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Computer vision technology is beginning to find a place in a 
number of consumer products including camera phones; inter-
faces to games consoles; assisting parking and driving in 
automobiles; image and video search on a computer and the 
internet and more recently internet shopping. 

At Cambridge we have identified a number of possible appli-
cations and are now pioneering core technology in the main 
three areas of vision - Reconstruction (3D shape recovery from 
uncalibrated images); Registration (human body detection and 
tracking for use in novel interfaces) and Recognition (object 
detection, segmentation and recognition in video). Our approach 
is predominantly geometric but includes modern practice in 
machine learning. 

In the following article we briefly review our research in two 
areas: (1) 3D shape recovery and (2) simple and robust interfaces 
to computers by detecting and tracking hands. 

We begin by examining the problem of obtaining a complete, 
detailed model of a real-world 3D object, given a sequence of 
images of that object. This topic has been studied extensively 
since the earliest days of machine vision (e.g. [7]) by researchers 
aiming to understand the human visual system through 
construction of computer algorithms. In recent years, due to the 
dramatic improvement in computational power as well as the 
increased availability of digital imaging technology, recon-
struction of shape from images has received interest as a 
practical application. 

Accurate geometric models that can be used to synthesise 
realistic novel views of the objects (see Figure 1) are highly 
desirable. The most common ways of obtaining such models are 
either by manually constructing them in a CAD program, or by 
using laser range scanning technology (e.g. [5]). The manual 
method is quite impractical and error-prone for large scale, 
complex models, while laser range scanning and other similar 
techniques remain prohibitively expensive for a wide range of 
potential applications. Consequently, the automatic acquisition 

1 Introduction - the 3Rs of Computer Vision

Figure 1: Visual estimation of shape. Our technologies enable the user 
to obtain a complete, detailed, three-dimensional model of a real object from a 
collection of digital photographs. This accurate digital copy can then be used to 
inspect details of the object from any viewpoint, measure geometric properties 
such as angles, lengths and volumes or reproduce it in a different material.
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2 Reconstruction of Shape

of photo-realistic 3D models from digital images of the scene 
emerges as a cheap, lightweight and non-intrusive alternative 
which has already found applications in archaeology [9], 
modelling of architecture [1] and digitisation of sculpture [4] 
among others. 

2.1 Challenges 
Despite the optimism of early Computer Vision researchers, a 

fully automated Visual Reconstruction system remains elusive 
[3]. Some of the key difficulties, adapted here from [11], are the 
following: 

High dimensionality    Representing a general scene’s geometry 
and reflectance requires infinitely many degrees of freedom. 
Estimating those unknowns is generally infeasible unless strong 
priors about both geometry and reflectance are applied. 
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Photometric ambiguity    The observed intensity of a pixel 
depends on the surface geometry at the corresponding scene 
point, its local reflectance as well as light in a non trivial way. 
From that intensity these properties can be constrained but 
cannot be directly estimated. 

Loss of depth    Camera images of a scene are formed by 
projecting 3D space to a 2D plane. During this process the 
distance travelled by light between scene and camera (i.e. depth) 
is lost. Although there are situations where this ambiguity can be 
resolved in the monocular case as in Shape from Shading, 
human and artificial vision systems alike typically employ 
multiple images of the scene from varying viewpoints and/or 
under varying illumination. 

We have developed two different approaches to the visual 
shape reconstruction problem, each of which is particularly 
suited for a different class of solid objects. Our first method can 
handle objects made of richly textured materials while the 
second method deals with completely untextured objects such as 
white porcelain statues. 

2.2 Textured materials 
The estimation of shape from image correspondences, 

sometimes referred to simply as dense stereo is a very powerful 
technique for reconstructing a scene given M images of this scene 
from different viewpoints. It is based on the following very 
simple observation: A 3D point located on the scene surface 
projects to image regions of similar appearance in all images 
where it is not occluded. Equivalently, this principle can be stated 
in terms of visual rays. As mentioned above, each image location 
corresponds to a 3D line. Given a number of image locations that 

1 If there is motion of the camera centre for at least two images, the visual rays will 
not all be coincident and will therefore have a well defined intersection point.

