

Computer vision and Robotics

Roberto Cipolla Department of Engineering

Research team http://www.eng.cam.ac.uk/~cipolla/people.html

Perspective

- What is vision and how to duplicate it?
- 3D shape: making digital copies of sculpture from photographs from multiple viewpoints
- Image matching and localisation from a single photo using a mobile (camera) phone
- Detection and tracking of objects: hands, faces and people
- Machine learning object categorization and recognition

Stereo vision and 3D shape

Ambiquity in a single view

Stereo vision

Stereo vision

Shape recover problem:

Dense stereo

Surface + height

Neighbour cost :

Surface + height

Neighbour cost :

Digital copies of sculpture – Digital Pygmalion

Input images

Building 3D models of cities

Trumpington Street Data

Camera pose determination

3D reconstruction

Reconstruction texture mapped

Image-Based Localisation Where am I?

The goal – where am I?

User takes a picture of a nearby building. System tells you what you are looking at and exactly where you are on a map.

The problem

Extreme perspective distortion

Differences in colour / lighting conditions

Occlusion

Matching

0

Register database view

First align database view to map

Knowing the rectifying homography (H_{\perp}), the alignment (H_A), and the database view registration, can work backwards to find user:

Rectifying rotation R_{\perp} gives the angle from perpendicular and focal length the distance to camera.

Localisation of query view

69

ΩŤ.

Image-based localisation

Image-based localisation

Image-based localisation

Object detection and tracking

Hand detection system

Template-based Detection

- Large number of templates are generated off-line to handle global motion and finger articulation.
- Need for
 - Inexpensive template-matching function
 - Distance Transform and Chamfer Matching
 - Efficient search structure
 - Bayesian Tree structure

- The search-tree is brought into a Bayesian framework by adding the prior knowledge from previous frame.
- The Bayesian-Tree can be thought as approximating the posterior probability at different resolutions.

Tracking - 3D mouse

Opening and closing

People and pose detection

A Tracked Sequence

Detecting and tracking people in crowds

Learning object categories

- Learn to recognise images of a particular class, localised in space and scale
- i.e. find the horse/cow/car etc!

Desired Results

• Take large number (~1000) of candidate fragments of contour

randomly chosen from training set of masks

- Calculate chamfer scores for each fragment
 over training set of images with known centroids
- Boosting algorithm selects a discriminative subset of fragments (~100) and learns their model parameters

Object Detection

- Given a model, we construct a classification function K(**c**)
 - additive model of feature responses
 - returns confidence value as function of position
 - +ve (green) meaning object present
 - -ve (red) meaning no object
- Evaluate for all centroids in test image gives classification map

Results

Results

	-	
E A		
	-	
	-	

Results

- Quantification with recall-precision curves
 - illustrates trade-off between:
 - correct detection rate
 - proportion of all detections that are correct
 - as a global detection threshold is changed
- A perfect detector would give recall=1 at precision=1

Horses

- 3D shape: making digital copies of sculpture from photographs from multiple viewpoints
- Recognition of a painting/picture from a single photo using a mobile (camera) phone
- Realtime detection of objects: hands, faces and people
- Machine Learning for object categorization and recognition