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Abstract

This paper describes a novel method to measure the differential invari-

ants of the image velocity field from the integral of normal image veloci-

ties around image contours. This is equivalent to measuring the temporal

changes in the area of a closed contour. This avoids having to recover

a dense image velocity field and taking partial derivatives. It also does

not require point or line correspondences. Moreover integration provides

some immunity to image measurement noise.

It is shown how an active observer making small, deliberate motions

can use the estimates of the divergence and deformation of the image

velocity field to determine the object surface orientation and time to con-

tact. The results of real-time experiments are presented in which arbitrary

image shapes are tracked using B-spline snakes and the invariants are com-

puted efficiently as closed-form functions of the B-spline control points.

This information is used to guide a robot manipulator in obstacle collision

avoidance, object manipulation and navigation.

1 Introduction

Relative motion between an observer and a scene induces deformation in im-
age detail and shape. If these changes are smooth they can be economically
described locally by the first order differential invariants of the image velocity
field [23] – the curl (vorticity), divergence (dilation), and deformation (pure
shear) components. These invariants have simple geometrical interpretations
which do not depend on the particular choice of co-ordinate system. Moreover
they are related to the three dimensional structure of the scene and the viewer’s
motion – in particular the surface orientation and the time to contact 1 – in a
simple geometrically intuitive way. Better still, the divergence and deformation
components of the image velocity field (measured on the image sphere or at
the optical axis) are unaffected by arbitrary viewer rotations about the projec-
tion centre. They therefore provide an efficient, reliable way of recovering these
parameters.

Although the analysis of the differential invariants of the image velocity
field has attracted considerable attention [23, 21] their application to real tasks
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1The time duration before the observer and object collide if they continue with the same

relative translational motion [19, 15]
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requiring visual inferences has been disappointingly limited [32, 14]. This is be-
cause existing methods have failed to deliver reliable estimates of the differential
invariants when applied to real images. They have attempted the recovery of
dense image velocity fields [6] or the accurate extraction of points or corner
features [21]. Both methods have attendant problems concerning accuracy and
numerical stability. An additional problem concerns the domain of applications
to which estimates of differential invariants can be usefully applied. First order
invariants of the image velocity field at a single point in the image cannot be
used to provide a complete description of shape and motion as attempted in
numerous structure from motion algorithms [36]. This in fact requires second
order spatial derivatives of the image velocity field [29, 37]. The advantage
of the first order invariants lies in their ability to efficiently recover reliable
but incomplete solutions to the structure from motion problem which can be
augmented with other information to accomplish useful visual tasks.

The reliable, real-time extraction of these invariants from image data and
their application to visual tasks will be addressed in this paper. First we present
a novel method to measure the differential invariants of the image velocity field
by computing average values from the integral of simple functions of the nor-
mal image velocities around image contours. This is equivalent to measuring
the temporal changes in the area of a closed contour and avoids having to re-
cover a dense image velocity field and taking partial derivatives. It only requires
the gross correspondence of closed contours and does not require point or line
correspondences. Moreover integration provides some immunity to image mea-
surement noise.

Second we show that the 3D interpretation of the differential invariants of
the image velocity field is especially suited to the domain of active vision [7]
in which the viewer makes deliberate (although sometimes imprecise) motions,
or in stereo vision, where the relative positions of the two cameras (eyes) are
constrained while the cameras (eyes) are free to make arbitrary rotations (eye
movements). Estimates of the divergence and deformation of the image velocity
field, augmented with constraints on the direction of translation, are then suffi-
cient to efficiently determine the object surface orientation and time to contact.

The results of preliminary real-time experiments in which arbitrary image
shapes are tracked using B-spline snakes [8, 9, 10] are presented. The invariants
are computed as closed-form functions of the B-spline snake control points. This
information is used to guide a robot manipulator in obstacle collision avoidance,
object manipulation and navigation.

2 Differential Invariants of the Image Velocity

Field

2.1 Review

Consider the viewer to be moving relative to a stationary scene. Let v(x, y)
represent the image velocity field – a 2D vector field defined on the image plane
where each vector assigned to an image point (x, y) represents the image motion
(u, v) of the scene point that projects to that image point. For a sufficiently
small field of view and smooth change in viewpoint the image velocity field is
well approximated by a linear (affine) transformation [23] (see Appendix A for
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derivation):
[
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≈
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+
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vx vy

] [

x
y

]

(1)

where (u0, v0) is an image translation (specifying the change in image posi-
tion of the centroid of the shape) and where the first order partial derivatives,
(ux, uy, vx, vy) (subscripts denote differentiation with respect to the subscript
parameter) define the velocity gradient tensor which describes the change in
apparent image shape.

