

Computer Vision and Robotics Research at CUED

Department of Engineering University of Cambridge

Application of well-founded mathematics to tough problems:

- **Reconstruction** (construction 3D models from uncalibrated images)
- Localisation (determining pose from no/weak prior information)
- Visual tracking (following pose of complex structures)
 - Applications in
 - Gesture-based interfaces
 - Augmented Reality
 - Visually guided robotics

Reconstruction

• Build 3D model using images from uncalibrated camera

Reconstruction

- Exploit geometric properties of circular motion to
 - Recover axis of revolution
 - Determine camera characteristics (including focal length)
 - Compute orientation of each image
- Use silhouettes to carve 3D model
- Refine 3D model by registering and carving silhouettes of novel views

- Determine pose from single image
- Match to database
- Triangulate position

- Determine pose from single image
- Match to database
- Triangulate position

- Determine pose from single image
- Match to database
- Triangulate position

- Uses constraints offered by architectural scenes
 - sets of edges converging on two orthogonal vanishing points
- Transforms novel view into canonical frame
- Matches stored view using feature correspondence
 well-localised features (peaks in autocorrelation function)
- Camera localised by triangulating features

Visual tracking

- Pose determination from video stream
- Using CAD models of target structure
 - Polyhedral Models
 - Curved Structures
- Applications
 - Gesture-based user interfaces
 - Augmented reality
 - Visual servoing

Hand tracking

• Track hand pose in cluttered scenes

Hand tracking

- Articulated CSG hand model
 - Truncated quadric primitives
 - 27 raw degrees of freedom (6 pose, 21 internal)
- Learn reduced dimensionality configuration space
 exploit constraints derived from task
- Build hierarchical tree of templates derived from model
 Use statistical pruning and Bayesian framework to determine pose

Tracking polyhedral models Suniversity of CAMBRIDGE

- Track pose of complex structure in real-time (50Hz) ۲
- With robustness to occlusion •

Tracking polyhedral models

- Use CAD model Rendered in predicted pose
 - Pose represented by Lie group
 - Velocities correspond to Lie algebra
- Match rendered edges with image edges at sample points
 Model non-Gaussian statistics of edge measurements
- Can also recover camera parameters
 - focal length etc.

Visual tracking system

Articulated structures

- Extend tracking to articulated structures
 - Revolute and prismatic joints impose constraints
 - Exploit mathematics of Lie groups to satisfy constraints

Visual servoing system

Closed-loop robot control

Following a trajectory

Key Challenges

- Robustness
 - Improved statistical models and dynamical filters
 - Detection and recovery from failure
 - Automatic initialisation
- Integration
 - Sensor fusion (edge, texture, inertial tracking)
 - Processing many cameras (using distributed processing)
 - Closing the AR loop using gesture interfaces
- Reconstruction
 - Rapid building of 3D models from unconstrained data
 - Maintenance of CAD models to reflect changes