior, the conclusion is that using tangent
plane correlations is worth only if we dispose of large baseline images and the surface
is already very close to the real one. Otherwise, it is preferable to use square windows
since they do not need an estimate of the real surface and provide also good accuracy,
at the expense of a limited maximum baseline, to avoid too low correlations.

Although we have used in Fig. 2.14 the mean correlation as a way to combine
the individual correlation curves, this is only valid for well textured surfaces that give
nice curves. If the material properties are less Lambertian, correlation curves can be
much noisier and it may be difficult to locate the maximum correctly. Instead, a more
robust way to proceed is to compute the local maxima of the correlation curves and
cumulate them into a 1-D grid. We can then take the bin that contains the largest
number of votes and average the curves that have a local maximum greater than a
threshold inside that bin. Obviously, the size of the bin is important since a step size of
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1 pixel does not allow voting while a very big step has the same result as the standard
mean. In practice, a bin step of a ten of pixels performs well. To accept the hit,
two conditions must be satisfied: a minimum number of curves nbin must have voted
for that bin and the total score inside the bin must be greater than a fixed threshold
tbin. The value of nbin depends only on the number of correlation curves that we fuse.
Typically, for 4 correlation curves, nbin = 2. The value of tbin remains always fixed
and is tbin = 0.6.

Finally, an important point about window-based correlations is that, in general,
the reference image must be in epipolar correspondence with all the other images with
which correlation is computed. After epipolar rectification, a row of pixels in the
reference image is in epipolar correspondence with the same row in the other images
(epipolar lines are perfectly horizontal after rectification). However, this rectification
has not been done in the present work since, for circular motion sequences with a
rotation axis close to the y-axis, epipolar lines are close to horizontal. As an example,
in Fig. 2.12, the distance to the epipole is more than 100 times the size of the image
(2008x3040) for a baseline of 10 degrees and around 50 times for a baseline of 20
degrees. The epipolar lines have a slope angle of 1.25 degrees relative to the horizontal
axis.

2.4.2 Local vertex optimization using multi-correlation

Now that we know how to estimate the depth to the surface for a given optic ray
using multi-correlation, one may wonder what happens if we apply it in a direct way
to the initial model, i.e., to the visual hull. This algorithm would be close to [Liedtke
et al., 1991] but, instead of using photo-consistency, we have a more sophisticated
multi-correlation criterion. Basically, for a given vertex of the mesh, the algorithm
does the following:

1. compute the visibility (using zbuffers),

2. compute the reference view (median camera) from the set of visible cameras,

3. compute the depth along its reference optic ray:

(a) initial estimation using a small set of cameras (small baseline),

(b) accurate estimation using a large set of cameras around the initial estima-
tion (large baseline),

4. move the vertex to its new position.

We can see in figures 2.15 and 2.16 the reconstruction results for two different objects.
A first conclusion is that, for the well textured regions where the visual hull is close
to the real surface, the algorithm works quite well (this is especially visible for the
Bighead object in Fig. 2.15). The main problems that we found with this algorithm
are twofold: mesh crossings and vertices that did not correlate well. Mesh crossings
may happen since there is no collision detection in the individual vertex deformation.
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Figure 2.15: Reconstruction of the Bighead object by local vertex optimization using multi-
correlation. From left to right: visual hull, deformed model, filtered model and detail of some
reconstruction errors of the filtered model.

They can easily disappear using a deformable model with regularization. The second
problem is the reliability of the coherence measures. Some vertices are moved into
wrong positions while others are not moved since correlation is not high enough due
to a lack of surface texture. This problem is much more interesting since it is more
difficult to resolve and arises an important question about how to extract the 3D shape
information from the set of images in a robust way. To improve the extraction of 3D
shape information from images, we propose a more robust global voting approach with
a model-independent correlation measure: a square window multi-correlation.

In the following section we describe the voting approach we have developed to
extract the 3D shape information from the images.
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Figure 2.16: Reconstruction of the Twins object by local vertex optimization using multi-
correlation. From left to right: visual hull, deformed model, filtered model and detail of some
reconstruction errors of the filtered model.

2.4.3 Proposed Voting Approach

The simplest way to exploit the stereo information of the images is to compute a
depth map for every image and merge them into a single coordinate system such as
3D volume. A first algorithm is to simply estimate a 3D point on the surface for every
pixel in every image:

pseudo code of the greedy correlation algorithm

1 For each image in imageList
2 For each pixel in image
3 Compute the depth interval from the visual hull
4 Compute the correlation curves
5 Transform all the curves into the same pixel abscissa
6 Find the best candidate depth4

7 If candidate is not valid5, continue with next pixel
8 Compute the 3D position P of the candidate depth
9 Add the correlation value to the voxel grid containing P

In our implementation, the correlation for a given pixel is computed with a fixed
number of cameras. For a typical sequence of 36 images, a good compromise between
computation time, accuracy and robustness is obtained by using a maximum baseline of
±20◦ (which gives a total of 4 correlation curves: ± 10 ◦ and ± 20 ◦). This configuration
is also used in [Matsumoto et al., 1999], and can resist up to 2 bad correlation curves

4using the robust correlation curve selection with the 1-D bin approach explained at the end of
Section 2.4.1

5minimum values for nbin and tbin
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(see Fig. 2.14) due to highlights, occlusions or non-coherent textures occurring in the
corresponding images. Although this algorithm does not explicitly handle occlusions,
they are implicitly detected as bad correlations, in the same way as a highlight or a
lack of texture. Besides, any other stereo algorithm can be plugged in instead of the
proposed one. However, the problem is the computation time. For large images (2000
x 3000), the computation time can reach 16 hours on a fast machine. This time can be
strongly reduced with almost no loss because of the redundancy of the computation.
The redundancy can be classified into two main groups: redundancy inside an image
and redundancy between different images.

• The redundancy between images is caused by the fact that several images
see at the same time the same piece of surface. If we have already computed
a surface estimation using one image, we can back project the 3D points into
the next image, giving an initial estimation of the distance to the surface. The
problem is that if the previous image did not correlate well, errors may propagate
and prevent the following images from attenuating it.

• The redundancy inside an image can be exploited using the previous knowl-
edge of the content of the image. In our case, it is a picture of an object and
we can expect it to be locally continuous. This implies that, if the surface is
correctly seen and if there is no occlusion, the depth values of neighboring pixels
should not be very different.

In order not to degrade the quality of the correlations too much, we have only ex-
ploited the redundancy inside images. It allows us to reduce the depth interval for
the correlation criterion. In the greedy algorithm, for each pixel, we test the entire
depth interval defined by the visual hull without taking into account if its neighbors
have already found a coherent surface. To be able to benefit from already computed
correlations, the image can be partitioned into different resolution layers as shown in
Fig. 2.17.

Figure 2.17: Example
of an image partition
into 3 different resolu-
tion layers.

The greedy algorithm is first run on the lowest resolution
layer (black pixels in Fig. 2.17), with the depth intervals de-
fined by the visual hull. For consecutive layers, the depth in-
tervals are computed using the results of the precedent layer.
To estimate the depth interval of a pixel based on the results
of the previous layer, a record of the correlation values is main-
tained in order to control the reliability of the estimation. The
theoretical maximum improvement that we can reach with this
method in the case of 3 layers as illustrated in Fig. 2.17 is 16
times as fast as the greedy method. This case corresponds to
a black layer computation time much higher than the grey and
white ones. In practice, the improvement is around 5 or 6 times faster for well-textured
images. The worst case corresponds to non-textured images where correlations become
unreliable. The depth interval estimation fails, necessitating the use of the greedy
method.
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Besides the improvement in computation time, an important improvement in stor-
age space is to substitute the 3D volume grid by a more compact octree structure.
The result of the correlation step will be a 3D octree containing the accumulated hits
of all the pixel estimations. The new algorithm can be coded as:

pseudo code of the redundancy-based correlation algorithm

1 For each image in imageList
2 For each layer in image
3 For each pixel in layer
4 If layer = first layer
5 Compute the depth interval from the visual hull
6 Else
7 Compute the depth interval from the previous layer
8 Compute the correlation curves
9 Transform all the curves into the same pixel abscissa

10 Find the best candidate depth
11 If candidate is not valid, continue with next pixel
12 Compute the 3D position P of the candidate depth
13 Add the correlation value to the octree voxel containing P

The resolution of the octree used to contain the correlation hits depends both on
the maximum baseline of the stereo algorithm but also on the calibration quality.
Basically, we can consider that the stereo algorithm has a resolution of one pixel
at most. Since we are using images between 3000x2000 and 4000x4000 pixels, the
maximum octree resolution will be between around 11 and 12 levels. But in that case,
there would be too few correlation hits per voxel for voting to be useful. Besides,
practical accuracy is lower than in theory due to the loss of image space when taking
photographs (the object image being smaller than the image size), loss of resolution
caused by the size of the correlation window, by the maximum camera baseline and
by blurred images due to insufficient depth of field or wrong focus. Typical resolutions
are between 10 and 11 levels, which is already very high. We show in Fig. 2.18 the
correlation hits for different voxel sizes of a well textured zone of the Twins sequence
(roughly the same region than the one shown in Fig. 2.12).

We observe in particular that, even if the image sequence is 3000x2000 pixels, a
9-level voxel (Fig. 2.18 right) has already the same size as the uncertainty of the
estimated surface. This can be better appreciated in Fig. 2.19, where we see the same
voxel from a side view to evaluate the thickness of the cloud of correlation hits. The
thickness of the cloud depends on the image resolution and system calibration, but
also on the texture of the surface and the number of images used to correlate. We note
in Fig. 2.19 that the width of the surface is equal to the edge size of a 9-level voxel.

The output of the voting step is an octree volume that contains, for each voxel, the
sum of the individual correlation scores contained in that voxel. This volume can be
seen as a volume of surface probability where a voxel with a high score is very probable
to contain the real object surface. Low score voxels may indicate a false match (due for
example to highlights) or the presence of a surface with no texture or noisy texture.
Figure 2.20 shows the voting volume for the Twins sequence. Since it is very difficult
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Figure 2.18: Voxel size as a function of the octree depth. The accumulated correlation
score inside the voxel decreases by a factor of 4 with each new level, as expected. Individual
correlation scores range from 1.2 to 4 since: i) the 4 closest cameras were used to correlate
(±10◦ and ±20◦), with a minimum curve correlation score tbin = 0.6, and ii) a minimum of
2 coherent curves are needed nbin = 2.

to visualize the voting volume, we present two slices on the octree in Fig. 2.20 top left,
and different rendered views of the volume after binarization using different thresholds.
As we can see for the case of no threshold, the voting volume contains voxels that do
not belong to the object surface. These voxels have relatively low score values and
thresholding the correlation octree permits their elimination. This is the main utility
of the voting approach: to add robustness to the failure of the correlation approach
(mainly due to large deviations from the Lambertian hypothesis).

This volume by itself cannot be used as a force to drive a deformable model. A
possible force could be the gradient of the correlation volume. The objection is that
it is a very local force defined only in the vicinity of the object surface. The proposed
solution to this problem is using a gradient vector flow (GVF) field to drive the snake.
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Figure 2.19: Correlation voting with different voxel sizes from 6 to 9 levels. Left: all the
accumulated correlation hits. Right: high score hits with a correlation greater than 3.0 are
shown.
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no threshold threshold=30

threshold=60 threshold=160 threshold=200

Figure 2.20: Correlation voting octree for the Twins sequence (36 images) with 10 levels
of depth and a maximum baseline of ±20◦. Top left: two slices of the octree volume. From
top to bottom in scanline order: rendered views of the octree volume after binarization for
increasing threshold values of the accumulated correlation.
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2.4.4 Octree-based Gradient Vector Flow

The GVF field was introduced by [Xu and Prince, 1998] as a way to overcome a
difficult problem of traditional external forces: the capture range of the force. This
problem is caused by the local definition of the force, and the absence of an information
propagation mechanism. To eliminate this drawback, and for all the forces derived
from the gradient of a scalar field, they proposed generating a vector field force that
propagates the gradient information. The GVF of a scalar field f(x, y, z) : Ω ⊂ R

3 �→
R is defined as the vector field F = (u(x, y, z), v(x, y, z), w(x, y, z)) : Ω ⊂ R

3 �→ R
3

that minimizes the following energy functional EGV F :

EGV F =

∫
Ω

µ(u2
x+u2

y+u2
z+v2

x+v2
y+v2

z+w2
x+w2

y+w2
z)+||F−∇f ||2||∇f ||2dxdydz, (2.16)

where µ is the weight of the regularization term and ∇ is the gradient operator.
The solution to this minimization problem has to satisfy the following Euler-Lagrange
equations:

µ∇2u − (u − fx)(f
2
x + f 2

y + f 2
z ) = 0,

µ∇2v − (v − fy)(f
2
x + f 2

y + f 2
z ) = 0,

µ∇2w − (w − fz)(f
2
x + f 2

y + f 2
z ) = 0,

(2.17)

where ∇2 is the Laplacian operator. A numerical solution can be found by introducing
a time variable t and solving the following three differential equations:

∂u
∂t

= µ∇2u − (u − fx)(f
2
x + f 2

y + f 2
z ),

∂v
∂t

= µ∇2v − (v − fy)(f
2
x + f 2

y + f 2
z ),

∂w
∂t

= µ∇2w − (w − fz)(f
2
x + f 2

y + f 2
z ).

(2.18)

We can note that the three equations are not coupled, which allows solving each
equation separately as a scalar differential equation with partial derivatives in u, v
and w respectively. These equations are known as the generalized diffusion equations,
and have been used in different fields such as heat conduction, reactor physics or fluid
theory.

The GVF can be seen as the original gradient smoothed by the action of a Laplacian
operator. This smoothing action allows eliminating strong variations of the gradient
and, at the same time, propagating it. The degree of smoothing/propagation is con-
trolled by µ. If µ is zero, the GVF will be the original gradient, if µ is very large,
the GVF will be a constant field whose components are the mean of the gradient
components.

Since our data have been stored in an octree structure, the GVF has to be computed
on a multi-resolution grid. For this, we need to be able to:

• define the gradient operator and the Laplacian operator in the octree grid;

• define how to interpolate between voxels with different sizes.

In three dimensions, the gradient and Laplacian operators are defined as:

∇f = (fx, fy, fz), ∇2f = fxx + fyy + fzz. (2.19)
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In the case of a regular grid with a spacing of [∆x, ∆y, ∆z], the first and second
derivatives can be approached by central finite differences:

fx ≈ f(x+∆x,y,z)−f(x−∆x,y,z)
2∆x

,

fxx ≈ f(x+∆x,y,z)−2f(x,y,z)+f(x−∆x,y,z)
∆x2 .