Figure 2: Shape from image matches. The basic principle underlying 
our algorithm for reconstructing textured objects is the following: Given two 
images in which the camera position is known, if two pixel positions corre-
spond to the same object in 3D space (e.g. the roof of the house) then by trian-
gulating from the camera centres one can compute the exact 3D location of 
that object. Conversely, to examine if a particular 3D location is on the 
surface of the object we can project that location to the two images, and 
compare the nearby regions. If they are similar the 3D point is on the surface.

depict the same scene location, the intersection of their visual 
rays 1 will be that scene location. This is illustrated in Figure 2. 

Most work in the dense stereo problem assumes a Lambertian 
reflectance model for the surface as well as constant illumi-
nation throughout the sequence. These conditions imply that a 
scene point projects to pixels of the same intensity in images 
where it is visible, which makes the task of identifying matching 

Figure 4: Digitising sculpture. The first two rows show the recon-
struction of a plaster bust of the Greek goddess Hygeia. The input sequence 
consists of 36 images. Four of these are shown in the first row while the 
second row shows similar views of the reconstructed model. The third and 
fourth are input images and reconstructed model for a crouching man 
sculpture by the British sculptor Anthony Gormley. The input sequence in 
that case consisted of 72 images.

Figure 3: Toy House. This is an example of a 3D model of a real object, 
obtained using our technology. In the top row are four images of a toy house 
while in the bottom row, renderings of the 3D model from similar viewpoints 
are shown . The first three images were part of the input sequence used while 
the fourth was not shown to the algorithm. The model of this small toy house 
(approximately 10cm in diameter) contains accurately reconstructed 
sub-millimetre details such as the fence and the relief of the roof.
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image locations easier. Additionally it is assumed that the object 
is well textured so that parts of the object surface can be uniquely 
identified in multiple images. 

We have developed a volumetric formulation for the 3D 
reconstruction problem which is amenable to a computationally 
tractable global optimisation using Graph-cuts. Our approach is 
to seek the optimal partitioning of 3D space into two regions 
labelled as ‘object’ and ‘empty’ under a cost functional 
consisting of the following two terms: (1) A term that forces the 
boundary between the two regions to pass through photo-
consistent locations and (2) a ballooning term that inflates the 
‘object’ region. To take account of the effect of occlusion on the 
first term we use an occlusion robust photo-consistency metric 
based on Normalised Cross Correlation, which does not assume  
any geometric knowledge about the reconstructed object. The 
globally optimal 3D partitioning can be obtained as the minimum 
cut solution of a weighted graph. Some of the objects we have 
digitised using this technique can be seen in Figures 3 and 4. 

While dense stereo techniques offer detailed full 3D recon-
structions, they rely on richly textured objects to obtain corre-
spondences between locations in multiple images which are 
triangulated to obtain shape. As a result these methods are not 
directly applicable to the class of completely untextured objects 
due to the lack of detectable surface features. On the other hand, 
photometric stereo works by observing the changes in image 
intensity of points on the object surface as illumination varies. 
These changes reveal the local surface orientations at those 
points that, when integrated, provide the 3D shape. Because 
photometric stereo performs integration to recover depth, much 
less regularisation is needed and results are generally more 
detailed. Furthermore, photometric stereo makes fewer assump-
tions about surface texture and reflectance, which can be almost 
completely arbitrary as demonstrated in [2]. However, the 
simplest way to collect intensities of the same point of the 
surface in multiple images is if the camera viewpoint is held 
constant, in which case every pixel always corresponds to the 
same point of the surface. This is a major limiting factor of the 
method because it does not allow the recovery of the full 3D 
geometry of a complex many-sided object such as a sculpture. 
Due to this limitation existing photometric stereo techniques 
have so far only been able to extract depth-maps (e.g. [10]) with 
the notable recent exceptions of [12, 6], where the authors 
present techniques for recovering 2.5D reconstructions from 
multiple viewpoints. The full reconstruction of many-sided 
objects is however still not possible by these methods. While in 
theory one could apply photometric stereo from multiple 
viewpoints and then merge the multiple depth-maps of the object 
into a single 3D representation, in practice this procedure can be 
complicated and error-prone. 

