Photo Synthesis through Computer Vision

Microsoft Innovation Day

Jamie Shotton & Roberto Cipolla

UNIVERSITY OF CAMBRIDGE
Department of Engineering
Our new technique automatically:
- segments image and assigns meaningful semantic labels

Learns from examples how to exploit patterns of:
- Texture
- Shape
- Context
Image Understanding

- Automatic labelling of images into semantic classes:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>building</td>
</tr>
<tr>
<td>road</td>
<td>cow</td>
</tr>
<tr>
<td>grass</td>
<td>cat</td>
</tr>
<tr>
<td>water</td>
<td>flower</td>
</tr>
<tr>
<td>road</td>
<td>bicycle</td>
</tr>
</tbody>
</table>

Colours represent semantic object classes

TextonBoost

European Conference on Computer Vision 2006
Labelling Images

TextonBoost

Google Images msn Search YAHOO!

In-House Stock Photos

building car water cow cat flower building bicycle
road grass road road road road
Image Retrieval

- Semantic ‘paint’ interface:

 ![Semantic Photo Synthesis](image)

 - **painting tools**
 - **semantic canvas**
Image Retrieval

- Semantic ‘paint’ interface:
Photo Synthesis

“Synthesise a picture like this”

Semantic Photo Synthesis
Eurographics 2006
Photo Synthesis

semantic canvas query

example synthesis results
Photo Synthesis

semantic canvas query

example synthesis result
Photo Synthesis

semantic canvas query

example synthesis results
Conclusions

- We can now...
 - recognise types of objects in images
 - retrieve images from large databases
 - paint new images using semantics
Acknowledgements

- PhD sponsorship kindly provided by Microsoft Research Cambridge
- Joint work between:

 Matthew Johnson
 Gabriel Brostow
 Ognen Arandjelovic
 Vivek Kwatra
 Roberto Cipolla

 John Winn
 Carsten Rother
 Antonio Criminisi