Computer Vision – 3D Shape

Roberto Cipolla
Department of Engineering

http://www.eng.cam.ac.uk/~cipolla/people.html
http://toshiba-europe.com/research/crl/cvg/
Vision: what is where by looking
Why? Images and Video

Computer vision is now in a wide range of products

- Mobile phones
- Cars
- Inspection and measurement
- Image and video search
- Games
- Internet and shopping
Overview

1. Computer vision at Cambridge

2. Review core technology of 3D shape recovery

3. Work in progress - Novel applications
Computer Vision at Cambridge
Computer Vision: 3R’s

Reconstruction: Recover 3D shape

Recognition: Identify objects

Registration: Compute their position and pose
Registration?

Target detection and pose estimation
Registration
Quantised Patches

Artificially warped images provide multiple views of the same feature
Histogram Intensity Patches

Binary representation of range of possible feature appearances permits fast error score computation

Matching patch: 1 error

Non-matching patch: 30 errors
Hand detection - Examples of training data
Registration - Hand detection and tracking
Hand Gesture UI
Hand detection system
Registration – human pose
Registration – 3D shape
Single view reconstruction
Exploiting 3D shape priors

Chen and Cipolla 2009 - 2011
Learning Shape Priors

3D Database → 2D position in frontal view → Depth Maps → PCA → Y → Labelled data → GPLVM → Z → Prior Learning

Registration
Results - Human Body Data
Results - Human Body Data
METAIL – A COMPUTER VISION BASED VIRTUAL FITTING ROOM

DRIVE CONVERSION
- Increase conversion
 - Virtual fitting room will increase shopper confidence to make purchases online

REDUCE RETURNS
- Increase average order value
 - Shoppers can try multiple garments and with one click buy the whole look
- Reduce revenue lost in returns
 - Accurate visualisation of fit and style will reduce the level of returns
- Reduce logistics costs
CLOTHING VISUALIZATION

Shoppers can visualize themselves wearing complete outfits.
Create your Me_model

ENTER YOUR MEASUREMENTS AND UPLOAD A PHOTO OF YOUR FACE...

HEIGHT

Units: Ft

WEIGHT

Units: St

More Measurements

SAVE & CONTINUE >

OR discard changes
Create your Me_model

ENTER YOUR MEASUREMENTS AND UPLOAD A PHOTO OF YOUR FACE...

HEIGHT
Unsbs: Ft

5'0" 5'1" 5'2" 5'3" 5'4" 5'5" 5'6" 5'7" 5'8" 5'9" 5'10"

WEIGHT
Unsbs: St

0 5 10 15 20 25 30 35 40 45 50

More Measurements

SAVE & CONTINUE >

OR discard changes
Create your Me_model

ENTER YOUR MEASUREMENTS AND UPLOAD A PHOTO OF YOUR FACE...

HEIGHT

WEIGHT

More Measurements

SAVE & CONTINUE >

OR discard changes
Create your Me_model

ENTER YOUR MEASUREMENTS AND UPLOAD A
PHOTO OF YOUR FACE...

HEIGHT

Units: Ft

5'10''

WEIGHT

Units: St

150 lb

More Measurements

SAVE & CONTINUE >

OR discard changes
Create your Me_model
ENTER YOUR MEASUREMENTS AND UPLOAD A
PHOTO OF YOUR FACE...

HEIGHT
Units: Ft

WEIGHT
Units: St

More Measurements

SAVE & CONTINUE >
OR discard changes
Metall – online shopping

(a) (b) (c)
Patented technology is used to create an accurate 3D model of the face, personalising the shopper’s model.
BODY SHAPE FROM SILHOUETTE

The shape prior also facilitates 3D shape recovery from the body’s silhouette in a 2D photograph.
HUMAN BODY MODELLING
OUTFIT VISUALIZATION FOR ONLINE SHOPPING

8 body measurements are taken from a single photo creating an accurate 3D body model.
Body tracking with 3D model

- Cloth simulation and rendering
Virtual Fashion Show
Recognition?
Recognition

image classification
- horses
- airplanes
- background

categorical object detection
- cars
- buildings
- sky

semantic segmentation
- trees
- buildings
- bicycles
- roads
- dogs
- grass
- cars
- roads
Segmentation in Video

Classification –

Randomized Decision Forests and SVM

Label propagation – Semi-supervised learning with GPS and label transfer
Semantic Texton Forests for classification

• Learn a set of tree structured classifiers which take an image patch as input and output a label distribution of its centre-pixel.