We have developed a different solution to this problem by 

exploiting the powerful silhouette cue. We modify classic photo-
metric stereo and cast it in a multi-view framework where the 
camera is allowed to circumnavigate the object and illumination 
is allowed to vary. The setup for this technique is illustrated 
schematically in figure 5. Firstly, the object’s silhouettes are used 
to recover camera motion using a technique similar to [8], and via 
a novel robust estimation scheme they allow us to accurately 
estimate the light directions and intensities in every image. 

Secondly, the object surface, which is parameterised by a 
mesh and initialised from the visual hull, is evolved until its 

3 Photometric Stereo and untextured materials

Figure 5: Acquisition Setup for textureless objects. The object is 
rotated on a turntable in front of a camera and a point light-source. A 
sequence of images is captured while the light-source changes position 
between consecutive frames. No knowledge of the camera or light-source 
positions is assumed.

Figure 6: Reconstructing porcelain vases. Two Chinese porcelain 
vases (Qing dynasty, Qianlong period, 1736-1795) with very fine relief are 
reconstructed from two sequences of 36 images each. Top: sample of input 
images. Bottom: our reconstruction results. The surface captures all the fine 
details present in the images, even in the presence of strong highlights.
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blue light sources. 

The proposed technique for acquiring complex motion data 
from real moving cloth, uses a practical setup that consists of an 
ordinary video camera and three coloured light sources (see 
Figure 8). The key observation is that in an environment where 
red, green, and blue light is emitted from different directions, a 
Lambertian surface will reflect each of those colours simultane-
ously without any mixing of the frequencies. The quantities of 
red, green and blue light reflected are a linear function of the 
surface normal direction. A colour camera can measure these 
quantities, from which an estimate of the surface normal direction
can be obtained. By applying this technique to a video sequence 
of a deforming object one can obtain a sequence of normal maps 
for that object and integrate them to produce a sequence of depth-
maps (see Figure 9). 

predicted appearance matches the captured images. Each face of 
the mesh is projected in the images where it is visible and the 
intensities are collected. From these intensities and the illumi-
nation computed previously, a normal direction is assigned to 
each face by solving a local least squares problem. The mesh is 
then iteratively evolved until these directions converge to the 
actual surface normals of the mesh. These two phases are then 
repeated until the mesh converges to the true surface. The 
advantages of our approach are the following: 

 It is fully uncalibrated: no light or camera pose calibration 
object needs to be present in the scene. 

 The full 3D geometry of a complex, shiny, textureless 
object is accurately recovered, something not previously 
possible by any other method. 

 It is practical and efficient as evidenced by our simple 
acquisition setup. 

Figures 6 and 7 show some digitised artefacts from the 
collection of the Fitzwilliam museum in Cambridge. 

Even though the previous section shows how advanced is 
state-of-the-art on 3D modelling of rigid objects, very little work 
has been accomplished on non-rigid scenes so far. Modelling 
deforming objects is extremely important for tasks such as cloth 
reconstruction but also for general dynamic surface modelling, 
such as body or faces. In this section we explore the associated 
capture methodology to acquire the detailed 3D shape, bends, 
and wrinkles of deforming surfaces. Moving 3D data has been 
difficult to obtain by methods that relied on known surface 
features, structured light, or silhouettes. 

Multispectral photometric stereo is an attractive alternative 
because it can recover a dense normal field from an un-textured 
surface. Experiments were performed on video sequences of un-
textured cloth, filmed under spatially separated red, green, and 

Figure 7: Reconstructing coloured marble. A marble Buddha figurine 
(Chinese, Qing dynasty) is reconstructed from a sequence of 36 images. 

4 Reconstruction of Deforming Shape 

Figure 8: Setup and calibration board. Left: A schematic representation 
of our multispectral setup. Right: Linking the two clipboards and attaching a 
printed calibration pattern produces a planar trackable target for computing the 
orientation of the pattern plane. Cloth inserted between the boards appears in 
the square hole and creates the association between colour and orientation. 