The velocity tensor gradient can be decomposed into independent compo-
nents which have simple geometric interpretations. These are an isotropic ex-
pansion (divergence) specifying a change in scale, divv; a 2D rigid rotation
(vorticity), specifying the change in orientation, curlv; and a pure shear or de-
formation which describes the distortion of the image shape (expansion in a
specified direction with contraction in a perpendicular direction in such a way
that area is unchanged) described by a magnitude, defv, and the orientation of
the axis of expansion (maximum extension), µ (Figure 1 and Appendix B).

[
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curlv
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cos 2µ sin 2µ
sin 2µ − cos 2µ

]

(2)
These quantities can be defined 2 as combinations of the partial derivatives

of the image velocity field, v = (u, v), at an image point (x, y):

divv = (ux + vy) (3)

curlv = −(uy − vx) (4)

(defv) cos 2µ = (ux − vy) (5)

(defv) sin 2µ = (uy + vx) (6)

The curl, divergence and the magnitude of the deformation are scalar in-
variants and do not depend on the particular choice of image co-ordinate sys-
tem [23, 21]. The axes of maximum extension and contraction change with
rotations of the image plane axes.

2.2 Relation to 3D Shape and Viewer Motion

The differential invariants depend on the viewer motion (translational velocity,
U, and rotational velocity, Ω), scene structure (depth), Z, and the relation
between the viewing direction (ray direction, unit vector Q) and the surface
orientation in a simple and geometrically intuitive way. Before summarising
these relationships let us define two 2D vector quantities:

• A – The component of translational velocity parallel to the image plane
scaled by depth, Z, where:

A =
U− (U ·Q)Q

Z
(7)

2The divergence of a vector field and the magnitude of the curl component are defined by
divv = ∇ · v and curlv = |∇× v| respectively.
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Note that the direction of A is determined by the intersection of the
epipolar plane (defined by direction of translation and ray) and the image
plane. The magnitude is a measure of the angle between the two views
in an infinitesimal sense. For an object which is rotating in front of a
stationary camera it is a measure of the “turn” or rotation of the object.

• F – the depth gradient scaled by depth3, is used represent the surface
orientation and can be defined in terms of the 2D vector gradient:

F = f∇(logZ) =
f∇Z

Z
. (8)

where f is the distance between the image plane and optical centre. The
magnitude of the depth gradient, |F|, determines the tangent of the slant of
the surface (angle between the surface normal and the visual direction). It
vanishes for a frontal view and is infinite when the viewer is in the tangent
plane of the surface. Its direction, ̸ F, specifies the direction in the image
of increasing distance. This is equal to the tilt of the surface tangent plane.
The exact relationship between the magnitude and direction of F and the
slant and tilt of the surface (σ, τ) is derived in Appendix C and is given
by:

|F| = tanσ (9)
̸ F = τ . (10)

With this new notation the relations between the differential invariants, the
motion parameters and the surface position and orientation are given by [22]
(see Appendix C for derivation):

divv =
2U ·Q

Z
+ F ·A (11)

curlv = −2Ω ·Q+ |F×A| (12)

defv = |F||A| . (13)

The axis of maximum extension of the deformation component, µ, bisects A

and F:

µ =
̸ A+ ̸ F

2
. (14)

The geometric significance of these equations is easily seen with a few ex-
amples. For example, a translation along the ray towards the surface patch (i.e.
|A| = 0) leads to a uniform expansion in the image, i.e. positive divergence (fig-
ure 2). This encodes the distance to the object which, due to the speed–scale
ambiguity4, is more conveniently expressed as a time to contact, tc:

tc =
Z

U ·Q
. (15)

Translational motion perpendicular to the visual direction results in image de-
formation with a magnitude which is determined by the slant of the surface, σ,

3Koenderink [22] defines F as a “nearness gradient”, ∇(log(1/Z)). In this paper F is
defined as a scaled depth gradient. These two quantities differ by a sign.