• Forest is ensemble of T trees

- classification is $P(c|L) = \sum_{t=1}^{T} P(c|l_t)$

[1] Amit & Geman 97
[2] Lepetit et al. 06

Slide courtesy Jamie Shotton
Semantic Texton Forests for classification

- Huge commercial success for Randomized Decision Forests! Microsoft Xbox 360 gaming.

Shotton, Fitzgibbon et. al, Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR’11.
Shotton, Johnson & Cipolla, Semantic Texton Forests for Image Categorization and Segmentation, CVPR’08.
Interactive Video Segmentation

Video

User labels

Frame 1

Frame 21
Our framework

Video

Temporal label propagation

User labels
Our framework

Video

Temporal label propagation

Semi-supervised classifier learning

User labels

Frame 1

Frame 21
Our framework

- Video
- Temporal label propagation
- Semi-supervised classifier learning
- Bootstrapping the classifier

User labels

Frame 1

Frame 21
Real-Time 3D Recognition Overview
Single object example
Reconstruction?

Recovery of 3D shape from images
Review

Recovery of accurate 3D shape from images
3D shape from photographs

Textured rigid object

Untextured rigid object

Untextured deformable object
3D shape from photographs

Multi-view stereo
Multi-view photometric stereo
Single view coloured photometric stereo
Overview

1. Multi-view stereo

2. Multi-view photometric stereo

3. Single-view colour photometric stereo
Multi-view stereo

Cipolla and Blake 1992
Cipolla and Giblin 1999
Mendonca, Wong and Cipolla 1999-2005
Vogiatzis, Hernandez and Cipolla 2006-2007
Campbell, Vogiatzis, Hernandez and Cipolla 2008-2011
1. Textured object

- Key assumptions for object surface
 - Smooth and rigid
 - Lambertian reflectance
 - Richly textured
Stereo vision
3D shape of textured objects
3D models – multiview stereo
Digital Pygmalion Project
Multi-view stereo pipeline

Image acquisition → Camera calibration → Image segmentation → 3D reconstruction
Image acquisition

Image acquisition → Camera calibration → image segmentation → 3D reconstruction
Image acquisition
Image acquisition
Camera calibration

Image acquisition → Camera calibration → Image segmentation → 3D reconstruction
Structure from motion

Input sequence 2D features 2D track 3D points
Structure from motion

- Input sequence
- 2D features
- 2D track
- 3D points
Structure from motion

Input sequence 2D features 2D track 3D points
Structure from motion

Input sequence 2D features 2D track 3D points
Motion estimation result
Silhouette-based calibration
Visual hull concept

3D silhouette intersection
Silhouette consistency

• Compares each original silhouette with the visual hull outline

• How to measure silhouette consistency?
Silhouette consistency
Silhouette consistency
Image segmentation

Image acquisition → Camera calibration → Image segmentation → 3D reconstruction
Automatic segmentation
Hand results
Hand results
3D Object reconstruction

- Image acquisition
- Camera calibration
- Image segmentation
- 3D reconstruction
Finding the surface
Photo-consistency

Non-photo-consistent point

≠
Photo-consistency
The occlusion problem

- To get 3D object must compute photo-consistency
- To compute photo-consistency must know occluded cameras
- To know occluded cameras must know 3D object!
Multi-view stereo algorithm

- Make photo-consistency robust to occlusion
- Casts the problem as discrete Markov Random Field (MRF) optimisation, obtaining global solution
- Use a triangle mesh as final representation
3D MRF for 3D modelling

- Multi-resolution grid
- Edge cost
- Foreground/background cost
3D MRF for 3D modelling
3D Models
Final installation
Results
Results
Real-time depth
Multiview photometric stereo

Vogiatzis, Hernandez and Cipolla 2006 and 2008
2. Un/textured objects

- Almost impossible to establish correspondence

Use shading cue
Photometric stereo

- Assumptions:
 - Single, distant light-source
 - No texture, single colour
 - Lambertian with few highlights