Figure 9: photometric stereo with coloured light. (a) Single frame 
from a jacket sequence, where the same object is illuminated simultaneously 
by three different coloured lights. (b) Equivalent three grayscale images, each 
corresponding to a different illumination, providing the input to a classic 
photometric stereo reconstruction [17] shown in (c).

(a)

(b)

(c)
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4.1 Depth-map video 
In this section we follow the exposition of Kontsevic et al.[15]. 

For simplicity, we first focus on the case of a single distant light 
source with direction l illuminating a Lambertian surface point 
P with surface orientation direction n. Let S(λ) be the energy 
distribution of that light-source as a function of wavelength λ 
and let (λ) be the spectral reflectance function representing the 
reflectance properties at that surface point. We assume our 
camera pixels consist of three sensors sensitive to different parts 
of the spectrum. If νi (λ) is the spectral sensitivity of the i-th 
sensor for the pixel that receives light from P, then intensity 
measured at that sensor is 

ri = l · n ∫ S(λ) (λ)νi (λ)dλ (1)

or in matrix form  

r = Mn (2)

where the (i, j)th element of M is  

mij = lj ∫ S(λ) (λ)νi (λ)dλ. (3)

When more light sources are added, if the system is linear 
and l · n ≥ 0 still holds for each light, the response of each sensor 
is just a sum of the responses for each light source individually, 
leading to equation (2) still being valid with: 

where Mk describes the k-th light source. Since each of the Mk is 
of rank 1, this implies that in the absence of self occlusions, a 
minimum of three different lights needs to be present in the 
scene for M to be invertible. If the surface is uniformly coloured, 
then (λ) and consequently M will be constant across all un-
occluded locations. 

Equation (2) establishes a 1-1 mapping between an RGB pixel 
measurement from a colour camera and the surface orientation 
at the point projecting to that pixel. Our strategy is to use the 
inverse of this mapping to convert a video of a deformable 
surface into a sequence of normal maps. We estimate the 1-1 
mapping by employing an “easy-to-use” calibration tool (figure 
8 (left)). The pattern is planar with special markings that allow 
the plane orientation to be estimated. By placing the object in 
the centre of the pattern, we can measure the colour it reflects at 
its current orientation. We thus obtain a sequence of (r,n) pairs 
to which we fit the mapping M using linear least squares. 

4.2 Depth from Normals 
By estimating and then inverting the linear mapping M 

linking RGB values to surface normals, we can convert a video 
sequence captured under coloured light into a video of normal-
maps. Due to the dark room conditions, by simple intensity 
thresholding we can segment background pixels in every frame 

of the original video, as they are almost perfectly black. We then 
integrate each normal map independently to obtain a depth map 
in every frame by imposing that the occluding contour is always 
at zero depth. This integration process is a fairly established 
technique and several algorithms are available. We have used the 
Successive Overrelaxation solver (SOR) [13] because of its 
robustness and simplicity. At the end of the integration process, 
we obtain a video of depth-maps. 

In Figure 10 we show several views of frame 380 without the 
texture map in high resolution (the mesh consists of approxi-
mately 180,000 vertices). The images clearly show the high 
frequency detail of the sweater. To the best of our knowledge, 
this is the only method able to reconstruct deforming cloth with 
such detail. 

M = ∑
k   

Mk (4) 

Figure 10: Cloth reconstruction results of a deforming sweater.
Multispectral photometric reconstruction of a single frame of a longer video 
sequence using the technique described in section 4.1. From left to right, 
multiple viewing angles of frame 380 of the sweater sequence.

To demonstrate the potential of our method for capturing 
cloth for animation, we captured a sequence of moving cloth, 
registered it using optical flow [14], and attached the registered 
meshes to an articulated skeleton. Skinning algorithms have 
varying degrees of realism and complexity, e.g. [16]. Figure 11 
shows example frames from the rendered sequence. Even though 
the skeleton and cloth motions are not explicitly aligned, the 
visual effect of the cloth moving on a controllable character is 
appealing. Such data-driven cloth animation can serve as a 
useful tool and presents an alternative to physical cloth 
simulation. 