4Translational velocities appear scaled by depth making it impossible to determine whether
the effects are due to a nearby object moving slowly or a far-away object moving quickly.
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and with an axis depending on the tilt of the surface, τ , and the direction of
the viewer translation. Divergence (due to foreshortening) and curl components
may also be present (figures 2 and 3).

Note that divergence and deformation are unaffected by (and hence insen-
sitive to errors in) viewer rotations such as panning or tilting of the cam-
era whereas these lead to considerable changes in point image velocities or
disparities5. As a consequence the deformation component efficiently encodes
the orientation of the surface while the divergence component can be used to
provide an estimate of the time to contact or collision.

This formulation clearly exposes both the speed–scale ambiguity and the
bas–relief ambiguity [16]. The latter manifests itself in the appearance of sur-
face orientation, F, with A in the equations relating visual motion to surface
position and orientation. Increasing the slant of the surface F while scaling
the movement by the same amount will leave the local image velocity field un-
changed. Thus, from two weak perspective views and with no knowledge of the
viewer translation, it is impossible to determine whether the deformation in the
image is due to a large |A| (large “turn” of the object or “vergence angle”) and
a small slant, or a large slant and a small rotation around the object. Equiv-
alently a nearby “shallow” object will produce the same effect as a far away
“deep” structure. We can only recover the depth gradient F up to an unknown
scale. These ambiguities are clearly exposed with this analysis whereas this
insight is sometimes lost in the purely algorithmic approaches to solving the
equations of motion from the observed point image velocities. A consequence
of the latter is the numerically ill-conditioned nature of structure from motion
solutions when perspective effects are small.

3 Extraction of Differential Invariants

The analysis above treated the differential invariants as observables of the image.
There are a number of ways of extracting the differential invariants from the
image. These are summarised below before presenting a novel method based on
the temporal derivatives of the moments of the area enclosed by a closed curve.

3.1 Summary of Existing Methods

1. Partial derivatives of image velocity field

This is the most common approach. It is based on recovering a dense field
of image velocities and computing the partial derivatives using discrete
approximation to derivatives [25] or a least squares estimation of the affine
transformation parameters from the image velocities (a minimum of six
normal velocities) estimated by spatio-temporal methods [32, 1]. The

5This is somewhat related to the reliable estimation of relative depth from the relative
image velocities of two nearby points – motion parallax [29, 33, 10]. Both motion parallax
and the deformation of the image velocity field relate local measurements of relative image
velocities to scene structure in a simple way which is uncorrupted by the rotational image
velocity component. In the case of parallax, the depths are discontinuous and differences
of discrete velocities are related to the difference of inverse depths. Equation (13) on the
otherhand assumes a smooth and continuous surface and derivatives of image velocities are
related to derivatives of inverse depth.
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recovery of the image velocity field is usually computationally expensive
and ill-conditioned [18].

2. Point velocities in a small neighbourhood

The image velocities of a minimum of three points in a small neighbour-
hood are sufficient, in principle, to estimate the components of the affine
transformation and hence the differential invariants [21, 26]. In fact it
is only necessary to measure the change in area of the triangle formed
by the three points and the orientations of its sides. There is, however,
no redundancy in the data and hence this method requires very accurate
image positions and velocities. In [11] this is attempted by tracking large
numbers of “corner” features [17] and using Delaunay triangulation [5] in
the image to approximate the physical world by planar facets. Preliminary
results showed that the localisation of “corner” features was insufficient
for reliable estimation of the differential invariants.

3. Relative orientation of line segments

Koenderink [22] showed how temporal texture density changes can yield
estimates of the divergence.

From equation(2) it is easy to show that the change in orientation (clock-
wise), ∆φ of an element with orientation φ is given to first order by [24]

∆φ = −
curlv

2
+

1

2
defv sin 2(φ− µ). (16)

Orientations are not affected by the divergence term. They are only af-
fected by the curl and deformation components. In particular the curl
component changes all the orientations by the same amount. It does not
affect the angles between the image edges. These are only affected by the
deformation component. The relative changes in orientation can be used to
recover deformation in a simple way since the effects of the curl component
are cancelled out. By taking the difference of (16) for two orientations,
φ1 and φ2, it is easy to show (using simple trigonometric relations) that
the relative change in orientation specifies both the magnitude, defv, and
axis of expansion, µ, of the shear as shown below.

