

Computer vision at Cambridge

Roberto Cipolla Department of Engineering

Research team http://www.eng.cam.ac.uk/~cipolla/people.html

Part II:

Matching images and simple object recognition

Perspective

1. Image matching:

Image matching and image-based localisation from a single photo.

2. Object detection

Recognition of pictures

Hand detection

Object Detection

input

classification map contours

1. Image matching

1. Image matching

Demo – visual inspection

Demo – visual inspection

Matching concrete imags

Wide baseline matching

Where I am?

Determine pose from single image by matching

Register database view

First align database view to map

- Determine pose from single image
- Match to database
- Triangulate position

- Determine pose from single image
- Match to database
- Triangulate position

• Determine pose from single image

Match to database

Localisation

Triangulate position

Register database view

First align database view to map

Part II: 3D object detection

2. Object detection and tracking

Hand detection system

People and pose detection

People and pose detection

Template-based Detection

- Large number of templates are generated off-line to handle global motion and finger articulation.
- Need for
 - Inexpensive template-matching function
 - Distance Transform and Chamfer Matching
 - Efficient search structure
 - Bayesian Tree structure

3D Hand Model

- Used as generative model
- Constructed from 35 truncated quadrics (ellipsoids, cones)
- Efficient contour projection
- 27 degrees of freedom

Likelihood : Edges

Projected Contours

Input Image

Edge Detection

Robust Edge Matching

3D Model

Distance transform

Projected Contours

Distance Transform

Distance image contains distance to nearest edge
 Calculated only once for each frame

$$d_{cham}(\mathcal{U}, \mathcal{V}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \min_{v \in \mathcal{V}} ||u - v||^2$$

- Chamfer distance: average distance from template points to nearest image point
- Nearest distances obtained from distance image
- Efficient

Distance image provides a smoothed cost function

Efficient searching techniques can be used to find correct template

Multiple Edge Orientations

IONS CAMBRIDGE

- Edge pixels are divided into 8 groups based on orientation
- Distance transforms are calculated separately for each group
- Total cost is obtained by adding individual chamfer distance

UNIVERSITYOF

Likelihood : Colour

Input Image

Skin Colour Model

Template Matching

3D Model

- The search-tree is brought into a Bayesian framework by adding the prior knowledge from previous frame.
- The Bayesian-Tree can be thought as approximating the posterior probability at different resolutions.

Evaluation at Multiple Resolutions

Tracking - 3D mouse

Detection of people

Detecting and tracking people in crowds

Tracking people in crowds

Detecting People in Crowds by Bayesian Clustering Brostow & Cipolla, 2005

4. Learning to detect object categories

Learning and adaptability

- Learn to recognise images of a particular class, localised in space and scale
- i.e. find the horse/cow/car etc!

Desired Results

Learning and Adaptability

Matching Each Part

Matching Each Part

Oriented Chamfer Matching

$$d_{cham_{\tau}}^{(T,E)}(\mathbf{x}) = \frac{1}{N_{T}} \sum_{\mathbf{t}\in T} \min(\mathsf{DT}_{E}(\mathbf{t}+\mathbf{x}),\tau) \qquad \qquad d_{orient}^{(T,E)}(\mathbf{x}) = \frac{1}{N_{T}} \sum_{\mathbf{t}\in T} |o(\mathbf{t}) - o(\mathsf{ADT}_{E}(\mathbf{t}+\mathbf{x}))|$$
Oriented Chamfer Score:

$$d^{(T,E,\lambda)}(\mathbf{x}) = d_{cham_{\tau}}^{(T,E)}(\mathbf{x}) + \lambda d_{orient}^{(T,E)}(\mathbf{x})$$

$$\mathbf{r}(F,E|\mathbf{c}) = \arg\min_{\mathbf{x}\in R_{\hat{\mathbf{x}},\sigma}} \left(d^{(T,E,\lambda)}(\mathbf{x}) + W(\mathbf{x}|\hat{\mathbf{x}},\sigma) \right)$$
"Feature Responses":

$$v(F,E|\mathbf{c}) = d^{(T,E,\lambda)}(\mathbf{r}(F,E|\mathbf{c}))$$

- Given a learned model, detection uses a classification function *K*(*c*)
 - boosted additive model combines feature responses v(F,E|c) for each part:

 $K(\mathbf{c}) = \sum a_m \delta(v(F_m, E|\mathbf{c}) > \theta_m) + b_m$

Object Detection (2)

- Evaluate K(c) for all centroids in test image gives classification map
 - confidence value as function of position
 - +ve (green) => object present
 - -ve (red) => no object
- Globally thresholded local maxima give detections

input

- Stage 1
 - Fully supervised
 - Uses small (~10 images) database of segmented images
- Stage 2
 - Leverages a second, larger, set of *unsegmented* images to improve detector performance

Masks (~10)

Contour Fragments (~1000)

NB Slight random transformation to aid generalisation ability

- Stage 1 Detector
 - Learned from small segmented database and full background database
 - Gives K₁(c), a rudimentary detector

- UNIVERSITY OF CAMBRIDGE
- Stage 2
 - Evaluate rudimentary detector K₁(c)
 - On unsegmented class images
 - locates approximate object centroid positions
 - On background images
 - locates problem areas (*clutter*)

- UNIVERSITY OF CAMBRIDGE
- Stage 2 Detector
 - Learned from complete dataset
 - Gives $K_2(\mathbf{c})$, a better detector than $K_1(\mathbf{c})$

Training examples

- Boosting algorithm requires for a given centroid
 - a vector of feature responses
 - a 'target' classification
 - +1 (green) => object present at this centroid
 - -1 (red) => object not present at this centroid
- Each training image can therefore generate multiple *training examples* to aid the localisation of the resulting classification maps
 - around each true centroid in positive training images, several examples are taken in a given pattern
 - examples are taken in background training images at points of clutter (in Stage 2)

positive training image

background training image

Learning a Detector

- Evaluate chamfer scores for each random contour fragment at each training example
 - gives feature vector
 - target value known since training data labelled
- Boosting algorithm greedily selects a discriminative subset of fragments, performing simultaneously:

1. Feature Selection

2. Model Parameters Estimation Select σ , λ for each part

3. Weak-Learner Estimation Select θ , *a*, *b* for each part

Results

Results

	-	
E A		
	-	
	-	

Quantification with recallprecision curves

Results

- shows trade-off between
 - correct detection rate
 - proportion of all detections that are correct
- as a global detection threshold is changed
- Equal error rates (only 50 positive training images):
 - Weizmann Horses: 92.1%
 - UIUC Cars: 92.8%
 - Caltech Faces: 94.0%

UNIVERSITYOF

CAMBRIDGE
Results

Texture-based segmentation Suniversity of CAMBRIDGE

Demos: Realtime mosaicing and editing

- 3D shape: making digital copies of sculpture from photographs from multiple viewpoints
- Recognition of a painting/picture from a single photo using a mobile (camera) phone
- Detection of objects: hands, faces and people
- Learning