

Digital Pygmalion

Accurate 3D reconstruction from uncalibrated images

Roberto Cipolla

Carlos Hernandez and George Vogiatzis Department of Engineering

- Accurate 3D reconstruction from uncalibrated cameras (motion and lighting)
- Multi-view stereo 3D shape from uncalibrated images (review)
- Multi-view photometric stereo with uncalibrated lights (CVPR2006)
- Object detection and tracking (summary)

1. 3D shape recovery from uncalibrated images

Ambiguity in a single view

Stereo vision

Stereo vision

3D reconstruction of streets

Trumpington Street Data

3D reconstruction

Reconstruction texture mapped

Digital Pygmalion project

3D Shape from Images

Image Camera acquisition calibration Geometry reconstruction

Texture map creation

Input Images

Input Images

Camera calibration

Camera calibration

Epipolar tangency points

Epipolar tangency points

Recovery of concavity

Refining the mesh

Texture mapping

83241 vertices, 166482 triangles

Input Images

Input images

Recovery of camera motion

Input images

Feature

extraction

Feature matching

Bundle adjustment

Refine with profiles

Recovery of surface geometry

Input data

2 Reconstruction in the round with photometric normals

- Challenging objects
- Lack of features makes correspondences hard
- Silhouette and shading are only available cues

- Single Viewpoint
- Move light-source for each image
- Same pixel always corresponds to same surface point
- With known light directions can estimate **n**

$$i = \mathbf{l}^{\mathbf{T}} \mathbf{n}$$

Integrate normals to get depth map

- To get more than depth-maps, we need multiple viewpoints...
- ... and in that case pixels are no longer automatically in correspondence
- However, if some correspondence is given, photometric stereo can proceed as usual

- Our strategy:
 - 1. Estimate light direction and intensity
 - 2. Evolve a surface using photometric stereo with approximate correspondences from the current surface (starting from visual hull)

 Three surface points with known surface normals and their image intensities are enough to estimate a directional light source

$$\mathbf{l} = [\mathbf{n_a} \ \mathbf{n_b} \ \mathbf{n_c}]^{-1} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$

• But where do you get these three points ?

Light estimation

• Recover contour generators by random sampling

Accuracy of light estimation

Light estimation

- Mesh with vertices x₁,...,x_M
- And faces f=1,...,F
- Define photometric normals v₁,...,v_F
- Minimise sum of two energies

-
$$E_m$$
 with respect to x_1, \dots, x_M

$$E_m(\mathbf{x_1},\ldots,\mathbf{x_M};\mathbf{v_1},\ldots,\mathbf{v_F}) = \sum_{f=1}^F \|\mathbf{n_f} - \mathbf{v_f}\|^2 A_f$$

$$E_{v}\left(\mathbf{v_{1}},\ldots,\mathbf{v_{F}};\mathbf{x_{1}},\ldots,\mathbf{x_{M}}\right) = \sum_{f=1}^{F}\sum_{k\in\mathcal{V}_{f}}\left(\mathbf{l_{k}}^{T}\mathbf{v_{f}}-i_{f,k}\right)^{2}$$

Multi-view photometric stereo

Reconstruction in the Round Using Photometric Normals

Paper ID #548

Mesh Evolution


```
Capture images of object.
Extract silhouettes.
Recover camera motion and compute visual hull.
Estimate light directions and intensities in every image
Initialise a mesh with vertices x_1 \dots x_M and faces f =
1 \dots F to the object's visual hull.
while mesh-not-converged do
  Optimise E_v with respect to v_1 \dots v_F.
  Optimise E_m with respect to x_1 \dots x_M.
end while
```

Results

Results

Multi-view Dense Stereo

Multi-view Photometric Stereo

Multi-view Dense Stereo

Multi-view Photometric Stereo

 Accurate 3D shape from uncalibrated images

 Multi-view photometric stereo with uncalibrated lights