∆φ2 −∆φ1 = defv

[

sin(φ2 − φ1) cos 2

(

φ2 + φ1

2
− µ

)]

. (17)

Measurement at three oriented line segments is sufficient to completely
specify the deformation components. Note that the recovery of deforma-
tion can be done without any explicit co-ordinate system and even with-
out a reference orientation. The main advantage is that point velocities
or partial derivatives are not required.

4. Curves and closed contours

The methods described above require point and line correspondences.
Sometimes these are not available or are poorly localised. Often we can
only reliably extract portions of curves (although we can not always rely
on the end points) or closed contours.
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Image shapes or contours “sample” the image velocity field. At contour
edges it is only possible to measure the normal component of image ve-
locity. This information can in certain cases be used to recover the image
velocity field. Waxman and Wohn [38] showed how to recover the full
velocity field from the normal components at image contours. In princi-
ple, measurement of eight normal velocities around a contour allow the
characterisation of the full velocity field for a planar surface. Kanatani
[20] related line integrals of image velocities around closed contours to the
motion and orientation parameters of a planar contour. In the following
we will not attempt to solve for these structure and motion parameters
directly but only to recover the divergence and deformation.

3.2 Recovery of Invariants from Area Moments of Closed
Contours

It has been shown that the differential invariants of the image velocity field
conveniently characterise the changes in apparent shape due to relative motion
between the viewer and scene. Contours in the image sample this image velocity
field. It is usually only possible, however, to recover the normal image velocity
component from local measurements at a curve [36, 18]. It is now shown that
this information is often sufficient to estimate the differential invariants within
closed curves.

Our approach is based on relating the temporal derivative of the area of a
closed contour and its moments to the invariants of the image velocity field (fig-
ure 4). This is a generalisation of the result derived by Maybank [30] in which
the rate of change of area scaled by area is used to estimate the divergence of
the image velocity field. The advantage is that point or line correspondences
are not used. Only the correspondence between shapes is required. The compu-
tationally difficult, ill-conditioned and poorly defined process of making explicit
the full image velocity field [18] is avoided. Moreover, since taking temporal
derivatives of area (and its moments) is equivalent to the integration of nor-
mal image velocities (scaled by simple functions) around closed contours our
approach is effectively computing average values of the differential invariants
(not point properties) and has better immunity to image noise leading to more
reliable estimates. Areas can also be estimated accurately, even when the full
set of first order derivatives cannot be obtained.

The moments of area of a contour, Ig, are defined in terms of an area integral
with boundaries defined by the contour in the image plane:

Ig =

∫ ∫

a(t)
g(x, y)dxdy (18)

where a(t) is the area of a contour of interest at time t and g is a scalar function
of image position (x, y) that defines the moment of interest. For instance setting
g = 1 gives us area. Setting g = x or g = y gives the first-order moments about
the image x and y axes respectively.

The moments of area can be measured directly from the image (see below
for a novel method involving the control points of a B-spline snake). Better
still, their temporal derivatives can also be measured. Differentiating (18) with
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respect to time and using a result from calculus6 we can relate the temporal
derivative of the moment of area to an integral around the contour, c(t) of the
normal component of image velocities v.n, weighted by a scalar g(x, y).

d

dt
(Ig) =

∮

c(t)
[gv.n]ds (19)

By Green’s theorem the contour integral can be re-expressed as an integral
over the area enclosed by the contour, a(t), of the divergence of the vector field:

d

dt
(Ig) =

∫ ∫

a(t)
[∇.(gv)]dxdy (20)

If we assume that the velocity field is linear in the area of interest (i.e. partial
derivatives of v are constant) and using simple vector algebra:

∇.(gv) = g∇.v +∇g.v (21)

to substitute into (20) we obtain a linear equation between the temporal deriva-
tive of the moment of area Ig (which can be measured, see below) and the
velocity field together with its partial derivatives. Each term is a parameter of
the affine transformation. The coefficients of each term are moments of area
(also directly measurable).

d

dt
(Ig) =

∫ ∫

a(t)
[g∇.v +∇g.v]dxdy (22)

In summary, the image velocity field deforms the shape of contours in the
image (figure 4). Shape can be described by moments of area. Hence measuring
the change in the moments of area is an alternative way characterising the
transformation. In this way the change in the moments of area have been
expressed in terms of the parameters of the affine transformation.

