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Matching images and simple
object recognition
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1. Image matching:

Image matching and image-based localisation
from a single photo.

2. Object detection
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Object Detection

_ classification
mput contours
map
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1. Image matching
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Demo — visual inspection CAMBRIDGE
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Matching concrete imags
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Wide baseline matching
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Image-based localisation
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Determine pose from single image by matching
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First align database view to map
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Image-based localisation

« Determine pose from single image
« Match to database
« Triangulate position
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Image-based localisation ¥ CAMBRIDGE

« Determine pose from single image
« Match to database
« Triangulate position




@ B UNIVERSITY OF

Localisation &¥» CAMBRIDGE

« Determine pose from single image
« Match to database
« Triangulate position
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Constrained matching
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Constrained matching




CAMBRIDGE

L
o
e
=
)
£
5]
2,
5

& (08




: : 58 UNIVERSITY OF
Constrained matching &% CAMBRIDGE




: : 58 UNIVERSITY OF
Constrained matching ¥ CAMBRIDGE

41 | 'ﬂ O.:.* r:ga

¢ hu-




@ B UNIVERSITY OF

Register database view ¥ CAMBRIDGE

First align database view to map
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Image-based localisation
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Image-based localisation
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Image-based localisation
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2. Object detection and
tracking



Real-time visual controller for Dasher

hi there ollie here how are you today im using
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‘t he Frediction

% Live prediction
Ready

[ Leunch dasher

[ Capture
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Template-based Detection

« Large number of templates are generated off-line to handle
global motion and finger articulation.

* Need for
— Inexpensive template-matching function
« Distance Transform and Chamfer Matching
— Efficient search structure
» Bayesian Tree structure
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3D Hand Model

- Used as generative model

- Constructed from 35 truncated quadrics (ellipsoids, cones)
- Efficient contour projection

- 27 degrees of freedom

7
h




Likelihood : Edges

Input Image

Robust Edge
Matching

v

57 UNIVERSITY OF
¥ CAMBRIDGE

3D Model

l Projected Contours
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Chamfer Matching

Input image Canny edges

Distance transform Projected Contours
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m Distance image contains distance to nearest edge
m Calculated only once for each frame
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Chamfer Matching

denam (U, V) = |— Z min lu — v]|?

m Chamfer distance: average distance from template points
to nearest image point

m Nearest distances obtained from distance image
m Efficient
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Chamfer Matching

m Distance image provides a smoothed cost function

m Efficient searching technigues can be used to find correct
template
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Chamfer Matching
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Chamfer Matching
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Chamfer Matching
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Chamfer Matching
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Chamfer Matching
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m Edge pixels are divided
Into 8 groups based on
orientation

m Distance transforms are
calculated separately
for each group

m Total cost is obtained
by adding individual
chamfer distance




UNIVERSITY OF
CAMBRIDGE

Likelihood : Colour

Input Image 3D Model

l Projected Silhouette

: Template Matching
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« The search-tree is brought into a Bayesian framework
by adding the prior knowledge from previous frame.

« The Bayesian-Tree can be thought as approximating
the posterior probability at different resolutions.
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Evaluation at Multiple Resolutions




@ B UNIVERSITY OF

Tracking - 3D mouse «¥ CAMBRIDGE




Detection of people
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Input Foreground Silhouette Oriented Image & Solid
Edges Template Model

z 2

i
)
A




BB UNIVERSITYOF

€9 CAMBRIDGE

Detecting and tracking people
In crowds
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4. Learning to detect object
categories
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Learning and adaptability

« Learn to recognise images of a particular
class, localised in space and scale

e |.e. find the horse/cow/car etc!

Desired
Results




Learning and Adaptability

4 Training Data
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Learn Object Model

/‘\

Fragment
search radius

| | < Object centre-of-mass

Offsets to fragments
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@ Oriented
Chamfer
Matching

dlpam(x) = = 3 min(DT gt +x),7 A5 (x) = — 3 Jo(t) — o(ADT (t + X))

T teT N teT

A5 (x) = depgm) () + Adgicar ()

e(F, Ele) = arg_min (dTEN (x) + W(x|%, )

v(F, Elc) = d'T"FN (x(F, E|c))
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 Given a learned model, detection uses a
classification function K(c)

— boosted additive model combines feature
responses V(F,E|c) for each part:

M
K(c) = Z amd(v(Fm, Elc) > 0m) + bm

m=1
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Object Detection (2)

« Evaluate K(c) for all
centroids in test image

a

gives classification map

— confidence value as
function of position

« +ve (green) => object
present

 -ve (red) => no object

* Globally thresholded
local maxima give

detections

. classification
Input contours
map
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Partially Supervised Learning Algorithm
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Stage 1

— Fully supervised

— Uses small (~10
Images) database
of segmented
Images

Stage 2

— Leverages a
second, larger,
set of
unsegmented
Images to improve
detector
performance
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« Stage 1 Detector

— Learned from small
segmented database
and full background
database

— Gives K,(c), a
rudimentary detector
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Stage 2 Detector

— Learned from
complete dataset

— Gives K,(c), a
better detector
than K,(c)
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 Boosting algorithm requires for a
given centroid

— a vector of feature responses
— a ‘target’ classification

« +1 (green) => object present at
this centroid

« -1 (red) => object not present at
this centroid

 Each training image can therefore
generate multiple training
examples to aid the localisation of

the resulting classification maps positive background
— around each true centroid in training training
positive training images, several image image
examples are taken in a given
pattern

— examples are taken in background
training images at points of clutter
(in Stage 2)
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« Evaluate chamfer scores

for each random contour
fragment at each training
example

— (gives feature vector

g :-..\"11.;?‘

— target value known since
training data labelled

 Boosting algorithm
greedily selects a
discriminative subset of

fragments, performing
simultaneously:
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Results
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Results

* Quantification with recall-
precision curves
— shows trade-off between
» correct detection rate

 proportion of all detections
that are correct

— as a global detection
threshold is changed

« Equal error rates (only 50
positive training images):
— Weizmann Horses: 92.1%
— UIUC Cars: 92.8%
— Caltech Faces: 94.0%

Recall
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Horses

0.1 0.2 0.3 04
1 = Precision

0.5

Cars

Our algorithm
— — — Fergus et al
s Agarwal & Roth

""" Leibe et al + MDL 1

0.2 0.4 0.6 0.8
1-Precision

1
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Results
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tree

building __
body—» road aeroplane building

grass grass grass road
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building

bike building
car
road

Object Building Grass Tree Cow Sheep Sky Aeroplane @ Water Face
classes

Bike Flower Sign Bird Book Chair Road Cat { - Body




58 UNIVERSITY OF
@¥ CAMBRIDGE

Demos: Realtime mosaicing
and editing
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3D shape: making digital copies of sculpture from
photographs from multiple viewpoints

Recognition of a painting/picture from a single photo
using a mobile (camera) phone

Detection of objects: hands, faces and people

Learning



