Detecting and tracking faces and hands

Roberto Cipolla
Department of Engineering

O. Williams and B. Stenger
http://www.eng.cam.ac.uk/~cipolla
The Problem
1: Real-time face detection and tracking
Robust Face Tracking

- Self starting
- Self recovering
- Efficient

object detector

exploit temporal coherence
Creating a Training Set

- Select a few “seed” stills
- Simulate translation, scaling and rotation
 - \(\rightarrow \) labelled training set
RVM Tracking

\{Z_i\} \quad \delta X_1 \quad \delta X_2 \quad \delta X_3 \quad \delta X_N

{t_i} \quad 4D \text{ RVM learns mapping}

Input Space (images) \quad \mathbb{R}^{400}

State space (u,v,s,\theta) \quad \mathbb{R}^{4}$
Detecting frontal faces
Automatic Camera Management

- Use position/scale information to control digital **pan** and **zoom**
Severe Illumination Change
2: Hand detection
3D hand model
3D hand model

- Used as generative model
- Constructed from 35 truncated quadrics (ellipsoids, cones)
- Efficient contour projection
- 27 degrees of freedom
Matching oriented edges

Edge Detection

Robust Edge Matching Using Chamfer Distance

Projected Contours

Input Image

3D Model
Skin colour features

Input Image

Skin Colour Model

Efficient Template Matching

Projected Silhouette

3D Model
Combining features

- Using Training Data to learn linear discriminant function:
 2000 positive examples (hand in correct pose)
 2000 negative examples (hand in different pose & background)

Matching cost for one template:

\[C = C_{\text{area}} + \lambda C_{\text{edge}} \]

\(\lambda \): weighting factor determined from training data

Can also be adapted online to give different weight to features
Tree-based bayesian filtering
Template-based Detection

- Large number of templates are generated off-line to handle global motion and finger articulation.

- Need for
 - Inexpensive template-matching function
 - Distance Transform and Chamfer Matching
 - Efficient search structure
 - Bayesian Tree structure
Matching Multiple Templates

- Use tree structure to efficiently match many templates (>10,000)
- Arrange templates in tree based on their similarity
- Traverse tree using breadth-first search, several ‘active’ leaves possible

Grid-based partitioning of parameter space

Search Tree
The search-tree is brought into a Bayesian framework by adding the prior knowledge from previous frame. The Bayesian-Tree can be thought as approximating the posterior probability at different resolutions.
Tracking - 3D mouse
Rotating in clutter
Opening and closing
Hand detection system
Where am I?
Detecting people
Image-based localisation
Image-based localisation
Image-based localisation
Image-based localisation
Image-based localisation
Image-based localisation
Image-based localisation