If we initially set up the x, y co-ordinate system at the centroid of the image
contour of interest so that the first moments are zero, (22) with g = x and g = y
shows that the centroid of the deformed shape specifies the mean translation
[u0, v0]. Setting g = 1 leads to the simple and useful result that the divergence
of the image velocity field can be estimated as the derivative of area scaled by
area:

da(t)

dt
=

∫ ∫

∇.vdxdy ≈ a(t)divv . (23)

Increasing the order of the moments, i.e. different values of g(x, y), generates
new equations and additional constraints. Some examples which can be used to
estimate the affine transformation are listed below.

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a
Ix
Iy
Ix2

Iy2

Ix3y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 a 0 0 a
a 0 2Ix Iy 0 Ix
0 a Iy 0 Ix 2Iy
2Ix 0 3Ix2 2Ixy 0 Ix2

0 2Iy Iy2 0 2Ixy 3Iy2

3Ix2y Ix3 4Ix3y 3Ix2y2 Ix4 2Ix3y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u0

v0
ux

uy

vx
vy

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (24)

6This equation can be derived by considering the flux linking the area of the contour. This
changes with time since the contour is carried by the velocity field. The flux field, g, in our
example does not change with time. Similar integrals appear in fluid mechanics, e.g. the flux
transport theorem [13].
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(Note that in this equation the subscripts of I are used to label the moments of
area. The left-hand side represents the temporal derivative of the moments in
the column vector.)

In principle, if it is possible to find six linearly independent equations, we
can solve for the affine transformation parameters and combine the coefficients
to recover the differential invariants. The validity of the affine approximation
can be checked by looking at the error between the transformed and observed
image contours.

Some contours may lead to equations which are not independent and their
solution is ill-conditioned. The interpretation of this is that the normal compo-
nents of image velocity are insufficient to recover the true image velocity field
globally, e.g. a fronto-parallel circle rotating about the optical axis. This was
termed the “aperture problem in the large” by Waxman and Wohn [38] and
investigated by Berghom and Carlsson [4]. Note however, that it is always pos-
sible to recover the divergence directly from the area of a closed contour. In
practice higher order moments are more sensitive to image noise.

4 Recovery of Surface Orientation and Time to

Contact

Applications of the estimates of the image divergence and deformation of the
image velocity field are summarised below. It has already been noted that
measurement of the differential invariants in a single neighbourhood is insuffi-
cient to completely solve for the structure and motion since (11–14) are four
equations in the six unknowns of scene structure and motion. In a single neigh-
bourhood a complete solution would require the computation of second order
derivatives [29, 37] to generate sufficient equations to solve for the unknowns.
Even then the solution of the resulting set of non-linear equations is non-trivial.

In the following, the information available from the first-order differential
invariants alone is investigated. It will be seen that the differential invariants
are sufficient to constrain surface position and orientation and that this partial
solution can be used to perform useful visual tasks when augmented with addi-
tional information. Useful applications include providing information which is
used by pilots when landing aircraft [15], estimating time to contact in braking
reactions [28] and in the recovery of 3D shape up to a 3D affine (relief) transfor-
mation [26, 27]. We now show how surface orientation and position (expressed
as a time to contact) can be recovered from the estimates of image divergence
and the magnitude and axis of the deformation component.

1. With knowledge of translation but arbitrary rotation

An estimate of the direction of translation is usually available when the
viewer is making deliberate movements (in the case of active vision) or in
the case of binocular vision (where the camera or eye positions are con-
strained). It can also be estimated from image measurements by motion
parallax [29, 33, 12].

If the viewer translation is known, (11),(13) and (14) are sufficient to
unambiguously recover the surface orientation and the distance to the
object. Due to the speed–scale ambiguity the latter is expressed as a time
to contact. A solution can be obtained in the following way.
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(a) The axis of expansion (µ) of the deformation component and the
projection in the image of the direction of translation (̸ A) allow the
recovery of the tilt, τ , of the surface from (14).

τ = 2µ− ̸ A (25)

(b) We can then subtract from the image divergence component the con-
tribution due to foreshortening. This arises from the component of
viewer translation parallel to the image axis and depends on the sur-
face orientation.

From (11) it is easy to show that this component is equal to defv cos(τ−
̸ A). The remaining component of divergence is due to movement to-
wards or away from the object. Rearranging (11) allows us to recover
the time to contact, tc.