Figure 11: Attaching captured moving cloth to an animated 
character. We apply smooth skinning to attach a moving mesh to an articu-
lated skeleton that can be animated with mocap data. The mesh is simply 
animated by playing back one of our captured and registered cloth sequences, 
in this case a dancing sequence.
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4.3 Summary 
Building on the long established but surprisingly overlooked 

theory of multispectral lighting for photometric stereo, we have 
discovered and overcome several new obstacles. We developed a 
capture methodology that parallels existing work for capturing 
static cloth, but also enables one to capture the changing shape 
of cloth in motion. Integration of the resulting normal fields is 
already possible with the simple boundary condition that the 
occluding contour is at zero depth. We have verified the accuracy 
of the depth-maps against classic photometric stereo. When such 
a sequence of surfaces is played back, it appears to be changing 
smoothly. The high level of detail captured by the normal fields 
includes surface bends, wrinkles, and even temporary folds. 

Finally, with access to a unique stream of rich 3D cloth poses, 
we have shown how easily the data is employed in a creative 
context for realistic character animation of a clothed avatar. 

Computer vision allows touch-free input via hand gestures. 
Together with the Multimedia Laboratory we are pursuing 
research into making such methods robust, efficient and intuitive. 

A mouse and keyboard are the standard input devices for most 
personal computers. The mouse as a pointing device has a 
number of limitations. First of all, for some applications it may 
be beneficial to have more degrees of freedom than two provided 
by the mouse input. It can also be practical to use both hands to 
control certain applications, such as manipulating (e.g. 
stretching) objects on the screen. From an ergonomic point of 
view the switching between keyboard and mouse input can be 
cumbersome and repeated mouse use can lead to stress injuries. 
Also, it is not a natural input device for handwriting and drawing 
applications. Designers use drawing pads for such tasks, which 
are precise, but are also an extra investment and have an initial 
learning curve. Both mouse and drawing pad also require extra 
desk space. However, some recent computers ship with a CCD 
camera attached or already integrated to facilitate video calls or 
conferencing applications. 

5.1 A Pointing Interface By Detecting Changes of 
Image Topology 

This section presents an intuitive visual pointing interface for 
custom personal computers, where a camera is mounted on top 
of the screen and is pointed at the keyboard. The user can easily 
switch between keyboard and gesture input. Further, the gesture 
input mode has more degrees of freedom than a conventional 
computer mouse. Thus it can provide a natural interface for 
certain tasks such as hand writing, image manipulation or visual 
navigation. 

The hand is seen as a foreground object, which is separated 
from the background by colour segmentation. The method uses a 
connected components algorithm that detects changes in the 

shape topology of the background. The insight here is that by 
touching two finger tips, e.g. by touching index finger and 
thumb, the number of background segments increases by one. By 
fitting an ellipse to this new shape one can determine location, 
orientation and scale of the hand. Additionally, one can estimate 
the hand direction, thus controlling a point that is close to the 
finger tips. Figure 12 shows the system setup. 

Shape analysis    As a first processing step the system 
performs foreground segmentation. This is done by initialising a 
colour model using a boosted hand detector [19, 20]. Skin colour 
is extracted from an ellipse in the centre of the detected region 
and adjacent regions are taken as background regions, see 
Figure 13. The resulting distributions are then used to compute 
the skin colour likelihood for each pixel. These values can serve 
as an input for any binary segmentation algorithm. Hysteresis 
thresholding followed by a morphological opening and closing 
operation are performed to remove misclassification due to pixel 
noise. A typical result can be seen on the right of Figure 13. Note 
that the hand’s reflection in the screen as well as the wooden 
table leads to some mis-classified pixels. 

The next step is to analyse the shape of the foreground map. 
For this we assume that the background region normally consists 
of a single connected component. When the foreground forms a 
loop, for example, when the thumb and the index finger form a 
round shape this is no longer the case. This principle is used here 

5 Gesture User Interfaces Using Computer Vision

Figure 12: System setup. A camera is mounted on top of the monitor and 
is directed at the user’s hands. A pointing device can be implemented by 
foreground segmentation and shape analysis.