(2.20)

If the grid is not regular, then the finite differences will not be centered. An easy
way to find the equivalent formulas for a non-regular grid is to estimate the parabolic
curve ax2+bx+c that passes through 3 points (Fig. 2.21), and compute the derivatives
of the estimated curve [Fornberg, 1988]. After solving the equation system, we find:

�����

Æ �

���� � Æ�
���� ���

�

���� � ��� � ��� �

Figure 2.21: Parabolic curve
passing through 3 points.

fx(x0) ≈2ax0 + b= 1
(δ+∆)

(
f(x0+∆)−f(x0)

∆/δ
− f(x0−δ)−f(x0)

δ/∆

)
,

fxx(x0)≈2a = 2
(δ+∆)

(
f(x0+∆)−f(x0)

∆
+ f(x0−δ)−f(x0)

δ

)
.

(2.21)

As far as the interpolation is concerned, and to simplify the computation, we have
to add a constraint to the topology of the multi-resolution grid: the difference of res-
olution in the neighborhood of a voxel, including the voxel itself, cannot be greater
than one level. This is not a strong constraint since the resolution of the octree needs
to change slowly if we want good numerical results in the computation of the GVF.

There exist three different scenarios in the multi-resolution numerical algorithm.
The first one is when the current voxel and all its neighbors have the same size (see
Fig. 2.22(a)). In this case, computations are done as with a mono-resolution grid.
The second one is when the current voxel is bigger than or equal to its neighbors (see
Fig. 2.22(b)). For those voxels with the same size, computations are carried out in
an ordinary way. For those that are smaller, a mean value is simply used to get the
correct value in the scale of the current voxel:

fx(A) ≈ f(EFGH) − f(D)

2δ
, fy(A) ≈ f(B) − f(C)

2δ
. (2.22)
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Figure 2.22: Value interpolations (2D example): (a) Mono-grid case. (b) The current voxel
is bigger that its neighbors. (c),(d) The current voxel is smaller than its neighbors.

98



Silhouette and Stereo Fusion for 3D Object Modeling

C

D

C

D

B

A
E

E

CDE

CDE

δ

E

F

H

G E

H

F

G

C

D

C

D

B

A

EFGH

EFGH

CDEFGH

CDEFGH

δ

(c’) (d’)

Figure 2.23: Value interpolations (3D example): (c’),(d’) The current voxel is smaller than
its neighbors.

The third case corresponds to the current voxel being smaller than or equal to its
neighbors (see Fig. 2.22(c) and (d)). We illustrate two different configurations, and in
both we want to compute the gradient at point A. In Fig. 2.22(c) we need the value
of the function f at points E, F , BC and CD:

fx(A) ≈ 1
(δ+1.5δ)

(
f(CD)−f(A)

1.5
− f(F )−f(A)

1/1.5

)
,

fy(A) ≈ 1
(δ+1.5δ)

(
f(BC)−f(A)

1.5
− f(E)−f(A)

1/1.5

)
.

(2.23)

In the example shown in Fig. 2.22(d) the values BCD and DEF are obtained
by interpolating B with CD, and DE with F , respectively. If we translate these
examples into 3D, cases (c) and (d) are transformed into cases (c’) and (d’) in Fig.
2.23 respectively. For the sake of clarity, we only illustrate the interpolation along the
z axis. In example (c’) we need the value f(CDE), which can be obtained by bilinear
interpolation between f(C), f(D) and f(E):

f(CDE) = f(C) + 1
4
(f(D) − f(C)) + 1

4
(f(E) − f(C))

= 2
4
f(C) + 1

4
f(D) + 1

4
f(E).

(2.24)

The gradient fz(A) along the z axis can be computed as:

fz(A) ≈ 1

(δ + 1.5δ)

(
f(B) − f(A)

1/1.5
− f(CDE) − f(A)

1.5

)
. (2.25)

Example in Fig. 2.23(d’) is a little bit more complex than 2.23(c’). The gradient
fz(A) is computed in the same way as equation 2.25 so we need to compute the function
value at the point CDEFGH as in the previous case. However, we do not directly
dispose of all the neighbor values as before. We first need to compute the value at
EFGH, as a simple mean value, and then use it to compute the function value at the
point CDEFGH, as in the previous case:

f(CDEFGH) = f(C) + 1
4
(f(D) − f(C)) + 1

3
(f(EFGH) − f(C))

= 5
12

f(C) + 3
12

f(D) + 1
12

f(E) + 1
12

f(F ) + 1
12

f(G) + 1
12

f(H).
(2.26)
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Figure 2.24: mono grid vs. octree grid GVF with µ = 0.1.

Although we have only shown some of the most common and interesting configu-
rations, the total number of configurations is much higher. For a given direction (x,y
or z), something important to note is that all the available configurations have one
neighbor with the same size as the current voxel. This is due to the constraint of at
most 1 level of difference in the neighborhood of any voxel. For a given direction, we
have thus the following possibilities:

• equal size: (1 case) both neighbors have the same resolution as the current
voxel,

• smaller size: (3 cases) one neighbor is smaller (2 cases), or both neighbors are
smaller (1 case)

• bigger size: (2× 4 cases) one neighbor is bigger, which gives 4 different config-
urations depending on the size (equal to or bigger than the current voxel) of the
“neighbors of the neighbor”.

This makes a total of 12 configurations per direction. However, the total number of
3D configurations is less than 123. The reasons are twofold:

• The configuration along one direction affects the possible configurations of the
two other directions, e.g., if a neighbor voxel is smaller along the x direction,
then there cannot be any bigger neighbor voxel along the y or z directions.

• For a bigger neighbor voxel (as in Fig. 2.23(c’) and (d’)), the voxels used to
interpolate can be shared between different directions.

In practice, a recursive algorithm has been implemented independently for each direc-
tion so it is not necessary to know the exact number of 3D configurations.

In Fig. 2.24 we compare the result of a 3D GVF computation for µ = 0.1 using a
regular grid and the octree approach. The scalar field f used in the example is defined
as:

f(x, y, z) =

{
1 for z ∈ [34, 36]
0 else

.
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8 levels 9 levels 10 levels

Figure 2.25: GVF computation (µ = 0.1) for different octree depths of the Twins correlation
volume shown in Fig. 2.20. Top: octree partition. Bottom: norm of the GVF.

We can appreciate the accuracy of the multi-grid computation compared with the
mono-grid one. We can hardly see any difference between both curves, only when the
octree resolution becomes very low (voxels 20 and 50). Mean values of computation
speed up for 10 levels of resolution are between 2 and 3 times as fast as the mono-grid
version while storage space is reduced between 10 and 15 times.

In Fig. 2.25 we show the GVF computation for the Twins correlation volume
(see Fig. 2.20) with different octree depths and µ = 0.1. If we pay attention to the
second row of Fig. 2.25 (the GVF norm), we appreciate the fact that using relatively
low octree resolutions allows propagating the GVF much faster than when using high
resolutions, where the GVF norm is only significant near the final surface. The effect
of using a grid with a lower resolution produces a similar effect to using a greater µ
value. However, using a lower resolution grid has a clear advantage over increasing
the µ value: the computation time. This suggests using an octree multi-resolution
approach where the model is first deformed using a low resolution GVF, the result is
the input of another snake evolution with a better GVF resolution, etc. This approach
greatly accelerates the deformable model traversal of the empty regions that are far
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away from the final surface.

2.5 Silhouette Driven Force

The silhouette force is defined as a force that makes the snake match the original
silhouettes of the sequence. If it is the only force of the snake, the model should
converge towards the visual hull. Since we are only interested in respecting silhouettes,
the force will depend on the self occlusion of the snake. If there is a part of the snake
that already matches a particular silhouette, the rest of the snake is not concerned by
that silhouette, since the silhouette is already matched. If we compare a visual hull and
the real object, we see that the entire real object matches the silhouettes, but not all the
points of the object. The object concavities do not obey any silhouette because they
are occluded by a part of the object that already matches the silhouettes. The main
problem is how to distinguish between points that have to obey the silhouettes (contour
generators) and those that do not have to. To solve this problem, the silhouette force
can be decomposed into two different components: a component that measures the
silhouette fitting, and a component that measures how strongly the silhouette force
should be applied. The first component is defined as a distance to the visual hull.
For a 3D vertex v on the mesh of the snake, this component can be implemented by
computing the smallest signed distance dV H between the silhouette contours and the
projection of the point into the silhouette:

dV H(v) = min
i

d(Si, Piv). (2.27)

A positive distance means that the projection is inside the silhouette, and a negative
distance that the projection is outside the silhouette. Using only this force would make
the snake converge towards the visual hull.

The second component measures the occlusion degree of a vertex of the deformable
model for a given viewpoint c. The viewpoint is chosen as the camera that defines the
distance to the visual hull:

α(v)c =

{
1 for dV H(v) ≤ 0
1

(1+d(Ssnake
c ,Pcv))p for dV H(v) > 0

,

c(v) = arg mini d(Si, Piv).

(2.28)

In the definition of αc, there are two cases. If dV H is negative, it means that the vertex
is outside the visual hull. In that case, the force is always the maximum force. For a
vertex inside the visual hull, c is the camera that actually defines its distance to the
visual hull dV H . Ssnake

c is the silhouette created by the projection of the snake into
the camera c. The power p controls the decreasing ratio of α. This function gives the
maximum silhouette force to the vertices that belong to the contour generators. All
the other vertices, which are considered as concavities, are weighted inversely to their
corresponding snake silhouette distance d(Ssnake

c , Pcv). This allows the vertices of the
deformable model to detach themselves from the visual hull. A big value of p allows
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Figure 2.26: Sketch of the distances involved in the silhouette force computation.

an easier detachment. But if p is too big, the force becomes too local and does not
allow smooth transitions between concavities and contours. The value used in practice
is p = 2, which is a compromise between smoothness and concavity recovery.

The final silhouette force for a given vertex of the deformable model is a vector
directed along the normal to the surface n(v) and its magnitude is the product of both
components:

Fsil(v) = αc(v)dV H(v)n(v) (2.29)

The silhouette force definition we give here is somewhat similar to the silhouette
force defined independently in [Nobuhara and Matsuyama, 2003]. The main difference
with our formulation is their binary definition of the αc(v) function. They only apply
the silhouette force to the contour generator vertices, i.e., vertices where αc(v) = 1.
This hinders smooth transitions between contour generators and concavities, whereas
in our case, we allow these transitions by using α values that range from 0 to 1. The
size of the transition region is controlled by the exponent n in Eq. 2.29. Smooth
transitions allow us to better deal with incoherences between silhouettes and stereo.

2.6 Internal Forces

In the classic 3D deformable model formulation [Cohen and Cohen, 1993], the internal
energy Eint of a parametric surface S(s, r) is composed of five terms involving the first
and second order derivatives of the surface:

Eint(S) =

∫
γ10

∥∥∥∥∂S

∂s

∥∥∥∥2

+ γ01

∥∥∥∥∂S

∂r

∥∥∥∥2

+ 2γ11

∥∥∥∥ ∂2S

∂s∂r

∥∥∥∥2

+ γ20

∥∥∥∥∂2S

∂s2

∥∥∥∥2

+ γ02

∥∥∥∥∂2S

∂r2

∥∥∥∥2

ds dr,

(2.30)
where (γ10, γ01) control the elasticity of the surface, (γ20, γ02) its rigidity and γ11 its
resistance to twist. These parameters are usually constant and grouped into two single
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parameters γ1 and γ2 that control the elasticity and rigidity of the surface respectively
(γ10 = γ01 = γ1 and γ20 = γ02 = γ11 = γ2). Such parameters adjust the model evolution
in such as way that a high value of γ1 tends to shorten the surface and eliminate loops
while a high value of γ2 penalizes curvature variations: makes the surface tend to
the sphere (constant curvature). A local minimum of the energy Eint(S) satisfies the
associated Euler-Lagrange equation, which gives us the following form for the internal
force:

Fint(S) = γ1(
∂2S

∂s2
+

∂2S

∂r2
) − γ2(

∂4S

∂s4
+ 2

∂4S

∂s2∂r2
+

∂4S

∂r4
) = γ1∆S − γ2∆

2S, (2.31)

where ∆ is the Laplacian operator and ∆2 is the biharmonic operator.
The discrete version of the Laplacian operator ∆̃ on a triangle mesh can be easily

implemented using the umbrella operator, i.e., the operator that tries to move a given
vertex v of the mesh to the center of gravity of its 1-ring neighborhood N1(v):

∆̃v =

 ∑
i∈N1(v)

vi

m

− v, (2.32)

where vi are the neighbors of v and m is the total number of these neighbors (valence).
Concerning the discrete version of the biharmonic operator ∆̃2, its implementation on
simplex meshes is trivial since we just do ∆̃2v = ∆̃(∆̃v), which can be obtained
using the umbrella operator twice [Xu, 2000]. If we try the same formulation on our
traditional triangle mesh, we obtain:

∆̃(∆̃v) =

 ∑
i∈N1(v)

∆̃vi

m

− ∆̃v,

=
∑

i∈N1(v)

 ∑
j∈N1(vi)

vj

mmi

− vi

m

−
 ∑

i∈N1(v)

vi

m

+ v, (2.33)

=

 ∑∑
i∈N1(v), j∈N1(vi), vj �=v

vj

mmi

−
2

∑
i∈N1(v)

vi

m

+ (1 +
∑

i∈N1(v)

1

mmi

)v,

where mi is the valence of vertex vi. The important thing about this equation is that, if
used as it is, it will not work for the general case of a triangle mesh, where mi 
= m. The
reason is simple: as a difference with the simplex case, the scalar that multiplies the
vector v is not the same for all the vertices, it depends on the local connectivity. This
scalar is very important since it gives the sensibility between a change on the vertex
position and the corresponding change of the biharmonic operator. For example, when
we use the Laplacian as an internal force, we want to apply a displacement to each
vertex in order to locally cancel the Laplacian component. By iterating the process,
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Figure 2.27: Biharmonic filtering (γ = 1, ρ = 1) for an increasing number of iterations.
Top: dot product between the biharmonic force vector (−∆̃2v) and the surface normal. Bot-
tom: shaded view of the filtered model.

we hope to globally minimize the Laplacian operator over the entire mesh. It happens
that the scalar appearing in front of v in equation 2.32 is 1, which means that, if we
move the vertex v exactly the Laplacian vector ∆̃v, we locally cancel the Laplacian
component:

∆̃(v + ∆̃v) =
∑

i∈N1(v)

vi

m
− (v + ∆̃v) =

∑
i∈N1(v)

vi

m
− v −

∑
i∈N1(v)

vi

m
+ v = 0. (2.34)

To proceed in the same way with the biharmonic operator, according to equation 2.33
we need to scale the biharmonic vector ∆̃(∆̃v) by the inverse of 1+

∑
i∈N1(v)

1
mmi

and
define the following scaled biharmonic operator:

∆̃2v =
1

1 +
∑

i∈N1(v)
1

mmi

∆̃(∆̃v), (2.35)

We can then cancel the biharmonic component by moving v exactly the scaled bihar-
monic vector ∆̃2v:

∆̃2(v − ∆̃2v) = 0. (2.36)

The total internal force on a mesh vertex v as:

Fint(v) = γ1∆̃v − γ2∆̃
2v. (2.37)

In order to better integrate the internal force into the deformable model, we can
reformulate the two internal parameters γ1, γ2 as an overall internal weight γ and a
rigidity/elasticity ratio ρ ∈ [0, 1], which gives us:

Fint(v) = γ((1 − ρ)∆̃v − ρ∆̃2v). (2.38)

We see in Fig. 2.27 the evolution of a triangle mesh under the single biharmonic
force (γ = 1, ρ = 1). The object is filtered in the very first iterations and then it
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is almost not deformed, which shows the great numerical stability of the proposed
biharmonic operator.