Changing lighting uncovers geometric detail
Photometric stereo

- **Lighting**: changing
- **Material**: fixed
- **Viewpoint**: constant
- **3D shape**: unknown
Shading cue

Surface reflectance is following Lambert’s cosine law
Assume a distant point source
Classic photometric stereo
Photometric stereo
Photometric stereo
Photometric stereo
Example of calibration

- Can use mirror spheres
- Can also use a mirror attached to known planar pattern
Light estimation

• Calibration object
 – Fully known geometry
 – Light can be estimated from intensity of all points
Light estimation
Light estimation

- Virtual calibration object
 - Partially known geometry
 - Light can be estimated from intensity of correct points
 - How do we eliminate incorrect points?
Voting approach

- Given a light direction, a point is **consistent** if its predicted appearance matches observation.

- For each possible light direction count **consistent** points on the visual hull.

- Optimal light is obtained when number of consistent points is maximised.
Number of consistent points

Visual hull Sample input image Consensus according to light direction
Algorithm

- Estimate light direction I_k in image k
- Evolve surface until predicted appearance under illumination I_k matches image k

\[i = l^T n \]
Evolve mesh until it is predicted appearance under recovered illumination matches images
3D Models
Making physical copies

Real

Replica
3D Models
3D Models
3D Models
Large-scale reconstructions
Large Scale Reconstruction
Large Scale Reconstruction

Dataset “Piazza Bra”, 300 images, 100K points, 3 hours, error 0.1-0.2%
Large Scale: Reconstruction of Forum Romanum

fakeRomeHires
80 images, April 2011

[Series of images of the Forum Romanum]
Large-scale reconstruction
Large-scale reconstruction
Barcelona

Sagrada Familia Station
Infrastructure Reconstruction (CUED)

Tunnel inspection

Input images

Panoramic mosaic

Inspection report
• 35 images of Antrim Coast Road cliff, taken with off-the-shelf DSLR camera (£400)
Deformable objects:

Real-time photometric stereo using colour lighting

Hernandez et al 2007
Anderson, Stenger and Cipolla 2010-2011
3 Untextured and deforming
Colour Photometric Stereo
Real-time deformable surfaces
Textureless deforming objects

• a method for reconstructing a textureless *deforming* object in 2.5d
Textureless deforming objects

- a method for reconstructing a textureless *deforming* object in 2.5d
Untextured deforming objects

If a white object is illuminated by a red, a green and a blue light source, the color reflected by a point on the surface is in 1-1 correspondence with the local orientation.

Coloured photometric stereo

- observation: 1-1 mapping between colour and surface orientation

- get map of surface orientations from colour image

- integrate orientations to get depth map

- do this for colour video to get 2.5d reconstruction of deforming object!
Coloured photometric stereo

Single frame from video

RGB Color is converted to a normal at each pixel

Normals integrated using FFT Poisson solver
Results

classic photometric stereo

coloured photometric stereo
Multicoloured surfaces
Multicoloured surfaces

Anderson, Stenger, Cipolla ICCV 2011
Dynamic Face Capture

- Multiview stereo using two cameras can provide coarse geometry.
- Photometric stereo can add much more detail to the reconstruction.
Equipment

- Capture takes place at 30 fps.
- Three different colored lights allow photometric stereo to be performed on each frame individually.
- The stereo camera pair allows low frequency geometry to be computed using standard stereo techniques.
Combining Data Modalities

Stereo reconstruction

Integrated photometric normals

Combined result
Sample Reconstructions

Face capture - Example 1

Original viewpoint

Novel viewpoint
Overview

- Multi-view stereo
- Multi-view photometric stereo
- Single-view colour photometric stereo
Future work

• Need to reconstruct with fewer images

• Exploit 3D examples

• Learn priors for single view reconstruction
Summary

1. 3R’s of computer vision at Cambridge

2. Accurate 3D shape recovery

3. Challenges:
 - Large-scale and outdoors;
 - real-time
 - fewer images.
Bjorn Stenger, Carlos Hernandez, George Vogiatzis, Rob Anderson, Riccardo Gherardi, Neill Campbell.

Jamie Shotton, Duncan Robertson and Simon Taylor