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Every part of the
street should be a
safe place to cross.

At DaimlerChrysler, we look at the road with
pedestrians in mind. Which is why we're developing
an intelligent recognition system for our vehicles.
The purpose of this technology will be to sense if
there's an obstacle ahead of the car, and help the
driver to avoid it. Good news for motorists.

And for anyone crossing their paths.
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Answers for questions to come.



Background - using exemplars @




Hierarchical matching with trees ONIVERSITY OF

—~ 'l_‘""“\_



B UNIVERSITY OF
¥ CAMBRIDGE

Template-based Detection

« Large number of templates are generated off-line to handle
global motion and finger articulation.

* Need for
— Inexpensive template-matching function
« Distance Transform and Chamfer Matching
— Efficient search structure
» Bayesian Tree structure
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 Building the 3D hand model and generating templates
 Learning the kinematic prior and building the tree

« Formulating the likelihood

» Tree-based Bayesian filtering

 Detection and tracking experiments
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3D hand model
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Statistical framework &¥ CAMBRIDGE

. Hand model has internal state 0:

. Use prediction (Prior) and measurement from image observation D

Prior p(6t| Dit1) —

Bayes Rule

> Posterior:

L_, p(6:|D11) = k p(Dt| 6v) P(6t|D1:t1)

X p(x)4

Likelihood p(Dt|6x) /\’\
()}

>
X
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Learning the kinematic prior

Data collection with a CyberGlove Kinematic hand model
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Tree-based Bayesian Filter
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 Building the 3D hand model and generating templates
 Learning the kinematic prior

« Formulating the likelihood

» Tree-based Bayesian filtering

 Detection and tracking experiments
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Building the hand model
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Quadric: Second degree implicit surface
defined by points X satisfying X'QX=0.

rank(Q) =4 rank(Q) =3 rank(Q) =2

Ellipsoid Cone Cylinder Pair of Planes
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For modelling more general shapes
truncate quadrics by finding points X
which satisfy:

X'QX=0 and X'TIX>0
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Hand Model &¥ CAMBRIDGE

37 truncated quadrics
« 27 degrees of freedom
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Projection of a Quadric €9 CAMBRIDGE

Assuming a normalized projective camera P = [I | O]

Parameterize 3D points X(s) = {j

X'(s) Q X(s)=0
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Projection of a Quadric (2) ¥ CAMBRIDGE

X' (s) Q X(s)=0

o2

cs®+2b"xs+X ' Ax =0

Condition for X(s) to be on the contour generator of Q:

A=0< X" (CA—bb")x=0

X' Cx=0 C=cA-bb'



BB UNIVERSITY OF

Projecting the Hand Model ¥ CAMBRIDGE

3D model Contours
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3D Hand Model

- Used as generative model

- Constructed from 37 truncated quadrics (ellipsoids, cones)
- Efficient contour projection

- 21 degrees of freedom + 6 pose = 27
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3D Hand Model

- Used as generative model

- Constructed from 35 truncated quadrics (ellipsoids, cones)
- Efficient contour projection

- 27 degrees of freedom
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Single View Tracking ¥ CAMBRIDGE
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Stereo Tracking < CAMBRIDGE
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Kinematic prior for articulated hand
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Capturing Hand Articulation

Data collection with a CyberGlove Kinematic hand model
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. Analyse joint angle data sets using PCA
. 95% of variance is captured by first eight eigenvectors

First principal component Second principal component

Ve & &

Third principal component Fourth principal component

o oW W



55 UNIVERSITYOF

4P CAMBRIDGE

Dimensionality Reduction

. Analyse joint angle data sets using PCA
. 95% of variance is captured by first eight eigenvectors

Third principal component Fourth principal component
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Original Motion (20 1 eigenvector

\ \

3 eigenvectors 5 eigenvectors
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Four basis configurations Trajectories
a % b
¢ d
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Building the search tree
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State-space partitioning

Grid-based partitioning of eigenspace. Search Tree

/N /N

ey Py

Template at grid centres become nodes of tree. Different
levels obtained by subdividing each patrtition.
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Template-based Detection and Tracking

« Large number of templates are generated off-line to handle
global motion and finger articulation.

* Need for
— Inexpensive template-matching function
« Distance Transform and Chamfer Matching
— Efficient search structure
» Bayesian Tree structure
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Likelihood function

Distance Transform and Chamfer
Matching
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Feature Detection

= Camera Image

= Canny edge map

= Distance Transform
= Search Template
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« Distance Image gives the distance to the nearest
edge feature at every pixel location in the image.

« Calculated only once for each frame.

« Chamfer distance is a specific distance function that is
calculated at each pixel by propagating the nearest
distances from neighbouring pixels.
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Distance Image & Chamfer Matching

« The cost of matching a template at a given image location can be
calculated by adding the distances to the nearest edge feature from
each of the template point.

« The nearest distances are readily obtained from the distance image.
1

C= szldi

« A single template matching at a given location typically costs around
200 additions and one division operations- inexpensive.

« 50,000 hypothesis evaluations can be made in less than 1 second on
a 1GHz 256MB PC.
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 Distance Image provides a smooth cost
function.

 Efficient Searching technigues can be used
to find the correct template.



Distance Image & Chamfer
Matching
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Distance Image & Chamfer Matching
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Distance Image & Chamfer Matching &P CAMBRIDGE
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Tree-based bayesian filtering
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Pruning the Search-Tree ¥ CAMBRIDGE
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Pruning the Search-Tree ¥ CAMBRIDGE
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Pruning the Search-Tree ¥ CAMBRIDGE
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Pruning the Search-Tree ¥ CAMBRIDGE

ﬂ% 9.0 5 20.0 P 17.0

10.0 ||4.5 ||6.7
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Pruning the Search-Tree ¥ CAMBRIDGE

10.0 ||4.5 ||6.7
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Tracking as Inference

. Object has internal state X:

. Image observation Dt

Prior p(Xt|D1:1) —
p(X)A

Bayes Rule

> Posterior:

B N p(X|D11) = k (D X)) p(X{|D1-1)

X p(x)4

Likelihood p(DiX) /\’\

()}

/\/\ > -
X

>
X
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. Prediction Step:

p(XIDze2) =| p(XfX1) p(Xi1|D1e1) dXea

/ﬁ /f k\
prior state transitions previous estimate

. Measurement Step:

P(XiDit) = k p(Di|Xt) p(Xt|D1:t1)

f [

posterior likelihood  prior
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« The search-tree is brought into a Bayesian framework
by adding the prior knowledge from previous frame.

« The Bayesian-Tree can be thought as approximating
the posterior probability at different resolutions.
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Experimental results
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Tracking Results
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Rotating In clutter
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 Building the 3D hand model and generating templates
 Learning the kinematic prior

« Efficiently evaluating the likelihood

» Tree-based Bayesian filtering

 Detection and tracking together