It is worth noting that, because of the definition of the umbrella operator in Eqn.
2.32, the implemented biharmonic operator is not invariant to the mesh sampling, i.e.,
it requires the edges to have an homogeneous size, as discussed in [Desbrun et al.,
1999]. However, since it is going to be used in a deformable model with automatic
decimation and refinement, this is not a severe handicap. As a difference with the
curvature flow proposed in [Desbrun et al., 1999], the proposed biharmonic operator
is obtained as a weighted sum of neighbors in the 2-ring neighborhood, which makes
it very easy to implement and with the advantage of giving directly a 3D vector with
the right 3D units instead of a curvature tensor.

2.7 Mesh Control

Since the texture force Ftex can sometimes be tangent to the surface of the deformable
model, we do not use the force Ftex itself but its projection Fn

tex along the surface
normal n(v):

Fn
tex(v) = (Ftex(v) · n(v))n(v). (2.39)

This prevents problems of coherence in the force of neighbor vertices and helps the
internal force to keep a well-shaped surface.

The deformable model evolution process (equation 2.4) at the kth iteration can
then be written as the evolution of all the vertices of the mesh vi:

vk+1
i = vk

i + ∆t(Fn
tex(v

k
i ) + βFsil(v

k
i ) + γFint(v

k
i )), (2.40)

where ∆t is the time step and β and γ are the weights of the silhouette force and
the regularization term, relative to the texture force. Equation 2.40 is iterated until
convergence of all the vertices of the mesh is achieved. The time step ∆t has to be
chosen as a compromise between the stability of the process and the convergence time.
An additional remeshing step is done at the end of each iteration in order to maintain
a minimum and a maximum distance between neighbor vertices of the mesh. This is
obtained by a controlled decimation and refinement of the mesh. The decimation is
based on the edge collapse operator [Hoppe et al., 1993] and the refinement is based
on the

√
3-subdivision scheme [Kobbelt, 2000].

2.8 Texture Mapping

Once the deformable model has converged, we can map the original set of color images
into the 3D object surface to create a texture map. The method used to create the
texture map is a particle-based approach such as the one described in [Soucy et al.,
1996], [Schmitt and Yemez, 1999] or [Lensch et al., 2001]. This approach has been
extended to filter the highlights that may be present in the images and to correctly
deal with different triangle texture sizes.
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Figure 2.28: Texture map as a set of texture tiles. Left: partition proposed in [Soucy et al.,
1996], the width of the tiles being a power of 2. Right: partition that we propose with most
of the triangles grouped into quads, the width of the tiles being an odd number.

The algorithm to create a texture map is independent of the rest of the reconstruc-
tion method. The only required input is a 3D mesh model (no matter how it was
obtained) and its corresponding set of calibrated images. The first choice in the tex-
ture map computation is the number of texture patches we want. Since we are going
to deal with complex topologies and closed surfaces, it is impossible to have only one
texture patch for an entire object. One advantage of triangle meshes is that there is
an obvious partitioning of the mesh: the triangle. Considering one texture patch per
triangle has two advantages: zero rectification distortion and a trivial implementation.
The main disadvantage is that because we have so many patches, the redundancy of
the frontiers of the patches is high: the same edge appears twice in the texture map
and the same vertex appears an average of 6 times6. Worse, since texture maps are
rectangular images, the greedy method to store the texture of a triangle is to use a
square, which wastes half of the space of the square. Using bigger patches (a set of
connected triangles) would reduce the length of the frontiers and thus the redundancy
inside the texture map. However, just in the same way that a triangle cannot fit into
a square, using bigger patches poses also the problem of minimizing the space between
patches inside the rectangular image.

We have implemented an improved version of the “patch per triangle” texture
map of [Soucy et al., 1996]. The first hypothesis of this algorithm is that triangles
have a good aspect ratio (close to equilateral) so the texture patch can be chosen

6According to the Eulerian properties of our reconstructed meshes
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Figure 2.29: Triangle texture mapping. Left: nearest-neighbor interpolation; the triangle
can be mapped to fit the entire half-square. Middle: bilinear interpolation; the interpolation
algorithm needs a ”border” of at least 0.5 texels, which requires doubling the diagonal, the
color of the border pixels being computed as d = a+ b− c, h = e+ f − g. Right: the diagonal
does not need to be doubled when mapping a quad.

as an equilateral triangle inscribed in a square tile of fixed size, e.g., 5 × 5 or 8 × 8
pixels. Since graphic cards prefer texture maps with the size being a power of 2,
e.g. 1024 or 2048 pixels, individual triangle textures are also a power of 2 in order
to perfectly fit into the texture map. To correctly deal with simplified meshes (with
very different triangle sizes), different classes of triangles with increasing power of 2
sizes are provided, e.g., 2 × 2, 4 × 4, 8 × 8, etc. However, since using one square per
triangle wastes almost half of the space, they propose to vertically align 2 triangles of
the same class into a no longer square tile, which improves the spatial efficiency. This
makes tiles of size 2× 3, 4× 5, 8× 9, etc. All the triangle texture tiles with the same
size are put in the texture map along rows. When the maximum texture map width is
reached, a new row of tiles is started and so on. When the last tile is added, we pass to
the following tile size and we start a new row of tiles, wasting an average of half a row
(see Fig. 2.28 left). Even though we would like to exploit the left space of the last row
by placing new tiles of the next class, this would not be fully satisfactory since tiles
are no longer square, which implies a bad alignment between tiles of different sizes. A
simple solution to this problem consists of adjusting the number of triangles per class
in order to always have an even number of triangles, except for the last class. This
ensures the absence of unused space at the last row of every class but the last one.

The algorithm we have just described is the one used in [Soucy et al., 1996]. Now,
one important question about this algorithm is that it is designed to work only with
a Nearest-Neighbor interpolation for the texture rendering process. This is a capital
assumption since it greatly simplifies the constraints to correctly render the triangles.
In particular, it does not necessitate to deal with border pixel interpolation issues, as
illustrated in Fig. 2.29 left. We have extended this algorithm in order to correctly
render the texture using bilinear interpolation. Using bilinear interpolation requires
a band around the triangle of at least 0.5 texels in order to correctly compute the
bilinear interpolation (see Fig. 2.29 middle). It implies the use of the second diagonal
(shown in gray level in Fig. 2.29 middle) for interpolation purposes, which makes that,
if we want to align two triangles together into the same tile, we have to add 3 pixels
to one of the tile dimensions, as shown in Fig. 2.29 middle. Doubling the diagonal is
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0 0.3333 0.6667 1

original signal (4 samples)
resampled signal (8 samples)

0 0.1667 0.3333 0.5 0.6667 0.8333 1

original signal (4 samples)
resampled signal (7 samples)

Si = 2 · Si−1 Si = 2 · Si−1 − 1

Figure 2.30: An example of signal resampling using linear interpolation. The original signal
has 4 samples (shown by squares). Left: bad interpolation using an even number of samples
(8 samples). Right: correct interpolation using an odd number of samples (7 samples).

not necessary when mapping a pair of adjacent triangles forming a quad as shown in
Fig. 2.29 right.

The second consequence of using bilinear interpolation for the rendering process is
that the frontiers between triangles with different resolutions cannot be processed in
order to ensure their continuity as in [Soucy et al., 1996]. As shown in Fig. 2.30 left, it
is a simple matter of signal sampling to see that it is imposible to perfectly reproduce
the low resolution signal (square samples) using the high resolution samples (shown
by circles), no matter what their values are. This is simply due to the fact that the
new samples are not aligned with the original ones. The solution is to no longer use
an even series for the triangle sizes but an odd series:

Si = 2 · Si−1 − 1, i > 0, S0 > 1, (2.41)

which is equivalent to
Si = 2i · S0 − 1, i > 0, S0 > 1. (2.42)

If we generate the different texture triangle sizes using Eqn. 2.42 for S0 = 2, we get the
following size sequence: {2, 3, 5, 9, 17, 33, 65, 129, ...}. To ensure the bilinear continuity
between two triangles with different resolution, we just interpolate along the diagonal
of the higher resolution triangle in a linear way (as shown in Fig. 2.30 right). We
show in Fig. 2.31 the result of rendering two triangles of different class using power of
2 even sizes (Fig. 2.31 top), and with power of 2 odd sizes (Fig. 2.31 bottom).

Since texture tiles have no longer a power of 2 size, a row of tiles will generally
not perfectly fit into the width of the texture map. Consequently, there will be a left
space at the end of each row of tiles. Another source of space waste is that aligning
two triangles into a rectangular tile requires to increase one of the dimensions of the
tile by 3 pixels. This can be avoided by grouping adjacent triangles of the same class
into quads in order to map them into a single texture square tile (as in Fig. 2.29
right). In practice, the percentage of triangles with a peer (in our meshes) is better
than 90%, which is quite good. The triangles that cannot find a peer are grouped into
rectangular tiles, which implies duplicating the diagonal (see Fig. 2.28 right). Using
this kind of partition reduces the wasted space to less than 1%.
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Figure 2.31: Example of texture rendering using nearest-neighbor interpolation (left col-
umn) and bilinear interpolation (right column) for even and odd triangle sizes. Top: texture
artifacts between two triangles using even tile sizes (4 and 8 pixels respectively). Bottom:
texture rendering without artifacts of the same triangles using odd tile sizes (5 and 9 pixels
respectively).

After having described the algorithm to place a texture tile into the global texture
map, the last step to detail is how to compute the texture tile for a given triangle.
The algorithm to compute the triangle texture tile can be decomposed into 2 different
independent steps: the choice of the triangle texture size, and the filling of the triangle
texture tile from the color images.

2.8.1 Choice of the triangle tile size

If we dispose of a given list of possible tile sizes, we want to assign to each triangle
one of the available sizes under some user-defined constraints. These user-defined
constraints are in general of two types:

• a desired texture quality ratio between the original images and the final texture

110



Silhouette and Stereo Fusion for 3D Object Modeling

map,

• a maximum texture size.

Fixed texture quality ratio

The simplest scenario is to give a desired quality ratio between the original images
and the final texture map. For a given triangle, we choose the view that best sees the
triangle in a geometrical sense (the one that sees it the most fronto-parallel). Then
we project the triangle into that view and compute the maximum edge size in pixels.
The maximum edge size is multiplied by the desired quality ratio and the final tile size
is chosen as the closest available size to the maximum edge size.

Once we have computed the tile size of each triangle, we group the triangles into
quads in such a way that only two triangles with the same tile size can be paired
together. This is simply done by randomly picking one triangle of the list and checking
if it has any neighbor with the same tile size that is not already into any other quad.
We iterate this process until no new quads can be created. At the end of the process,
we proceed to an additional upgrading step where, for all the triangles that do not
belong to a quad, we test if any of its neighbors is also alone (which means that they
do not have the same tile size), and group them into a quad. The tile size will be the
greatest tile size of both triangles, i.e., we always upgrade. All the remaining triangles
with the same tile size i are paired together into rectangular tiles of size Si × (Si + 3).

As in [Soucy et al., 1996], a last adjustement step is performed to fill the unused
space of the last row of every class. Starting from the class with the largest tile size,
if there is still space for n tiles, the algorithm upgrades the n quads with the largest
edge size belonging to the nearest inferior class.

To compute the final texture size, we fix the texture width to a power of 2 (typically
1024 or 2048) and we fill the texture map as shown in Fig. 2.28 right.

Fixed texture size

In a more complex scenario, the user fixes both the width and the height of the texture
map. For a fixed texture width, the texture height is a function of the texture quality
ratio. The goal is to find the best quality ratio such that the final texture height fits
into the user defined height. This is achieved using a dichotomy approach starting
from a quality ratio of 100%. Although it is worth noting that the quality ratio is not
a monotonic function of the texture height (mainly due to the quad grouping process),
in practice it is quite monotonic (e.g., see Fig. 2.34), so the algorithm works well.

2.8.2 Filling the triangle texture tile from the color images

In order to fill the texture tile of a given triangle described by its 3 vertices vi, vj and
vk, we sample it into particles as in Fig. 2.32 using the local parameterization (s, t):

p(s, t) = (1 − s − t)vi + svj + tvk, s ∈ [0, 1], t ∈ [0, 1], s + t ≤ 1. (2.43)
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Figure 2.32: Decomposition of a triangle into particles.

The color of each particle is stored in a texel of the texture tile. To compute the color
of a particle from a particular camera, we simply project the particle into that camera
and sample the image at the projected point.

If, as in our case, we dispose of a set of cameras, things are not so easy. For the
same triangle, we dispose of several (in some cases many) different views that actually
see it. Two problems arise:

• how to ensure smooth transitions between adjacent triangles,

• how to choose the set of cameras that will contribute to the texture.

Color interpolation between different views

Ensuring smooth transitions between adjacent triangles is a very important problem. If
we do not ensure the texture continuity in the frontier of the patches, this produces very
important artifacts in the final result. The method we propose to solve this problem
is choosing the set of cameras per vertex and not per triangle and then interpolate the
set of cameras for a given particle inside the triangle. For a given triangle we have
then three different sets of cameras {Ci}, {Cj}, and {Ck}. The way to interpolate
the camera sets is, for any particle in the triangle, to compute the particle color for
each camera set independently and interpolate the resulting colors using the local
parameterization (s, t):

c(s, t) = (1 − s − t)ci(s, t) + scj(s, t) + tck(s, t),
ci(s, t) = {Ci}(p(s, t),n(s, t)),
cj(s, t) = {Cj}(p(s, t),n(s, t)),
ck(s, t) = {Ck}(p(s, t),n(s, t)),

(2.44)

where {C}(p,n) is the color vector computed with the set of cameras {C} for a 3D
point p with a surface normal n.