2

tc
= divv − defv cos(τ − ̸ A) (26)

This can be recovered despite the fact that the viewer translation
may not be parallel to the visual direction.

(c) The time to contact fixes the viewer translation in temporal units. It
allows the specification of the magnitude of the translation parallel
to the image plane (up to the same speed–scale ambiguity), A. The
magnitude of the deformation can then be used to recover the slant,
σ, of the surface from (13).

The advantage of this formulation is that camera rotations do not affect
the estimation of shape and distance. The effects of errors in the direction
of translation are clearly evident as scalings in depth or by a 3D affine
(relief) transformation [22].

2. With fixation

If the cameras or eyes rotate to keep the object of interest in the middle
of the image (null the effect of image translation) the magnitude of the
rotations needed to bring the object back to the centre of the image de-
termines A (see Appendix A (40– 41)) and hence allows us to solve for
surface orientation, as above. Again the major effect of any error in the
estimate of rotation is to scale depth and orientations.

3. With no additional information – constraints on motion

Even without any additional assumptions it is still possible to obtain useful
information from the first-order differential invariants. The information
obtained is best expressed as bounds. For example inspection of (11) and
(13) shows that the time to contact must lie in an interval given by:

2

(divv + defv)
≤ tc ≤

2

(divv − defv)
. (27)

The lower bound on time to contact occurs when the component of viewer
translation parallel to the image plane is in the opposite direction to the
depth gradient. The upper bound occurs when the translation is parallel to
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the depth gradient. The upper and lower estimates of time to contact are
equal when there is no deformation component. This is the case in which
the viewer translation is along the ray or when viewing a fronto-parallel
surface (zero depth gradient locally). The estimate of time to contact is
then exact. A similar equation was recently described by Subbarao [35].

4. With no additional information – the constraints on 3D shape

Koenderink and Van Doorn [26] showed that surface shape information
can be obtained by considering the variation of the deformation com-
ponent alone in a small field of view when weak perspective is a valid
approximation. This allows the recovery of 3D shape up to a scale and
3D affine (relief) transformation. That is they effectively recover the axis
of rotation of the object but not the magnitude of the turn. This yields
a family of solutions depending on the magnitude of the turn. Fixing the
latter determines the slants and tilts of the surface. This has recently been
extended in the affine structure from motion theorem [27] and is equiv-
alent to recovering 3D shape in the presence of a single motion parallax
constraint [12].

The solutions presented above use knowledge from a single viewer translation
and measurement of the divergence and deformation of the image velocity field
only. An alternative solution exists if the observer is free to translate along
the ray and also in two orthogonal directions parallel to the image plane. In
this case measurement of divergence alone is sufficient to recover the surface
orientation and the time to contact. This has the advantage that divergence
can be estimated efficiently and reliably from the area enclosed by a single
contour.

5 Implementation and Experimental Results

We now describe the implementation and application of the methods proposed
in (3.2) and (4.1) to recover time to contact and surface orientation from im-
age divergence and deformation estimated from area moments of closed image
curves.

5.1 Tracking Closed Contours

Multi-span closed loop B-spline snakes [8, 7] are used to localise and track closed
image contours. The B-spline is a curve in the image plane

x(s) =
∑

i

bi(s)qi (28)

where bi are the spline basis functions with coefficients qi (control points of the
curve) and s is a curve parameter (not necessarily arc length) [3]. The snakes
are initialised as points in the centre of the image and are forced to expand
radially outwards until they are in the vicinity of an edge where image “forces”
make the snake stabilise close to a high contrast closed contour. Subsequent
image motion is automatically tracked by the snake [7].

B-spline snakes have useful properties such as local control and continuity.
They also compactly represent image curves. In our applications they have
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the additional advantage that the area enclosed is a simple function of the
control points. This also applies to the other area moments. From Green’s
theorem in the plane it is easy to show that the area enclosed by a curve with
parameterisation x(s) and y(s) is given by 7:

a =

∫ sN

s0

x(s)y′(s)ds (29)

where x(s) and y(s) are the two components of the image curve and y′(s) is the
derivative with respect to the curve parameter s. For a B-spline, substituting
(28) and its derivative:

a(t) =

∫ sN

s0

∑

i

∑

j

(qxi
qyj

)bib
′
jds (30)

=
∑

i

∑

j

(qxi
qyj

)

∫ sN

s0

bib
′
jds. (31)

Note that for each span of the B-spline and at each time instant the basis func-
tions remain unchanged. The integrals can thus be computed off-line in closed
form. (At most 16 coefficients need be stored. In fact due to symmetry there are
only 10 possible values for a cubic B-spline). At each time instant multiplication
with the control point positions gives the area enclosed by the contour. This
is extremely efficient, giving the exact area enclosed by the contour. The same
method can also be used for higher moments of area. The temporal derivatives
of the area and its moments are then used to estimate image divergence and
deformation.

