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What is vision and how to duplicate it?

3D shape: making digital copies of sculpture from
photographs from multiple viewpoints

Image matching and localisation from a single photo
using a mobile (camera) phone

Detection and tracking of objects: hands, faces and
people

Machine learning — object categorization and recognition
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Stereo vision and 3D shape
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Stereo vision




B UNIVERSITY OF

5|

@¥ CAMBRIDGE

Shape recover problem:
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Dense stereo
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Surface + height

‘colour’ cost :
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Surface + height

Neighbour cost :
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Surface + height

Neighbour cost :
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Digital copies of sculpture —
Digital Pygmalion
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Input Images




@ B UNIVERSITY OF

4P CAMBRIDGE

Building 3D models of cities
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Reconstruction texture mapped
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Image-Based Localisation
Where am 1?7
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he goal — where am 1?

User takes a picture of a nearby building. System
tells you what you are looking at and exactly where
you are on a map.
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Why difficult?

Extreme perspective distortion

Differences in colour / lighting conditions

Occlusion
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Constrained matching
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Matching
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First align database view to map
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Knowing the rectifying homography (H,), the alignment (H4), and
the database view registration, can work backwards to find user:
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Rectifying rotation R, gives the angle from perpendicular and focal
length the distance to camera.
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Localisation of query view
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Image-based localisation
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Image-based localisation
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Image-based localisation
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Object detection and tracking
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Hand detection system
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Template-based Detection

« Large number of templates are generated off-line to handle
global motion and finger articulation.

* Need for
— Inexpensive template-matching function
« Distance Transform and Chamfer Matching
— Efficient search structure
» Bayesian Tree structure
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« The search-tree is brought into a Bayesian framework
by adding the prior knowledge from previous frame.

« The Bayesian-Tree can be thought as approximating
the posterior probability at different resolutions.
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Detecting and tracking people
In crowds
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Learning object categories



@ B UNIVERSITY OF

Machine learning ¥ CAMBRIDGE

« Learn to recognise images of a particular
class, localised in space and scale

e |.e. find the horse/cow/car etc!

Desired
Results
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Learn Object Model
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Fragment
search radius

| | < Object centre-of-mass

Offsets to fragments
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« Take large number (~1000) of candidate
fragments of contour

— randomly chosen from training set of masks

« Calculate chamfer scores for each fragment
— over training set of images with known centroids

« Boosting algorithm selects a discriminative
subset of fragments (~100) and learns their
model parameters



Object Detection

 Given a model, we
construct a classification
function K(c)

— additive model of feature
responses

— returns confidence value as
function of position

* +ve (green) meaning
object present

* -ve (red) meaning no
object

« Evaluate for all centroids
In test image gives
classification map

55 UNIVERSITY OF
¥ CAMBRIDGE

£

N

=

By
FER




58 UNIVERSITY OF
4P CAMBRIDGE

Results




@ B UNIVERSITY OF

4P CAMBRIDGE

Results




Results

* Quantification with
recall-precision curves

— lllustrates trade-off
between:
e correct detection rate

 proportion of all detections
that are correct

— as a global detection
threshold is changed

» A perfect detector
would give recall=1 at
precision=1

B8 UNIVERSITY OF
@» CAMBRIDGE

0.9r
— 0.8r
©
o Horses
v
0.7r
0.6r
0.5 : : : :
0 0.1 0.2 0.3 04 0.5
1 — Precision
," r
9 r.
V-
10
1
I %
0.7 L' :
_osfi X
© ) %
Q05 :
Q
i Cars
0.4 w’<
03k Our algorithm
= == Fergus et al
0.2 s
Agarwal & Roth
0.1 '='='Leibeetal + MDL |1

0.2 0.4 0.6 0.8
1-Precision

1



58 UNIVERSITY OF

Making machines see W CAMBRIDGE

3D shape: making digital copies of sculpture from
photographs from multiple viewpoints

Recognition of a painting/picture from a single photo
using a mobile (camera) phone

Realtime detection of objects: hands, faces and people

Machine Learning for object categorization and
recognition