Using equations 2.44 ensures that the interpolated colors along an edge are the
same for the two adjacent triangles, since the color depends only on the camera sets of
the two vertices defining the edge. This is true if both triangles have the same tile size,
i.e., the same number of samples along the shared edge. If they have not, there will
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be an aliasing effect (as already shown in Fig. 2.31 top right) when passing from one
triangle to another, since the rendering algorithm processes each triangle separately.
Since we use an odd tile size series, these artifacts can be simply eliminated (see
Fig. 2.31 bottom right) by linear interpolation along the shared edge, as in the one
dimensional case of Fig. 2.30.

Choice of the camera set that correctly sees a vertex

The last point to detail is how to choose the camera set {Ci} associated to a vertex vi,
and how to obtain the final rgb color for a 3D point p with a surface normal n. The
proposed procedure is similar to [Schmitt and Yemez, 1999]. An initial camera set is
constructed with all the cameras that see the vertex without occlusion. Occlusion is
computed using a classic z-buffer technique. The resulting camera set is further filtered
by testing if any of the images is saturated around the projection of the vertex into
that image. The saturation test is implemented by comparing the color value of the
vertex on each image with the mean value of the vertex along the whole sequence, and
it is done separately on each color channel. The resulting camera set is composed of
cameras that see the vertex without highlights. At this point different techniques may
be used to obtain a final particle color. We can, for example, compute the weighted
mean color of the camera set:

{Ci}(p,n) = 1∑
j∈{Ci} wj

∑
j∈{Ci} wjIj(Pjp),

wj = −n · sj,
(2.45)

where sj corresponds to the viewing direction for p from camera j, Pj is the projection
matrix of the camera j, and Ij(·) is the image color value at the given 2D point. More
complicated methods can be applied like the weighted median color, where each color
component is chosen using a weighted median. However, using so many views blurs
the final texture map. Better results are obtained when using only the two views in
the selected camera set that best sees the particle in a geometrical sense. Then the
color is interpolated as in equation 2.45, but only between the two best views.
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tile size (pixels) 2 3 5 9 17 33
total number of triangles 44 289 4073 10718 2628 216
number of triangles grouped into quads 42 254 3652 9646 2370 194

Figure 2.33: Example of a texture map with a user-defined size of 1024 × 1024 pixels. The
mesh has 17968 triangles, 16158 of them being grouped into quads. The wasted space (shown
in blue) is of 0.74%.
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Figure 2.34: Example of quality ratio estimation used in Fig. 2.33. The original images
are 2008x3040 pixels. For a fixed texture width of 1024 pixels, and a desired texture height
of 1024 pixels, the corresponding quality ratio is 18.03%.

Figure 2.35: Triangle mesh and textured mesh using the texture map of Fig. 2.33. We
thank Houman Borouchaki for this simplified version of the bigHead model.

115



2.9 Conclusions

2.9 Conclusions

We have presented a new approach to 3D object modeling based on the fusion of texture
and silhouette information. We propose a full system approach where different known
techniques are used and improved to provide high quality results.

Our main contributions are:

• the 1-D bin voting technique, which allows taking a robust decision based on
n-stereo correlation curves,

• the implementation of a multi-correlation 3D voting technique, which allows
us to extract the shape information from a set of color images in a robust way,
improving the performance under real light conditions, especially in the presence
of highlights,

• the adaptation of the GVF technique, commonly used in medical imaging, to
our specific 3D object modeling problem, which has necessitated a multi-grid
implementation that, to our knowledge, has never been used before for 3D object
modeling,

• the definition of a deformable model silhouette-based force, which allows inte-
grating the silhouette information into the deformable model evolution,

• the adaptation of the classic biharmonic operator, commonly used in simplex
meshes, to a triangular mesh,

• the definition of a practical way to interpolate between different color images in
order to create a continuous texture map with filtered highlights,

• the implementation of a texture mapping technique that assigns different texture
resolutions to different triangles, while keeping smooth bilinear interpolation
transitions between adjacent triangles,

• and finally, the global quality of the entire system, which provides high quality
results under real conditions, which is demonstrated by the quantity and quality
of the reconstructed objects.

The two main limitations of the algorithm are also its two main sources of robust-
ness: the volume voting approach and the topology constant snake approach. The
voting approach allows good reconstructions in the presence of highlights, but it also
limits the maximum resolution of the 3D model. A way to overcome this limitation
could be introducing the final model into another snake evolution where the texture
energy computation would take into account the current shape (visibility and tangent
plane or quadric based cross-correlation). Since the initial model is already very close
to the real surface, only some iterations would suffice to converge. The second draw-
back is the topology constant evolution. It allows a guaranteed topology of the final
model but it is also a limitation for some kind of objects where the topology cannot
be captured by the visual hull. A feasible solution would be to detect self collisions of
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the deformable model [Lachaud and Montanvert, 1999], and to launch a local level-set
based method in order to recover the correct topology. Also, as discussed in Section
3.3, we need to further investigate the visibility handling of the correlation surface,
a more general silhouette force, and a better handling of objects with sharp edges.
Additional work includes:

• an improved strategy to detect local convergence of the snake in order to freeze
optimized regions and to accelerate the evolution in the empty regions,

• the possible use of the surface curvatures to allow a multi-resolution evolution
of the mesh,

• some more advanced work in the generation of the texture. In particular, since
we know the geometry of the object, we could apply more advanced signal pro-
cessing techniques to better remove self-shadows and possibly, under calibrated
lighting conditions, partially estimate the color bidirectional reflectance distri-
bution function (BRDF) of the surface elements of the object.
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Chapter 3

Results

In this chapter we present a selection of our 3D reconstruction results obtained with
the techniques described in chapters 1 and 2. We describe the general setup in section
1 and present the different types of interesting cases that we have encountered in our
experiments in the following sections.

3.1 Acquisition Setup

The general acquisition setup consists of a turntable and a fixed digital camera. The
object to be scanned is placed on the turn table (see Fig. 3.1) and a sequence of pho-
tographs is taken with a fixed angle step: typically 10 degrees, which gives a sequence
of 36 images. This is the minimum configuration (1 color sequence) for the recon-
struction algorithm. Taking only one sequence of images requires both the automatic
extraction of the silhouettes and the auto-calibration of the system. Since the auto-
calibration is also based on the silhouettes, it is preferable to have a homogeneous
background in order to better binarize the silhouettes. The background color does
not need to be colored, very good results are obtained with matte gray. However an
important aspect is to have a good focus of the object on the contour silhouettes, so
that they are not blurred.

In order to simplify the silhouette extraction task, an additional sequence of images
can be taken with an active background, which allows recovering very high quality
silhouettes. However this second acquisition is only useful if the turntable is accurate
enough to repeat the same poses as for the object sequence. A third image sequence of
a calibration pattern can be employed to calibrate the entire system with any classic
method ( [Lavest et al., 1998] in our case). This calibration allows recovering the
intrinsic parameters and the camera poses of the calibration pattern sequence. Since
we are interested in the calibration of the object sequence, we need exactly the same
setup for both acquisitions. This is quite easy to ensure for the intrinsic parameters
of the camera (that are fixed) and the circular motion (rotation axis and translation).
However it is more difficult to ensure for the turntable angles, which requires a good
turntable precision (better than 0.1 degrees for high resolution images).

Finally, a second sequence of the object in a different position can be taken to
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Figure 3.1: Acquisition setup.

recover hidden parts of the object. The rigid motion between this second sequence
and the first object sequence can be recovered in two ways: using a calibration pattern
or using the silhouettes with the technique described in chapter 1. Using a calibration
pattern is quite constraining since the pattern in the same position has to appear in at
least one photograph of each of the sequences. This is only possible by changing the
pose of the camera and leaving unchanged the position of the object on the turntable.
The silhouette-based calibration allows us to change the object pose manually while
the rest of the setup (turntable and camera) can remain fixed, which is much simpler
from a photographer point of view.

In the following sections we present some practical cases with different degrees
of acquisition constraints under circular motion, ranging from a perfect controlled
environment with different sequences for the color images, the silhouettes and the
calibration pattern in section 3.2, to a single color sequence that serves to extract the
silhouettes, which are then used to calibrate and reconstruct in section 3.4. Finally,
some results are presented using two single axis rotation sequences in section 3.5.

The values of β and γ change very little from one object to another. Because the
snake iteration is always done in the voxel coordinate system of the GVF octree, the
value of β only depends on the ratio between the image size and the octree size. A
typical value is between 0.1 and 0.2. Typical values of γ are between 0.1 and 0.25,
depending on the required smoothness, while a good ratio rigidity/elasticity is ρ = 0.8.

Computation times are dominated by the correlation voting step: a typical com-
putation time for 36 images of 6 Mpixels is of 3 hours on a Pentium4 1.4GHz machine,
although this time strongly depends on the shape of the visual hull and on the size of
the object in pixels, i.e., the area of its silhouettes.

3.2 3 Sequences (Color+Silhouette+Calibration)

In this section we dispose of 3 image sequences, one for the object, another for the
silhouettes and a last one for the calibration pattern. The sequence of the calibration
pattern is used to recover the intrinsic parameters, the rotation axis and the transla-
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tion. The angles of the sequence are supposed to be known. Silhouettes are extracted
from the silhouette sequence by simple binarization.

3.2.1 BigHead Sequence

Figure 3.2: Some of the original images (2008x3040 pixels) used in the reconstruction of
the BigHead object. Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a
total of 36 silhouette images.

The bigHead sequence is quite favorable for stereo reconstruction since the object
is very well textured. The only deviations from the hypothesis of a Lambertian surface
are the self-shadows, that are quite visible in Fig. 3.2 top, and the lack of texture of
the object support, where the only available textured zone is the tick marks. This can
be confirmed looking at the correlation voting volume in Fig. 3.3 left, where we can
clearly distinguish the tick marks of the support. Although the octree resolution is
already high (10 levels), the correlation values are very high (> 450). This is due to
the availability of many texture details that produce strong correlation scores.

We show in Fig. 3.3 top middle the octree partition used for the GVF computation.
We can appreciate that, even with the constraint of a slow resolution change, the
multi-grid partition succeeds in efficiently filling the volume around the “surface” of
correlation and computing a high resolution GVF (see Fig. 3.3 bottom middle).

In Fig. 3.4 we illustrate the two components of the silhouette force after conver-
gence, which permits recovering the contour generators of the object (vertices with an
α value close to 1 in Fig. 3.4 right).

Starting from the visual hull (Fig. 3.5 left), the algorithm is able to converge to a
final solution (Fig. 3.5 middle), which is then used to compute a texture map (Fig. 3.5
right). We can appreciate the quality of both the recovered surface and the computed
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Figure 3.3: Stereo force used for the reconstruction of the BigHead object. Top left: stereo
correlation voting volume. Bottom left: rendered view of the same volume after binarization
with a threshold of 30. Top middle: octree partition used for the computation of the GVF
(see detail on the right). Bottom middle: GVF norm.

Figure 3.4: Silhouette force used for the reconstruction of the BigHead object. Left: dV H

silhouette force component after convergence. Right: α silhouette force component after
convergence.

texture map. In Fig. 3.6 we dispose of a vector snapshot of the final mesh that allows
us to appreciate the great quality of the triangular surface.
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Figure 3.5: Complete reconstruction sequence of the BigHead object. From left to right: vi-
sual hull, snake after convergence and texture mapping. The reconstructed model has 114496
vertices.

Figure 3.6: Mesh detail of the BigHead object.
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3.2 3 Sequences (Color+Silhouette+Calibration)

3.2.2 Twins Sequence

Figure 3.7: Some of the original images used in the reconstruction of the Twins object.
Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a total of 36 silhouette
images.

The Twins model is a more difficult example than the BigHead one. Its topology is
more complex (although not really so much: only one hole), and the surface properties
are far from being Lambertian (see Fig. 3.7). Furthermore, there are some images
which are completely saturated due to strong specular reflections (see Fig. 3.8).

Figure 3.8: Detail of the original Twins sequence. We can observe the existence of strong
highlights on the surface. Since the highlights are not fixed from one image to another, the
correlation voting approach allows recovering the right surface, as shown in Fig. 3.10.

Because the relative position of the object from the lights changes, the highlights
“move” all over the object surface, which implies that the saturation zone is not
the same for all the views (see Fig. 3.8). The correlation voting approach permits
recovering the surface in these regions (see Fig. 3.9) since, even if the stereo does not
work in one image, there will be another image that sees the same piece of surface
without highlight.

In Fig. 3.10 we present the complete reconstruction steps of the Twins model.
We can appreciate the differences between the visual hull initialization (Fig. 3.10
left) and the final reconstruction (Fig. 3.10 middle). In Fig. 3.10 right we show the
total force on each vertex after convergence. The jeopardized pattern observed on the
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Figure 3.9: Stereo force computation for the Twins model. From left to right: multi corre-
lation voting volume, octree partition and GVF norm.

Figure 3.10: Different steps in the reconstruction process of the Twins object. From left to
right, visual hull initialization, final model, texture mapping and total force after convergence.
The reconstructed model has 83241 vertices.

force sign (red for positive sign, blue for negative sign) visually indicates convergence.
Figure 3.11 illustrates the influence of the silhouette force. The support of the object
does not provide any texture information and cannot be reconstructed using only the
texture force (Fig. 3.11 left). Adding the silhouette constraint solves this problem and
guarantees the convergence towards the visual hull in this region (Fig. 3.11 middle).
As shown in Fig. 3.11 right, the support is completely driven by the silhouette force.

In Fig. 3.12 we present a reconstruction of the same Twins object as in Fig. 3.10
but using only 12 equally spaced images instead of 36. Correlation is computed using
only the 2 nearest cameras (± 30 deg) and, although artifacts are visible due to the
small number of silhouettes, the algorithm performs quite well computing the texture
force, which offers a good 3D reconstruction.
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3.2 3 Sequences (Color+Silhouette+Calibration)

Figure 3.11: Twins model detail after convergence. Left: evolution under texture force only.
Parts of the object with no texture disappear. Middle: evolution under both the texture force
and the silhouette force. The parts of the object with no texture follow the silhouette force
(visual hull). Right: α component of the silhouette force after convergence.

Figure 3.12: Twins model reconstruction using only 12 equally spaced cameras. From left
to right: visual hull initialization, final model, texture mapping, and concavity recovery.
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3.2.3 African Sequence

Figure 3.13: Some of the original images used in the reconstruction of the African object.
Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a total of 36 silhouette
images.

