Computer Vision and Robotics Research at CUED

Department of Engineering
University of Cambridge
Research themes

Application of well-founded mathematics to tough problems:

• **Reconstruction** (construction 3D models from uncalibrated images)

• **Localisation** (determining pose from no/weak prior information)

• **Visual tracking** (following pose of complex structures)
 – Applications in
 • Gesture-based interfaces
 • Augmented Reality
 • Visually guided robotics
Reconstruction

- Build 3D model using images from uncalibrated camera

Haniwa Sequence under Circular Motion
Reconstruction

• Exploit geometric properties of circular motion to
 – Recover axis of revolution
 – Determine camera characteristics (including focal length)
 – Compute orientation of each image

• Use silhouettes to carve 3D model

• Refine 3D model by registering and carving silhouettes of novel views
Localisation

- Determine pose from single image
- Match to database
- Triangulate position
Localisation

• Determine pose from single image
• Match to database
• Triangulate position
Localisation

- Determine pose from single image
- Match to database
- Triangulate position
Localisation

- Uses constraints offered by architectural scenes
 - sets of edges converging on two orthogonal vanishing points

- Transforms novel view into canonical frame

- Matches stored view using feature correspondence
 - well-localised features (peaks in autocorrelation function)

- Camera localised by triangulating features
Visual tracking

• Pose determination from video stream

• Using CAD models of target structure
 – Polyhedral Models
 – Curved Structures

• Applications
 – Gesture-based user interfaces
 – Augmented reality
 – Visual servoing
Hand tracking

• Track hand pose in cluttered scenes
Hand tracking

• Articulated CSG hand model
 – Truncated quadric primitives
 – 27 raw degrees of freedom (6 pose, 21 internal)

• Learn reduced dimensionality configuration space
 – exploit constraints derived from task

• Build hierarchical tree of templates derived from model
 – Use statistical pruning and Bayesian framework to determine pose
Tracking polyhedral models

- Track pose of complex structure in real-time (50Hz)
- With robustness to occlusion
Tracking polyhedral models

- Use CAD model Rendered in predicted pose
 - Pose represented by Lie group
 - Velocities correspond to Lie algebra

- Match rendered edges with image edges at sample points
 - Model non-Gaussian statistics of edge measurements

- Can also recover camera parameters
 - focal length etc.
Visual tracking system

- Estimated Viewpoint
 - Update Model Pose
 - Compute Euclidean Motion
- Render Model
 - Assign Sample Points
 - Scan Edge Normals
- Estimated Viewpoint
- Render Model
Articulated structures

- Extend tracking to articulated structures
 - Revolute and prismatic joints impose constraints
 - Exploit mathematics of Lie groups to satisfy constraints
Visual servoing system

- Camera Parameters
- 3D Tracking System
- Store target position (or path) on disk
- Euclidean Motion
- Robot Control

Diagram showing the flow of information between the components of the visual servoing system.
Closed-loop robot control
Following a trajectory
Key Challenges

• Robustness
 – Improved statistical models and dynamical filters
 – Detection and recovery from failure
 – Automatic initialisation

• Integration
 – Sensor fusion (edge, texture, inertial tracking)
 – Processing many cameras (using distributed processing)
 – Closing the AR loop using gesture interfaces

• Reconstruction
 – Rapid building of 3D models from unconstrained data
 – Maintenance of CAD models to reflect changes