Figure 13: Colour model initialisation. Left: An open and flat hand is 
located using a boosted detector. The skin colour distribution is learned from 
the values in the centre of the detected region. Middle: The resulting likeli-
hoods for skin colour, Right: A post-processed binary map.
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to implement a point and click interface. A connected component 
algorithm is used to count the number of connected segments. 
When there are more than two segments, these are used as input 
regions for the pointing interface. First we fit an ellipse to each 
such region. The four ellipse parameters can directly be used as 
input to the interface. In addition to the two parameters of a 
conventional mouse, this includes orientation and scale. 

Finger tip detection    A complementary shape analysis 
technique is to detect finger tip regions. Here we present a 
simple algorithm which is efficient but requires a relatively clean 
foreground segmentation. We first compute the foreground 
contour and assume that points corresponding to a finger tip lie 
on this contour. We then compute the foreground/background 
ratio in a local neighbourhood around all contour points and 
only keep those whose ratio is between two threshold values.
Among multiple candidate detections around one finger tip 
candidate the one with the smallest ratio is chosen as output 
location. Advantages of this method are that (a) it is very fast to 
evaluate and (b) it is relatively tolerant to a noisy contour shape, 
e.g. caused by shadows. On the other hand, the method does 
require a rough global scale estimate in order to determine the 
local neighbourhood in which to compute the ratio values. 

Experimental results    The finger tip detection algorithm is 
very efficient and has potential for various input modes. Illus-
trative examples are shown in Figure 14. Individual finger tips 
can be detected, however when fingers touch each other, thus 
changing the foreground contour shape, they are no longer detected. 

The proposed algorithm based on image topology runs in 
real-time. We show a couple of illustrative results of the pointing 

algorithm. Figure 15 shows some frames from an example 
sequence using one or both hands for pointing. It can be used 
analogously to a mouse pointer, although currently no cursor is 
being moved when the fingers are not creating a closed loop. In 
addition to the location the orientation and scale can be detected 
reliably. A simple drawing application is shown in Figure 16. 
The hand can be moved like a holding a pen. When the fingers 
are put together the drawing mode is activated and a line segment 
is drawn on the screen. 

The advantages of the system are the ease with which the user 
can switch between the typing and pointing as well as additional 
degrees of freedom through scale and orientation estimation. 
Further, multiple detections can be handled seamlessly. This 
input method may be able to replace or drawing pad use in some 
cases. Furthermore, finger tip detection also has potential for 
accurate input, however some issues need to be resolved first: 
detection reliability needs to be improved and it should be 
combined with the detection fingers touching each other. This 
will be a topic of further research. 

We have very briefly outlined 4 of the projects being carried 
out in Cambridge. In the area of 3D shape recovery from uncali-
brated images in controlled indoor environments we have made 
significant progress. The next major challenge is to be able to 

Figure 14: Finger tip detection examples. (row 1) All fingers can be 
detected simultaneously, however only when the points lie on a contour and 
part of the finger contour is visible, (row 2) hand rotation can be used to 
accurately describe 2D rotations, (row 3) scaling operations can be executed 
by dragging the fingers.

Figure 15: Example sequence. This sequence shows frames of an input 
sequence. The pointer is activated by forming a closed loop with thumb and 
index finger. This way one or more regions can be defined whose location, 
orientation and scale can be used as input to the interface.

Figure 16: Writing application. Writing and drawing is natural with the 
proposed interface.

6 Conclusions
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build models of the outdoor world with less control over lighting 
and background and to make these algorithms more efficient. 

In the area of hand detection and tracking more research is 
needed in making the algorithms more reliable. The existing 
technology developed at Cambridge and the Multimedia 
Laboratory is now ripe for exploitation in simple gesture inter-
faces to computers and televisions. However, although the core 
technology is nearly ready, a lot of careful HCI 2 design is 
needed to make interfaces that are simple, intuitive, useful and 
fun to use! 
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