A complete reconstruction is presented in Fig. 3.15 using both silhouette and tex-
ture information. We are able to recover many details with high accuracy (observe, for
instance, the quality of reconstruction of the bracelet and of the rope). In Fig. 3.14
we illustrate the different forces used in the deformable model. Ten octree levels are
used in the voting approach (top left), which provides a high precision in the gradient
vector flow computation (top middle and top right). At the end of the iterative pro-
cess, a steady state for the entire mesh is achieved, and concavities are automatically
detected (bottom right).
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3.2 3 Sequences (Color+Silhouette+Calibration)

Figure 3.14: External forces used in the reconstruction of the African model. Top left:
volume rendering of the correlation voting volume. Top middle: the octree partition used
in the computation of the gradient vector flow field. Top right: norm of the gradient vector
flow field. Bottom left: detail of the octree partition and the gradient vector flow volume.
Bottom middle: dV H silhouette component after convergence. Bottom right: α component
of the silhouette force after convergence.

128



Results

Figure 3.15: African model after convergence (57639 vertices). Top left: Gouraud shading.
Top middle: same view with texture mapping. Top right: lateral view of the textured model.
Bottom left: detail of the textured model. Bottom right: same detail in wireframe.
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3.2 3 Sequences (Color+Silhouette+Calibration)

3.2.4 Tenon Mask Sequence

Figure 3.16: Some of the original images used in the reconstruction of the Tenon Mask
object. Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a total of 36
silhouette images.

The main challenge of the Tenon object is its topology: it has a total of 9 holes. Six
of them are extremely small (around the mask) while the 3 last are medium size (two
for the eyes and one for the mouth). The problem is that strong topology artifacts
happen due to the visual hull construction as explained in Section 2.3 (see circles in
Fig. 3.17 right bottom).

Figure 3.17: Initial computed visual hull without hole selection. Left: front view. Middle:
rear view. Right bottom: detail of topological artifacts present on the rear view. Right top:
corrected visual hull.

130



Results

Figure 3.18: Stereo force computation for the Tenon Mask sequence. From left to right:
correlation voting volume after binarization (threshold=30), octree partition and GVF norm.

These problems can be solved by manually deleting the silhouette holes that pro-
duce the ”extra” 3D holes, which allows recovering a visual hull with the right topology
(see Fig. 3.17 right top). Once we have the right topology, we can compute the GVF
force (see Fig. 3.18) and iterate the snake until convergence while preserving the orig-
inal topology. We can appreciate the good results of the final reconstruction in Fig.
3.19. The reconstruction has both the right topology and a high quality geometry.

Figure 3.19: Final Tenon model with 45052 vertices. From left to right: front and rear
views with shading and texture.
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3.2.5 Polynesian Sequence

Figure 3.20: Some of the original images used in the reconstruction of the Polynesian object.
Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a total of 36 silhouette
images.

The Polynesian object is a very well textured object (a volcanic stone) that offers
us the possibility to compare our reconstruction results with a laser scanner method
since the same object was scanned with a Minolta VIVID 910 3D scanner.

We dispose of one sequence of color images, and another sequence of the silhouettes
with an active background (a flash with a soft box pointing directly to the camera).
However, the original data have a synchronization problem: the silhouettes do not cor-
respond to the color images. This problem is due to the way the images were acquired.
A first sequence of color images is taken, then the background is lit on, and another
sequence is taken, where the silhouette of the object can be easily extracted. Now,
the turntable used is a heavy one that allows very heavy objects on it. This turntable
is quite precise whenever the angle steps are always done in the same direction. How-
ever, if the turning direction is changed (e.g., to reset the turntable position) there
may be a positioning error of up to some degrees. This difference is enough to produce
large pixel errors in the image plane (see Fig. 3.21). So, at first glance, the silhouette
sequence cannot be exploited. However, if we try to directly extract the silhouettes
from the color images, the extracted silhouettes are correct except for the bottom of
the object, which has a color similar to the background.

Figure 3.21: Superposition between the color sequence and the extracted silhouette contour
from the silhouette sequence(in blue).
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Figure 3.22: Registration between the visual hull computed with the silhouette sequence and
the extracted silhouettes. From left to right: the visual hull computed with the silhouette
sequence, the visual hull computed with the extracted silhouettes, the two visual hulls before
registration and the two visual hulls after registration.

In order to exploit the original silhouette sequence, we have registered it with the
extracted silhouettes using the silhouette coherence criterion defined in Chapter 1 (see
Fig. 3.22). The only parameter to estimate is the angle offset error between the color
sequence and the silhouette sequence. After registration, the recovered angle is 1.61
degrees, and the jeopardized pattern of colors in Fig. 3.22 right confirms the success of
the registration. An important aspect about the silhouette coherence criterion used in
the registration is that, because the bottom of the extracted silhouettes is very noisy
and incorrect, the silhouette coherence has been only computed on the medium-top
of the silhouettes, i.e., we have only cast optic rays on the top of the silhouettes.
This is a very important property compared to the epipolar tangency criterion, since
we have the possibility of not using those parts of the silhouettes that we know to
be not correct. This happens quite frequently at the bottom of the objects, where
the transition between the object and the turntable cannot be easily extracted. As
we will see in section 3.4, this property is extremely useful to calibrate some difficult
sequences.

In Fig. 3.23 we show the correlation results for the color sequence, and we can
appreciate the great resolution of the voxel volume in Fig. 3.23 left.

In Fig. 3.24 we present the comparison between the Minolta scanned object (top
left) and the final result after convergence of our method (top middle). As a conclusion,
we have a lower resolution due to the stereo limitation and the regularization term.
However, the mesh quality is quite good and the main object concavities are well
recovered too. In addition, we provide a high quality texture map (top right), which
cannot be obtained at that resolution with the used 3D laser scanner.
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3.2 3 Sequences (Color+Silhouette+Calibration)

Figure 3.23: Stereo force computation for the Polynesian sequence. From left to right:
correlation voting volume after binarization (threshold=30), octree partition and GVF norm.

Figure 3.24: Comparison between the proposed passive method and a laser active method.
Top left: laser model of 385355 vertices obtained with a Minolta VIVID 910 3D scanner.
Top middle: proposed method after snake convergence (233262 vertices). Top right: textured
mesh after convergence. Bottom left: mouth detail of the laser model. Bottom right: same
detail of the snake model.
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3.2.6 Guardians Sequence

Figure 3.25: Some of the original images used in the reconstruction of the Guardians object.
Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a total of 36 silhouette
images.

For the Guardians object we dispose of high resolution sequence of 36 images
of 4000x4000 pixels. After cropping the region of interest of the object, images are
3000x3800, which is still a very good resolution. We dispose also of the silhouette
sequence and the calibration sequence.

This object has a genus of 3, which corresponds to the 3 arms of the statue that
create a handle with the statue body. Its particularity is that, even if the computed
visual hull has the correct genus, in practice it is very difficult for the deformable model
to handle this topology during all the evolution process. In Fig. 3.26 we present the
result of the visual hull computation and some detailed views of the generated handles.
In Fig. 3.26 right we appreciate the existence of one independent tunnel on the left,

Figure 3.26: Different views of the Guardians visual hull. From left to right: frontal view,
transparent view (we can see the tunnels created by the silhouette holes), and top view of an
horizontal cut of the visual hull to better see the tunnels shape.
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Figure 3.27: Configuration of the deformable model before auto-intersection of the surface.

Figure 3.28: Stereo force computation. From left to right: correlation voting volume after
binarization of the accumulated correlation (threshold=20), octree partition of 11 levels, GVF
norm for 11 levels and GVF norm for 9 levels.

and two other tunnels that have one entry in common, i.e., a “T” form with one entry
and two exits.

The problem with this topology is that, when the surface evolves, the ”T” junction
should move to the left (in Fig. 3.26 right) to allow the surface to traverse that region,
since the real surface is behind both tunnels. The problem is that the silhouette will
not allow the ”T” junction to slide to the left and the surface deformable model will
finish by auto-intersecting with the tunnel (see Fig. 3.27), which is something we do
not want to happen.

The only possibility consists of not dealing with holes at this stage. This means
that the visual hull has no holes and so will not have the final deformable model.
However, after convergence, we can add the holes by embedding the object into an
octree, deleting the cubes that are inside the holes and remeshing. By doing this we
lose the precision of the deformable model (we have quantized the surface) so we need
to reintroduce the new surface (with holes) into the deformable model algorithm for a
few more iterations. This method has the advantage of dealing with holes only at the
end of the reconstruction algorithm, once the surface is very close to the real object.

For this example we do not need to delete all the holes, but only one of the two
tunnels in the ”T” junction.
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a) b) c) d)

Figure 3.29: Different steps in the deformable model evolution. From left to right: low res-
olution model after convergence (16710 vertices), remesh model with holes (87812 vertices),
medium resolution model with holes (69835 vertices), and high resolution model with holes
(126195 vertices).

Next step is the GVF computation. Since images have a very high resolution, the
octree used to store the correlation hits has 11 levels of resolution, which is the highest
resolution we have handled until now (see Fig. 3.28). To improve convergence, we have
first used a low resolution GVF of 9 levels (see Fig. 3.28 right), which gives the low
resolution model in Fig. 3.29.a. Then we have increased the resolution of the model
and we have done some additional iterations with the 10-level GVF (see the result in
Fig. 3.29.b). Finally, we have embedded the medium resolution mesh into an octree,
and we have remeshed it using the original silhouettes with holes (see Fig. 3.29.c). The

Figure 3.30: Four views of the final high resolution textured model.
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Figure 3.31: Victor Hugo object. From left to right: original image, visual hull without
holes and half converged deformable model. Top: front view. Bottom: rear view.

result has finally been introduced into a high resolution deformable model to obtain
the maximum accuracy (see Fig. 3.29.d).

We show in Fig. 3.30 4 views of the resulting high resolution mesh with texture
mapping enabled.

3.3 Not So Easy Objects

We present here some objects that push the algorithm to its limits. The limitations
are related to the three forces that drive the deformable model: the stereo force, the
silhouette force and the internal force. In this section we discuss and illustrate the
failure scenario of each force.

Stereo force

The main drawback of the GVF stereo force is its range action. Sometimes we would
like a smaller range action and other times we would like it to be stronger.

Concerning the cases where the GVF is too strong, in general it is due to the fact
that the GVF is symmetric relative to the voting correlation “surface”, but it should
not. A piece of correlation surface should only attract those regions of the deformable
model that lie between that correlation surface, and the cameras that contributed to
the correlation surface. This problem is somewhat related to the visibility problem
discussed in Section 2.4. However, here we do not discuss if it is more robust to compute
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Figure 3.32: Hippopotamus object. From left to right: one of the original images, correlation
volume, model after convergence, and superposition of the deformable mesh with the GVF
computed for 10 levels.

a model-dependent measure (using visibility) or a model-independent measure (such
as the proposed correlation voting approach). The problem here is to know, for a
given region of the mesh, which part of the correlation surface attracts it. In Fig. 3.31
bottom (see the black ellipsoid) we illustrate a case where the border of the rear mesh
has converged to a correlation surface that was not generated from a rear view, but
from a front view. The border of the mesh has collapsed into a single skin layer since
there was only correlation from the front views, but not from the rear views.

The solution would require storing the set of cameras that voted for a given voxel,
and using this information to decide which are the regions of the correlation volume
that attract a given part of the deformable model.

On the contrary, sometimes we need a stronger stereo force to traverse more easily
the empty regions. With the current GVF implementation, if the surface is very far
from the correlation surface, the silhouette force may prevent the deformable model
from converging to the correlation surface, such as between the legs in Fig. 3.32 (as
shown by the arrow), where the surface cannot converge to the support because the
GVF is too weak. For the Hippopotamus object the technique of using a GVF of lower
resolution has its limits here. If we reduce the resolution of the GVF, some details
such as the eyeteeth will be lost.

This second problem is related to the first problem since, if we know which cor-
relation region is attracting a given vertex, we can accelerate the convergence on the
empty regions.

Silhouette force

The silhouette force, as defined in equation 2.29, presumes that for any vertex of the
mesh, there is one corresponding silhouette to which it has to obey. If someone else
already matches that silhouette, then the vertex is free of going wherever it wants.
The “peer” silhouette of a vertex is simply defined as the closest one in pixel distance,
i.e., the distance between the projection of the vertex into that silhouette and the
silhouette contour is minimized.

The scenario where this force will fail is the following: we select the peer silhouette,
we confirm that that silhouette is already matched and we decide to free the vertex
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Figure 3.33: Dancer object. From left to right: one of the original images, the corresponding
silhouette, superposition of the deformable mesh with one silhouette and superposition of the
same mesh with another silhouette.

Figure 3.34: Result of applying the silhouette force define in equation 3.1 to the Dancer
deformable model. From left to right: the two same silhouettes than in figure 3.33 and a new
point of view. The two silhouettes are matched now, however the result is not the desired
one, as shown by the red arrow, although silhouettes are matched.

but, there is another silhouette that is no longer matched because the vertex is no
longer constrained by its peer silhouette. This scenario is what has happened in Fig.
3.33. The selected vertex in the left image (shown by the red arrow) does not match
the silhouette, but that silhouette is not its peer silhouette. Its peer silhouette is
the silhouette on the most right image in Fig. 3.33, since the distance to its contour
is smaller. However, the silhouette on the most right image is already matched by
the rest of the mesh, which frees the selected vertex and generates the failure of the
silhouette constraint.

A possible solution for this problem is to redefine the silhouette force Fsil(v) to
be the maximum of all the possible forces obtained by selecting any silhouette as the
peer silhouette. This is equivalent to:

||Fsil(v)|| = max
c

αc(v)d(Sc, Pcv), (3.1)

i.e., we compute the product of the distance to each silhouette with its partial occlusion,
and we take the maximum.

If we apply this force to the Dancer (see Fig. 3.34), the results are better and
silhouettes are better matched, but the mesh has been eroded even if the silhouettes
cannot see it (see Fig. 3.34 right). Another problem of this new silhouette force
definition is that it is much more difficult for vertices to detach from silhouettes,
which slows the convergence of the deformable model.

140



Results

This problem is still open, although we think that a better handling of equation
3.1 should solve many of the problems related to the silhouette force.

Internal force

A problem related to the weight of the internal force may appear when modeling
surfaces with strong edges as in Fig. 3.31. Although the object suffers also from big
topological problems, what is interesting to note is how the model has been eroded
in its back (see the red ellipsoid in Fig. 3.31 bottom right). If the width of the
surface that we try to model is very thin compared with the edge size, the internal
force becomes very strong and the mesh in this area collapses very quickly. Since we
perform an additional step of remeshing, the mesh is literally eroded in a hundred of
iterations. The proper solution to this problem would be to allow a higher resolution
of the mesh in regions of high curvature that have already converged. This is important
because, if the mesh has not converged, allowing high curvature regions to have more
vertices would give a poor final model since the smoothing action is very important to
keep a well shaped surface.
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3.4 One Color Sequence (No Silhouette nor Cali-

bration Sequence)

3.4.1 Millet Sequence

Figure 3.35: Some of the original images used in the reconstruction of the Millet object.
Top: 9 samples of a total of 36 color images. Bottom: 9 samples of a total of 36 silhouette
images.

The Millet object has a very interesting geometry with plenty of details. We dispose
of one color sequence and its corresponding silhouette sequence (see Fig. 3.35 middle).
However, as we can appreciate in Fig. 3.35 bottom, the acquired silhouettes have a
little problem: the silhouette of the bottom of the object is completely lost. Besides,
we do not dispose of a calibration sequence so we need to calibrate using silhouettes.
The extracted silhouettes pose a problem when computing silhouette coherence since
the bottom of the silhouettes is not correct at all. However, we can simply modify the
criterion in order to compute the silhouette coherence in the regions of the silhouettes
that we know are correct. This is achieved by selecting the sample points, where we
test the silhouette coherence, only on the top of the silhouettes, i.e., we can “clip” the
silhouette coherence computation only on the regions of the silhouettes where we know
that it is meaningful to compute the coherence. As a result, we are able to perfectly
estimate the rotation axis, the translation and the focal length, with a final coherence
score of 99.5%.

Next step is to construct the visual hull. However, as we can see in Fig. 3.36 left,
we have two problems with the original visual hull: the bottom of the object and the
genus of the visual hull, which is greater than 10! (the original genus of the object
is 2, one per leg). To solve the problem of the bottom, we have manually segmented
the bottom of 6 silhouettes (spaced of 30 degrees) which helps to carve away much of
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Figure 3.36: Different computation of the visual hull. Left: visual hull computed with the
original silhouettes. Right: visual hull computed with the filled original silhouettes where, for
6 silhouettes of them, the bottom has been extracted manually.

the wrong space at the bottom of the object. To solve the genus problem, we have
just filled all the silhouette holes, so the final visual hull (Fig. 3.36 right) has genus 0.
Filling the silhouette holes simplifies the deformable model evolution, while still being
able to add the holes after convergence.

We present in Fig. 3.37 the result of the correlation voting volume after binarization
with a threshold of 30. The recovered surface has very high quality, which confirms
the excellent result of the silhouette-based calibration procedure.

Figure 3.37: Four rendered views of the correlation voting volume for the Millet sequence.
The volume has been binarized with an accumulated correlation threshold of 30.

After computation of the GVF (see Fig. 3.38), we iterate the deformable model
with a relative low resolution (see Fig. 3.39.a). After convergence, we increase the
resolution to capture smaller details (see Fig. 3.39.b). At this point we would have
finished it the topology of the object was correct. However, since we filled all the
silhouettes, we still need to “add” the silhouette holes. The reason why it is going
to work is that, we look at figure 3.36 left, all the false holes between the legs are
caused by a bad surface position of the surface between the legs, which generates all
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Figure 3.38: External forces for the Millet sequence. Left: octree partition with 10 levels.
Middle: GVF norm. Right: contour generators detected by the silhouette force (α component)
after convergence.

the unnecessary holes. However, after convergence, the surface is correct now, so if
we add the silhouette holes, they will generate a correct 3D hole. In practice, the
mesh has been embedded into a high resolution octree, which allows us to define a 3D
isolevel function where the inside of the object is coded with -1 and the outside with 1.
Then we have just computed an iso-surface in the same way as in Section 2.3, where
the global isolevel function is the maximum of the 3D isolevel function defined by
the mesh, and the silhouette isolevel function of equation 2.7 (see Fig. 3.39.c). After
extracting the iso-surface, we reintroduce the mesh into the deformable model step for
some additional iterations to recover the precision lost by the octree embedding action
(see Fig. 3.39.d).

Finally, we can compute a texture map from the set of color images (see Fig. 3.40).
Compared with the original images in Fig. 3.35, the texture map has smoothed the
lighting changes in regions where there exist self-shadows (e.g., the legs), although
there still persist some lighting artifacts.
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a) b) c) d)

Figure 3.39: Main steps of the evolution of the mesh for the Millet sequence. From left
to right: medium resolution model after convergence (74406 vertices), high resolution model
after convergence (188680 vertices), remeshed model with holes (395903 vertices) and final
high resolution model with holes after convergence (197857 vertices). Top: global view of the
Millet object. Bottom: detailed view of the legs.

Figure 3.40: Four rendered views of the reconstructed Millet object with texture mapping.
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3.5 Two Color Sequences

3.5.1 Anyi Sequence

Figure 3.41: Some of the original images used in the reconstruction of the Anyi object.
Although the original images where 2008x3040, the cropped images are only 1200x1200. Top:
first color sequence with 9 samples of a total of 72 color images with the corresponding
silhouettes. Bottom: second color sequence with 9 samples of a total of 36 silhouette images
with the corresponding silhouettes.

For the Anyi object we dispose of two sequences of color images that have been
acquired independently. Although the silhouettes have been extracted automatically,

a) b) c) d)

Figure 3.42: Statuette (a) First sequence visual hull; silhouette coherence of 94.84%. (b)
Unregistered second sequence visual hull; silhouette coherence of 93.73%; mutual coherence
of 41.27%. (c) Visual hulls after registration; mutual coherence of 98.18%. (d) Resulting
reconstructed visual hull after registration.
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Figure 3.43: Rectification of two images with a baseline of 20 degrees coming from the two
Anyi sequences. Top: two original images from the first sequence (left) and their correspond-
ing rectified ones (right). There is almost no deformation introduced by the rectification since
epipolar lines are already almost horizontal. Bottom: two original images from the second
sequence and their corresponding rectified ones (right). The rectification greatly modifies the
original images due to a rotation axis that is far from the y camera axis (68.7 degrees, to be
more precise).

the recovered silhouette coherences are quite good: 94.84% and 93.73% for the first
and second sequence respectively.

Using the mutual silhouette coherence criterion of 1.35 we can register both se-
quences (see Fig. 3.42). If Fig. 3.42.a and 3.42.b we present the visual hulls before
registration, with a mutual coherence of only 41.27%. We can appreciate how dif-
ferent the visual hulls are. After registration, the mutual coherence is of 98.18%. It
may seem strange that, after convergence, the mutual coherence is higher than the
individual silhouette coherence. This is simply due to the fact that the two measures
do not compare the same silhouettes. Once we have registered the two sequences, we
can compute the visual hull with the silhouettes of both sequences, which improves
the quality of the visual hull (see Fig. 3.42.d).

Next step is to compute the correlation voting octree. In general, two octrees
could be computed, one for each color sequence, and then fused into a single octree
volume. However, the second color sequence has a particularly bad configuration since
the epipolar lines are far from being horizontal. This means that the assumption we
made in Chapter 2 of not having to rectify the images does no longer hold. We can
corroborate this fact by rectifying two images with a baseline of 20 degrees for the
first sequence and for the second sequence using the method of [Fusiello et al., 2000]
(see Fig. 3.43). It confirms the fact that the first sequence does not require any
rectification since the rotation axis is close to the y axis (1.15 degrees of deviation).
However, the second sequence rotation axis is very far from the y axis (68.7 degrees),
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Figure 3.44: Stereo force computation for the Anyi sequence. From left to right, view of the
correlation voting volume after binarization of the accumulated correlation (threshold=15),
octree partition and GVF norm.

98283 vertices 23651 vertices 63420 vertices 217072 vertices

Figure 3.45: Deformable model evolution while increasing the resolution. From left to right:
visual hull, low resolution, medium resolution and high resolution models after convergence.
Top: front view. Bottom: rear view.

which justifies the deformation introduced by the rectification process. Nevertheless,
this is not very important in the reconstruction process of the Anyi object since the
first sequence already recovers the right object surface. The second sequence will then
be useful to compute a more accurate texture map.

In Fig. 3.44 we show the multi-correlation voting volume and the GVF computation
for the first Anyi sequence. We can appreciate the fact that the octree has only 9 levels.
This is due to the low resolution of the images, where only 1/6 of the total pixel area
is effectively used for the object (the rest is background).
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Figure 3.46: Two views of the final textured Anyi model.

Figure 3.47: Comparison between using the two color sequences to generate the texture map
(left) or using only the first color sequence (right).

In Fig. 3.45 we show the evolution of the deformable model for different mesh
resolutions. We first let the mesh converge with a low resolution and increase it
progressively until the desired resolution is obtained. However, we can note that there
is too little difference between the medium resolution mesh and the high resolution
one, although the latter has 4 times more vertices. This shows the limit of the original
images, which is translated into a ”low” resolution octree volume.

Despite the low resolution of the images, the final model has many details and
allows a good representation of the original object (see Fig. 3.46). In particular, we
appreciate in Fig. 3.47 the improvement of computing the texture map with all the
available color images (2 sequences) instead of using only the first color sequence (see
Fig. 3.47 right).
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3.5.2 Toro Sequence

Figure 3.48: Some of the original images used in the reconstruction of the Toro object. The
original images are 4500x3000 pixels. Top: first color sequence with 9 samples of a total of
36 color images with the corresponding silhouettes. Bottom: second color sequence with 9
samples of a total of 36 silhouette images with the corresponding silhouettes.

For the Toro object we dispose of two sequences of 36 images of 4500x3000 pixels.
The object has been manually moved between both sequences, while the camera stays
fixed, as seen in Fig. 3.48. This object is special for 3 reasons: we have manually
moved the object, we do not dispose of the silhouettes and it has a big concavity on
its back, small and deep.

The silhouettes themselves are not very difficult to extract using the color histogram
algorithm described in appendix A.4. However, two problems degrade the final quality
of the silhouette extraction: blurring and the turntable.

Blurring is a problem for both sequences and its effect is really bad for the silhouette
extraction. This can be observed if we compute the gradient of one color image as in
Fig.3.49, where we clearly distinguish the imprecision on the contour extraction in the
parts of the object that are outside the field of view of the camera.

Figure 3.49: Strong Blurring distortion due to a small field of view of the Toro sequence.
Left: original image. Right: corresponding intensity gradient.
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Figure 3.50: Separation of the turntable silhouette from the object silhouette by line clipping.
Left: original extracted silhouette. Right: clipped silhouette (the clipped region is shown by
the red ellipse).

The second problem is how to separate the object silhouette from the turntable
silhouette. The turntable is easy to remove for the first sequence by just clipping
all the silhouettes with a horizontal line. The same task is more complicated for the
second sequence (see Fig. 3.50) so we need to be a little more conservative to avoid
eroding the object silhouette.

As a consequence, although silhouettes are well extracted in an ”image processing”
sense, in practice they are not very accurate. Despite the silhouette inaccuracy, we
are able to register both silhouette sequences using the silhouette coherence criterion,
but the final mutual coherence score indicates the overall quality of the silhouettes:
after registration, the mutual coherence is only of 87%. Nevertheless, the registration
quality is enough to reconstruct using both sequences (see Fig. 3.51).

In Fig. 3.52 we show the correlation volume and the GVF computation using only
the first color sequence. We appreciate the fact that we are not able to recover the
top of the object since the first sequence never sees it. If we compute the second
correlation volume and add it to the first one (see Fig. 3.53 top), we obtain a much
more complete correlation volume (see Fig. 3.53 top right). In particular, we recover
the convavity on the top of the object, which was invisible for the first sequence color
sequence.

In order to accelerate the recovery of the concavity on the top the object, we have
first iterated the deformable model with a low resolution GVF with only 8 levels (see
Fig. 3.54). Upon convergence, we have computed a more refined mesh with the 10-level
GVF.

Figure 3.51: Visual hulls computed with both sequences after registration. From left to right:
visual hull of the first sequence, visual hull of the second sequence, superposition of both visual
hulls and intersection of both visual hulls.
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Figure 3.52: GVF computation for the first Toro sequence. From left to right: rendered view
of the correlation volume after binarization of the accumulated correlation (threshold=30),
octree partition and GVF norm.

Figure 3.53: GVF computation using the two Toro sequences. Top: from left to right, ren-
dered view of the mixed correlation volumes after binarization (threshold=30), octree partition
and GVF norm. Bottom: octree partition and GVF norm using only 8 levels of depth.

Finally, we present in Fig. 3.55 two views of the final model with a texture map
created using the two color sequences.
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Figure 3.54: Superposition between the mesh after convergence with a 8-level GVF and 3
slices of the 8-level GVF.

Figure 3.55: Two views of the final Toro model with 54469 vertices. Top: shaded views.
Bottom: same views with texture mapping.
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3.5.3 Buffle Sequence

Figure 3.56: Some of the original images used in the reconstruction of the Buffle object. Al-
though the original images are 3040x2008 pixels, after cropping they are reduced to 1800x1400
for the first sequence and 1600x1600 pixels for the second sequence. Top: first color sequence
with 6 samples of a total of 36 color images with the corresponding silhouettes. Bottom: 8
samples of a total of 36 silhouette images with the corresponding silhouettes.

We dispose of two sequences of 36 images independently calibrated (see Fig. 3.56)
and an additional silhouette sequence corresponding to the silhouettes of the first color
sequence. Again, we do not know the transformation between the two color sequences.
However, the difficulty to register both sequences is the fact that it is really difficult
to extract all the silhouettes from the second color sequence. As a result, we have
only manually extracted some of them (all the extracted silhouettes from the second
sequence are shown in Fig. 3.56 bottom).

Once we have the two sequences of silhouettes, we can register them using the
silhouette coherence criterion. In Fig. 3.57 we present the two visual hulls after
registration and its intersection, i.e., the visual hull defined by the silhouettes of the
first sequence and the second sequence. The mutual coherence after registration is of
95%, which a very good result.

It is worth noting that, once we have registered the two sequences, we can compute
the correlation volume inside the visual hull defined by both sequences. The more
refined the visual hull is, the faster the correlation volume computation will be, since
the correlation algorithm will search inside a smaller 3D interval. In Fig. 3.58 we
present the correlation volumes of both sequences and the resulting total correlation
volume. Although the second sequence rotation axis is far from the y-axis (28.8 degrees
of deviation), the correlation algorithm still performs quite well (Fig. 3.58 middle).

The volume of correlation on Fig. 3.58 right can then be used to compute a high
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Figure 3.57: Visual hulls of the two silhouette sequences after registration. The final mutual
coherence is of 95%. From left to right: visual hull of the first sequence using 36 silhouettes,
visual hull of the second sequence using 8 silhouettes and both visual hulls superposed.

Figure 3.58: From left to right, correlation volumes corresponding to the first sequence, the
second sequence and the two volumes mixed. All the volumes have been binarized with a
threshold of 30.

resolution GVF (Fig. 3.59). After convergence of the deformable model, we recover the
contour generators (α component of Fsil) of the model (see Fig. 3.60) as an additional
output of the algorithm.

Figure 3.59: GVF computation for the Buffle model. Left: octree partition. Right: GVF
norm.
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Figure 3.60: Silhouette force after convergence of the deformable model. Left: mesh after
convergence. Middle: detected contour generators (α component). Right: distance to the
visual hull (dV H component).

We can appreciate in Fig. 3.61 the high quality of both the recovered 3D model
and the computed texture map.

Figure 3.61: Final Buffle model with 58734 vertices. Top: 3 shaded views. Bottom: the
same views with texture mapping.
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3.6 Snapshot of the Best 3D Reconstructions

Figure 3.62: Some of the reconstructed objects with the proposed technique (1/2).
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3.6 Snapshot of the Best 3D Reconstructions

Figure 3.63: Some of the reconstructed objects with the proposed technique (2/2).
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Conclusions and Perspectives

We have presented a new approach to 3D object modeling from partially calibrated im-
ages under circular motion that mixes silhouettes and stereo. We have addressed two
main problems in a Computer Vision 3D modeling approach: camera calibration and
structure recovery. Camera calibration is accomplished with the definition and imple-
mentation of the silhouette coherence criterion, which extends the epipolar tangency
criterion when dealing with more than two silhouettes. The 3D modeling algorithm
allows us to fuse silhouettes and stereo in a robust way, providing high quality models
under real lighting conditions.

The combination of the proposed calibration and reconstruction algorithms pro-
vides a complete 3D modeling pipeline that greatly simplifies the modeling process,
without the requirement of a calibration pattern. However, this flexibility is obtained
at the price of introducing a crucial step into the modeling pipeline: silhouette extrac-
tion. Since both the calibration and reconstruction algorithms make an intensive use
of silhouettes, their correct extraction is a very important step (and sometimes the
bottleneck) of the modeling pipeline. A first general rule to obtain good silhouettes is
to use an homogeneous “out of focus” background. Although chromakey techniques
can be used, the use of a neutral gray color is preferable to avoid undesirable color
shift of the texture. Another possibility is to use a highlighted background to create
a Chinese shadow, which requires the acquisition of two sequences: one for the color,
and another for the silhouettes.

As a general conclusion, the proposed silhouette-based calibration approach works
quite well in practice. Future work should be focused on the definition of a polygon-
based similarity measure between the original silhouettes and the visual hull silhou-
ettes. It should improve the convergence properties and the accuracy of the current
implementation of the silhouette coherence criterion, which is based on a silhouette
contour sampling approach. Il should also enable the criterion to be used in a more
general scenario other than circular motion. However, special attention should be paid
to the computation time of such a criterion, since it might be too computationally ex-
pensive to be used in practice.

Finally, the 3D modeling approach has been extensively tested with more than
100 objects. Short-term improvements should include the visibility handling of the
deformable model under the action of the stereo force (the multi-resolution GVF field).
In particular, the stereo force should only attract the surfaces that lie between the
stereo correlation hits and the cameras that generated them. Furthermore, any optic
ray that generated a valid correlation hit should only intersect the final surface in one
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point. Also, the deformable model evolution should deal better with convergence and
high curvature edges. As a middle-term improvement, the deformable model should be
able to recover the correct topology from stereo whenever silhouettes do not recover
the right topology. A possible solution could be to detect topology problems and
locally update the topology of the mesh. Another possibility would be to launch a
local level-set method to allow stereo-driven topology changes. As a long-term work,
additional informations could be mixed together with silhouettes and stereo, such as
albedo or radiance.
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Appendix A

Automatic Silhouette Extraction

A.1 Introduction

If we search for the word silhouette in the online Britannica enciclopaedia www.britannica.com,
we find the following definition: an image or design in a single hue and tone, most
usually the popular 18th- and 19th-century cut or painted profile portraits done in black
on white or the reverse. Silhouette also is any outline or sharp shadow of an object.

Silhouette-like images can be found among Stone Age cave paintings, ancient Greek
vase paintings and Indonesian shadow puppets. But the term and what most people
think of as silhouettes originated in the early eighteenth century in Europe. The word
was satirically derived from the name of the mid-18th-century French finance minister
Étienne de Silhouette, whose hobby was silhouette cutting. The first silhouettes may
have been the profiles made of King William and Queen Mary, produced about 1700.
The English word for this kind of art piece was ”shade”. Their popularity was estab-
lished by 1720, and spread to France and to the United States later in the century. The
first silhouettes were painted images, taken from a subject’s shadow, and subsequently
reduced in size, often with a pantograph. The medium of early silhouettes was lamp
black on plaster or glass. Later, silhouettes have been created by cutting a positive
shape from black paper from direct observation of a model, at a smaller size, then
mounting it on a white ground.

Concerning the scientific application of silhouettes, they are considered as one of the
most robust features that can be extracted from an object. Silhouettes are an impor-
tant source of shape information and are used in many different domains of Computer
Vision such as object recognition, object reconstruction or camera calibration.

One of the most difficult steps in Computer Vision is the extraction of information
from the original sources: the images. This is also true for all the silhouette-based
algorithms: the most difficult step is the silhouette segmentation 1. Silhouette extrac-
tion is obligatory and it is very often short-circuited by imposing heavy constraints
to the acquisition problem or by simply doing a manual segmentation. In the con-
text of this work, i.e., the scanning of 3D objects, we need an almost automatic way
of silhouette segmentation and even if the manual segmentation can be used, it is
strongly discouraged: in our usual acquisition 36 high resolution pictures are used.
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A.2 JSEG Algorithm

Figure A.1: Left: greek vase with silhouette forms. Middle: illustration from the first edi-
tion of Lavater’s Physiognomy, 1790, showing how where created the first silhouette paintings.
Right: John Meirs’ 18th century silhouette art work.

This makes the automatic silhouette segmentation something highly desirable. In the
case of really complicated objects, we also have the possibility of imposing more acqui-
sition constraints in order to simplify the segmentation step. The extreme case being
the use of a Chinese shadow technique, i.e., the use of an illuminated background
to produce a natural silhouette. This technique has two drawbacks: i) it cannot be
easily applied to very big objects, ii) it requires more photographic work at the acqui-
sition time since two pictures per viewpoint with different lighting setup need to be
taken: one for the texture and one for the silhouette. Hence, we are more interested in
automatic silhouette segmentation of a single image sequence based on color and/or
texture information.

In the following sections we describe 3 different algorithms that we have tested
for automatic silhouette extraction based on the color similarity: we suppose that the
background has a constant2color.

A.2 JSEG Algorithm

The JSEG algorithm has been developed by [Deng and Manjunath, 2001] as a robust
algorithm for automatic segmentation of color-texture regions in images and video.
The main approach of the algorithm is to separate into two different steps the use of
color information and spatial information. Color information is first used by strongly
quantizing the color space of the original image into a few principal color classes which
give a class partition of the image [Deng et al., 1999]. Then the image is replaced
by the class-map and a spatial segmentation is performed over the class-map. The

1Although there exist very performing chromakey techniques used in TV or movie special effects,
they are in general not acceptable for museum objects since they produce strong color artifacts on
the object surface due to a diffuse or specular reflection of the background color.

2The best results in terms of “color transfer” between the object and the background are obtained
with neutral background colors as in the example of Fig. A.1 left.
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J = 1.720 J = 0.855 J = 0

Figure A.2: An example of different class-maps and their corresponding J values. Images
coming from [Deng and Manjunath, 2001].

spatial segmentation uses a measure of segmentation quality similar to the clustering
techniques used in the k-means algorithm (see [Ball and Hall, 1965] or [Diday, 1970]),
i.e., a measure that takes into account the ratio between the inter-class distance and
the intra-class distance. They propose the quality measure J as follows. Let Z be the
set of all N pixel positions z = (x, y) in the class-map. Suppose Z is classified into C
classes of Ni data members each, Zi, i = 1, . . . , C. We can define both the class-map
mean m and the intra-class mean mi as,

m =
1

N

∑
z∈Z

z, mi =
1

Ni

∑
z∈Zi

z.

Let ST be the variance of the entire class-map, SW the intra-class variance and SB the
inter-class variance:

ST =
∑
z∈Z

||z − m||2,

SW =
C∑

i=1

Si =
C∑

i=1

∑
z∈Zi

||z − mi||2,

SB = ST − SW .

The measure J is defined as

J = SB/SW = (ST − SW )/SW .

The measure J depends only on the color quantization of the image, since it is the
color quantization that determines the class-map distribution. We see in Fig. A.2
three examples of class-maps with three different J values. The J values only depend
on the spatial distribution of the +,o and ∗ labels.

To take into account a particular segmentation of the class-map, they propose to
recalculate J over each segmented region instead of the entire class-map and define
the average J̄ as

J̄ =
1

N

∑
k

MkJk,
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J+ = 0, J∗ = 0, Jo = 0 J+ = 0, J∗ = Jo = 0.011
J̄ = 0 J̄ = 0.005

Figure A.3: Segmented class-maps and their corresponding J̄ values. Images coming from
[Deng and Manjunath, 2001].

where Jk is J computed over region k and Mk is the number of points in region k (see
Fig. A.3). J̄ can be seen as a segmentation criterion where the best segmentation is
the one that minimizes it. At this point the algorithm suffers from the same problems
as the clustering algorithms [Ball and Hall, 1967] or the Mumford and Shah [Mumford
and Shah, 1989] formulation: we do not know the number of regions to segment. This
implies that this additional information has to be introduced manually. To avoid this
problem, the authors propose a different approach to construct the partition mini-
mizing the J̄ energy. They consider the local measure of J as a boundary indicator
inside the image. For this they introduce the notion of J-image as a gray-scale image
whose pixel values are the J values of a local window centered on that pixel. The
result is a sort of gradient map where boundaries are represented by high J values
and uniform regions are represented by low J values. Based on the J-images they
propose an algorithm of region growing where the initial seeds are the centers of low
J value regions. To accelerate computations, a multi-scale version of the J-image is
used where the class-map is downsampled by half at each new scale level. At the end
on the region growing step, an additional region merging step is performed in order to
reduce the over segmentation produced by the region growing.

Next we present some practical cases of segmentation using the jseg software avail-
able at the jseg home page vision.ece.ucsb.edu/segmentation/jseg. In Fig.A.4
we present an original image and two different quantizations of the original image with
8 and 5 colors respectively. In both cases the background is quantized with one color.
This means that, except for the dark gray bottom of the left foot that is considered as
the background, the image is already well segmented by just choosing the background
color class. Following the jseg algorithm, the next step is to compute the J-images
of the quantized image using different window sizes, which correspond to the different
levels of resolution of the algorithm (see Fig.A.5). The J-images are then used as
a height map to detect different regions by region growing. We can see the region
growing results corresponding to different levels of resolution in Figure A.6. In Figure
A.7 we show the results after region merging. As we can appreciate in the algorithm
sequence, the hardest part of the segmentation is achieved by the color quantization
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Figure A.4: From left to right, the original image, quantized image with 8 colors, and
quantized image with 5 colors of the Porcinet object.

Figure A.5: From left to right three J-images computed over the 5-class quantized image
with a window size of 9, 17 and 33 pixels respectively.

algorithm. Then, the fact of using multi-resolution J − images certainly allows an
overall good segmentation but it also greatly degrades the quantization result produc-

Figure A.6: Segmentation before region merging using 1, 2 and 3 scale resolutions.

165



A.2 JSEG Algorithm

Figure A.7: Segmentation after region merging for 1, 2 and 3 scale resolutions.

Figure A.8: Two additional examples of image segmentation for the Anyi and Coignard
statues. We can appreciate both the strengths and the flaws of the algorithm: good color
segmentation but poor segmentation precision.

ing smoothed regions with bad precision. In Figure A.8 we can see two segmentation
results obtained on two different statues.

166



Automatic Silhouette Extraction

A.3 Level Set Algorithm using the Mumford and

Shah Model

A theoretic framework to the problem of image segmentation in computer vision was
first developed by [Mumford and Shah, 1989]. Based on this model, there exists
abundant literature concerning the existence and uniqueness of a solution to this image
segmentation problem. Let Ω ∈ R

2 be open and bounded. Let C be a closed subset
in Ω made up of a finite set of smooth curves. C divides Ω into a set of connected
components Ωi so that Ω = ∪iΩi ∪ C. A gray-level image u0 is defined as a function
u0 : Ω → R. The segmentation problem as described by [Mumford and Shah, 1989] is
posed as follows: given an observed image u0, find the optimal decomposition C and
piecewise smooth approximation u of u0, so that u varies smoothly within each region
Ωi and discontinuously across the boundaries of Ωi. To solve this problem, [Mumford
and Shah, 1989] propose solving the following energy minimization problem:

inf
u,C

{∫
Ω

(u − u0)
2dxdy + µ

∫
∪iΩi

||∇u||2dxdy + ν|C|
}

, (A.1)

where µ > 0 is the weight controlling the smoothness inside the regions Ωi and ν > 0
is the weight controlling the length of the curves that define the different regions Ωi.
Among all possible implementations to solve the above minimization problem, one
which is particularly interesting is the level set implementation [Osher and Sethian,
1988]. Level sets are a particular category of deformable models. Their most important
characteristic is they actually increase the dimension of the problem by one. This
provides one of its most powerful properties: the possibility of changing the topology.
This is achieved by the use of an implicit representation of the deformable model where
the domain is a fixed rectangular grid. In the case of 2D deformable contours, the 2D
contour γ(s) is seen as the zero level set of a scalar function φ : Ω → R (see Fig. A.9)
so that: 

φ(x) > 0 in ω,
φ(x) < 0 in Ω\ω,
φ(x) = 0 on ∂ω.

(A.2)

For a given contour γ(s), a typical level set function φ is given by the signed distance
function to the curve.

The level-set evolution equation is a special case of a classic deformable model
where the displacement of the model is always done along the normal to the surface.
In fact, any classic evolution equation of the form:

∂γ(s, t)

∂t
= F (γ(s, t))n(s, t), (A.3)

F being the amplitude of the force applied to the deformable model, has its corre-
sponding level set equation of the form:

∂φ(x, t)

∂t
= F (x)||∇φ(x, t)||, (A.4)
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C

C

φ>0
ω

φ>0
ω

φ<0

Ω ω

Figure A.9: Two curves given by the zero level of the function φ. The sign of the function
φ partitions the domain into two regions {(x, y) : φ(x, y) < 0} and {(x, y) : φ(x, y) > 0}.

so that solving equation A.4 is equivalent to solving A.3. The derivation of this
equivalence is obtained if we take into account the two constraints that link φ(x, t)
and γ(s, t):

• The curve γ(s, t) must be a level set (iso-level contour) of φ(x, t), meaning that
the value of φ(x, t) must be constant along γ. This condition can be posed as:

∂φ(x, t)

∂s

∣∣∣∣
x=�γ(s,t)

=
∂φ(x, t)

∂x
· ∂γ(s, t)

∂s
= ∇φ(x, t) · ∂γ(s, t)

∂s
= 0, (A.5)

which implies ∇φ(x, t) · n(s, t) = 0.

• The level set value corresponding to γ(s, t) cannot change during the evolution
of φ(x, t), it must stay fixed:

∂φ(x, t)

∂t

∣∣∣∣
x=�γ(s,t)

=
∂φ(x, t)

∂x
· ∂γ(s, t)

∂t
+

∂φ(x, t)

∂t
= 0. (A.6)

From equation A.5 and the convention of the level set sign (see Fig. A.9), i.e., the
region bounded by γ(s, t) corresponds to φ > 0, the normal n(s, t) to the zero level set
function γ(s, t) can be defined as:

n(s, t) = −
∇φ(x, t)

||∇φ(x, t)||

∣∣∣∣∣
x=�γ(s,t)

. (A.7)

From equation A.6 and equation A.7, we get:

∂φ(x, t)

∂t
= −∇φ(x, t) · ∂γ(s, t)

∂t
= ||∇φ(x, t)||n(s, t) · ∂γ(s, t)

∂t
,

which together with equation A.3 gives:

∂φ(x, t)

∂t
= ||∇φ(x, t)||n(s, t) · n(s, t)F (x) = ||∇φ(x, t)||F (x).
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This equivalence between classic deformable models and level sets requires F (x) to be
defined not only on γ(s) but on all the domain Ω. Sometimes this extension to the
entire domain can naturally be done while the rest of the time the extension has to
be synthesized. In the present case of image segmentation we will see that we do not
need to synthesize F (x) since we can find a formulation were F (x) is naturally defined
over the entire domain.

The composition of F (x) for a level set evolution equation is the same as for a
classic deformable model: a data term Fd and a smoothing term Fs:

∂φ

∂t
= ||∇φ||(Fs + Fd).

The data term is given by the particular problem that we try to solve. The smoothing
term is specific to the level set form and is usually composed by a curvature term:

Fs = νdiv

(
∇φ

||∇φ||

)
,

where ν is a weight that controls the degree of smoothing. In the case of a 2D level
set the curvature is the following:

div

(
∇φ

||∇φ||

)
= div

(
[φx φy]

(φ2
x + φ2

y)
1/2

)
=

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

.

For the two-class binarisation problem, i.e., one background and one foreground colors,
[Chan and Vese, 2001] propose the following data speed Fd:

Fd = (u0 − c0)
2 − (u0 − c1)

2, (A.8)

where c0 and c1 are the background and foreground mean colors, respectively, com-
puted as:

c0 =

∫
φ<0

u0dxdy∫
φ<0

dxdy
, c1 =

∫
φ>0

u0dxdy∫
φ>0

dxdy
.

They show that this speed corresponds to the minimization of the following energy
(not proven here):

E(c0, c1, φ) =

∫
φ<0

(u0 − c0)
2dxdy +

∫
φ>0

(u0 − c1)
2dxdy, (A.9)

i.e., it searches to partition the image into two constant colors, minimizing the mean
square error to decide if a pixel belongs to one class or to another. As noted by
[Chan and Vese, 2001], this model has several advantages compared to other active
contour models: detection of interior contours, robust initialization, and detection of
cognitive contours (without gradient). Equation A.9 can be seen as a specialization
of the region-based energy defined by [Cohen et al., 1993, Cohen, 1997]. The main
difference is that, in [Cohen et al., 1993], the image is considered to have only one
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homogeneous region, while the rest of the image is not homogeneous. Equation A.9
is even more specialized and considers that the image can be partitioned into two
different homogeneous regions.

In [Vese and Chan, 2002] they extend the original idea to n-phase segmentation,
n being the number of desired regions of the partitioned image. The main difference
with other multi phase level set segmentation methods is the way they use the level
sets to code the different regions. All the previous methods such as [Zhao et al.,
1996], [Samson et al., 2000] or [Paragios and Deriche, 2000] use one level set per
phase, which poses some problems of overlap and vacuum since, to define an image
partition, the intersection of all the regions must be empty and the union must be the
entire domain. These problems are solved by imposing additional constraints in order
to guarantee the partition properties. [Vese and Chan, 2002] proceed in a different
way and use all the possible regions created by the combination of all the available
level sets. If we use m level sets, we have up to 2m regions, where each region is coded
with a 2-base m-tuple (b0, · · · , bm−1), with bj=0,··· ,m−1 ∈ {0, 1}. Each bit bj represents
a level set and its value (0 or 1) corresponds to the region defined by φj < 0 or φj > 0.
A given region ωi=0,··· ,2m−1 is then defined as the intersection of all the corresponding
level set regions:

ωi =
m−1⋂
j=0

{
φj < 0 if bj = 0
φj > 0 if bj = 1

, i =
m−1∑
j=0

bj · 2j.

Coding the regions in this way allows [Vese and Chan, 2002] to use only m = log2(n)
level sets to partition an image into n different regions. The following step is to
construct a valid set of speeds {F j

d , j = 0, · · · ,m − 1} that minimize the desired
energy. For a n-phase segmentation problem, the energy to minimize is simply the
extension of equation (A.9):

E(c0, · · · , cn−1, φ0, · · · , φm−1) =
n−1∑
i=0

∫
χi(u0 − ci)

2dxdy, (A.10)

where χi is the characteristic function of the region ωi. To find the speed set F j
d , [Vese

and Chan, 2002] propose to simply minimize equation (A.10), which gives:

F j
d =

n−1∑
i=0

χi

(
(u0 − cA(i,j))

2 − (u0 − cB(i,j))
2
)
, (A.11)

where the indices A(i, j) and B(i, j) are computed as:

A(i, j) =
m−1∑

k=0,k �=j

bk · 2k + 0 · 2j,

B(i, j) =
m−1∑

k=0,k �=j

bk · 2k + 1 · 2j,

170



Automatic Silhouette Extraction

with (b0, · · · , bm−1) being the base-2 decomposition of the index i =
∑m−1

k=0 bk · 2k.

For a given level set φj, equation (A.11) simply compares the color of a given pixel
with the colors of the two regions obtained changing the sign of φj. This is logic since,
for a given level set φj at a particular pixel position, the only choice that we have
is whether to preserve the actual sign of the level set or to change the speed sign in
order to change the level set sign. This is the same behavior as equation (A.8). The
problem with the speed is that the choice of its sign is only based on a subset (actually
only two) of all the region colors. This means that, for a given pixel, the choice of the
best region is only made using a few colors and not all the region colors. On the one
hand, as shown by [Vese and Chan, 2002], this suffices for a large number of images to
converge to a correct segmentation. On the other hand, the initialization takes a very
important place since, depending on the initial image partitioning, the segmentation
will converge to a local minimum due to the impossibility of selecting the globally best
color. We propose a way to improve this convergence problem by using all the region
colors in the decision, which can be achieved using the following speed set:

F j
d = min

i∈I0(j)

{
(u0 − ci)

2
}− min

i∈I1(j)

{
(u0 − ci)

2
}

, (A.12)

with

I0(j) =

{
i =

m−1∑
k=0

bk · 2k, bj = 0

}
,

I1(j) =

{
i =

m−1∑
k=0

bk · 2k, bj = 1

}
.

Here we compare the color of a given pixel with the color of all the regions and, based
on this comparison, we decide to keep or to change the sign of the speed function.
This new speed set dramatically improves the convergence properties of the multi-
phase segmentation algorithm.

In order to better see the shape of equations (A.11) and (A.12), we can develop
them for the special case of m = 2, n = 2m = 4, i.e., a 4-phase segmentation with two
level sets, where the indices i, A(i, j) and B(i, j) of equation A.11 are represented in
base-2 for more clarity, i.e., χb1b0 , cb1b0 . Equation (A.11) becomes:

F 0
d = χ00 ((u0 − c00)

2 − (u0 − c01)
2) + χ01 ((u0 − c00)

2 − (u0 − c01)
2) +

χ10 ((u0 − c10)
2 − (u0 − c11)

2) + χ11 ((u0 − c10)
2 − (u0 − c11)

2) ,

F 1
d = χ00 ((u0 − c00)

2 − (u0 − c10)
2) + χ01 ((u0 − c01)

2 − (u0 − c11)
2) +

χ10 ((u0 − c00)
2 − (u0 − c10)

2) + χ11 ((u0 − c01)
2 − (u0 − c11)

2) ,

(A.13)
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where χi is the characteristic function of the region ωi:

χ00(x) =

{
1 if φ0(x) < 0 and φ1(x) < 0
0 else

χ01(x) =

{
1 if φ0(x) > 0 and φ1(x) < 0
0 else

χ10(x) =

{
1 if φ0(x) < 0 and φ1(x) > 0
0 else

χ11(x) =

{
1 if φ0(x) > 0 and φ1(x) > 0
0 else

,

and ci is the mean color of the original image u0 computed inside the region ωi:

ci =

∫
ωi

u0dxdy∫
ωi

dxdy
=

∫
Ω

χiu0dxdy∫
Ω

χidxdy
.

Equation (A.12) gives:

F 0
d = min {(u0 − c00)

2, (u0 − c10)
2} − min {(u0 − c01)

2, (u0 − c11)
2} ,

F 1
d = min {(u0 − c00)

2, (u0 − c01)
2} − min {(u0 − c10)

2, (u0 − c11)
2} .

(A.14)

In Figures A.10 and A.11 we can see the level set evolution for the equation (A.13). In
Fig.A.10 we show the evolution of the zero level sets of the two level sets functions φ0

and φ1 together with the original image. In Fig.A.11 we show the same evolution with
the regions colored with their corresponding mean colors ci. As we can appreciate, the
level sets converge to the global minimum, giving a very good segmentation except
for the right foot, where the bottom of the foot is integrated into the background
due to the shadows. The same evolution but with a different initialization is shown
in Figures A.12 and A.13. As a difference with the previous case, equation (A.13)
gets locked into a local minimum and is unable to converge properly. The problem
is that some pixels need to change both signs of the two level sets but they cannot
since passing through one of the intermediate states (only one level set changes at a
time) temporary increases the overall energy: in Fig.A.13 a green pixel classed as gray
(class c00) needs to be temporary classed as a pink or red pixel (classes c01 and c10) in
order to be finally classed as green (class c11). The same applies to red pixels that are
classed as pink and vice versa.

This problem does not happen with the proposed speed set (A.14) since, for the
same initialization, the color comparison will always give us the best classification
independently of the current one (see Fig.A.14). This implies that the overall energy
may temporary increase when one level set changes its sign quicker than the other,
which in this case means that some pink pixels will be classed as gray or green until
the slowest level set changes its sign (see Fig.A.15).

Although convergence can be greatly improved by reinitializing the level sets to the
distance function of the zero level sets, the results shown have been obtained without
reinitialization, which increases the overall number of iterations.
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iteration 0 iteration 10 iteration 20

iteration 30 iteration 400 iteration 600

iteration 800 iteration 1000 iteration 1200

iteration 3000 iteration 6000 iteration 8000

Figure A.10: 4-phase segmentation using [Vese and Chan, 2002] speed. The level sets are
able to converge to the global minimum. φ0 and φ1 zero level set are drawn in black and
white color, respectively.
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iteration 0 iteration 10 iteration 20

iteration 30 iteration 400 iteration 600

iteration 800 iteration 1000 iteration 1200

iteration 3000 iteration 6000 iteration 8000

Figure A.11: 4-phase segmentation using [Vese and Chan, 2002] speed. The level sets are
able to converge to the global minimum. The four regions are drawn with their corresponding
mean color.
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iteration 0 iteration 10 iteration 20

iteration 30 iteration 40 iteration 50

iteration 60 iteration 70 iteration 80

iteration 100 iteration 200 iteration 8000

Figure A.12: 4-phase segmentation using [Vese and Chan, 2002] speed. The level sets get
locked into a local minimum due to the initialization. φ0 and φ1 zero level set are drawn in
black and white color, respectively.
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iteration 0 iteration 10 iteration 20

iteration 30 iteration 40 iteration 50

iteration 60 iteration 70 iteration 80

iteration 100 iteration 200 iteration 8000

Figure A.13: 4-phase segmentation using [Vese and Chan, 2002] speed. The level sets get
locked into a local minimum due to the initialization. The four regions are drawn with their
corresponding mean color.
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iteration 0 iteration 10 iteration 20

iteration 30 iteration 400 iteration 600

iteration 800 iteration 1000 iteration 1200

iteration 3000 iteration 6000 iteration 8000

Figure A.14: 4-phase segmentation using the proposed speed. The level sets are able to
converge to the global minimum. φ0 and φ1 zero level set are drawn in black and white color,
respectively.
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iteration 0 iteration 10 iteration 20

iteration 30 iteration 400 iteration 600

iteration 800 iteration 1000 iteration 1200

iteration 3000 iteration 6000 iteration 8000

Figure A.15: 4-phase segmentation using the proposed speed. The level sets are able to
converge to the global minimum. The four regions are drawn with their corresponding mean
color.
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A.4 Color Histogram Algorithm

This simple method makes the hypothesis that the colors appearing on the background
are different from those of the object. Both Commercial and free software such as Pho-
toshop or Gimp dispose of a basic tool (called magic wand) that performs a simplified
version of this algorithm. The basic implementation selects a background color (a
point in 3D color space) and chooses the color cube with a given edge size (the color
tolerance) centered on the selected background color as the histogram of the back-
ground. The color space does not need to be RGB and can be a more sophisticated
one such as Lab. In our implementation, we have developed a more sophisticated
approach by constructing the color histogram using a learning region of the image.

Once we have the histogram, all the implementations proceed in the same way.
Based on the histogram, the algorithm simply tags each pixel on the image as belonging
or not to the color histogram, which already gives us a binary image. To obtain
more reliable results, the biggest foreground component is selected and background
components smaller than a minimum size are rejected.

Although this technique is quite robust, it can fail in two ways:

• The first one is not extremely harmful and happens when a region inside the
object has a color belonging to the histogram, which produces a hole in the
binary image. This type of holes can be filled either manually or in a semi-
automatic way. Automatic detection of this kind of holes can work since in
general, the contours of the hole are not smooth and have a very characteristic
shape.

• The second case is more problematic. It occurs when the object has a color
of the histogram on the silhouette contour. This makes the silhouette of the
object be eroded and, in general, there are few possibilities to automatically
correct this kind of problem. The only solution is to try to refine the background
color histogram to exclude that particular object color while keeping a good
segmentation.

This algorithm is the one that has been used for the extraction of the silhouettes
from the color sequence whenever the silhouette sequence was not available in Chapter
3.
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