5.2 Applications

Here we present the results of a preliminary implementation of the theory. The
examples are based on a camera mounted on a robot arm whose translations
are deliberate while the rotations around the camera centre are performed to
keep the target of interest in the centre of its field of view. The camera intrinsic
parameters (image centre, scaling factors and focal length) and orientation are
unknown. The direction of translation is assumed known and expressed with
bounds due to uncertainty.

5.2.1 Braking

Figure 5 shows four samples from a sequence of images taken by a moving
observer approaching the rear windscreen of a stationary car in front. In the first
frame (time t = 0) the relative distance between the two cars is approximately
7m. The velocity of approach is uniform and approximately 1m/time unit.

A B-spline snake is initialised in the centre of the windscreen, and expands
out until it localises the closed contour of the edge of the windscreen. The snake
can then automatically track the windscreen over the sequence. Figure 6 plots
the apparent area, a(t) (relative to the initial area, a(0)) as a function of time,
t. For uniform translation along the optical axis the relationship between area

7Green’s theorem in the plane can be written as:
∫

c
F1dx+F2dy =

∫ ∫

a
(∂F2

∂x
− ∂F1

∂y
)dxdy.

Substituting F2 = x and a change of variable gives one form of the well-known area relation.
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and time can be derived from (11) and (23) by solving the first-order differential
equation:

da

dt
=

(

2

tc

)

a(t) . (32)

For uniform motion the time to contact decreases linearly with time:

tc(t) = tc(0)− t (33)

and the solution of the differential equation is given by:

a(t) =
a(0)

[

1− t
tc(0)

]2 (34)

where tc(0) is the time to contact at time t = 0. This is in close agreement with
the data (Fig. 6). This is more easily seen if we look at the variation of the
time to contact with time. For uniform motion this should decrease linearly.
The experimental results are plotted in Fig. 7. These are obtained by dividing
the area of the contour at a given time by its temporal derivative (estimated
by finite differences). The variation is linear, as predicted. These results are
of useful accuracy, predicting the collision time to the nearest half time unit
(corresponding to 50cm in this example).

For non-uniform motion the profile of the time to contact as a function of
time is a very important cue for braking and landing reactions [28].

5.2.2 Collision avoidance

It is well known that image divergence can be used in obstacle collision avoid-
ance. Nelson and Aloimonos [32] demonstrated a robotics system which com-
puted divergence by spatio–temporal techniques applied to the images of highly
textured visible surfaces. We describe a real-time implementation based on
image contours and “act” on the visually derived information.

Figure 8 shows the results of a camera mounted on an Adept robot manipu-
lator and pointing in the direction of a target contour. (We hope to extend this
so that the robot initially searches by rotation for a contour of interest. In the
present implementation, however, the target object is placed in the centre of the
field of view.) The closed contour is then localised automatically by initialising
a closed loop B-spline snake in the centre of the image. The snake “explodes”
outwards and deforms under the influence of image forces which cause it to be
attracted to high contrast edges.

The robot manipulator then makes a deliberate motion towards the target.
Tracking the area of the contour and computing its rate of change allows us
to estimate the divergence. For motion along the visual ray this is sufficient
information to estimate the time to contact or impact. The estimate of time
to contact – decreased by the uncertainty in the measurement and any image
deformation (27) – can be used to guide the manipulator so that it stops just
before collision (Fig. 8d). The manipulator in fact, travels “blindly” after its
sensing actions (above) and at a uniform speed for the time remaining until
contact. In repeated trials (see Fig. 9a and b) image divergences measured
at distances of 0.5m to 1.0m were estimated accurately to the nearest half of a
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time unit. This corresponds to a positional accuracy of 20mm for a manipulator
translational velocity of 40mm/s.

The affine transformation approximation breaks down at close proximity to
the target. This may lead to a degradation in the estimate of time to contact
when very close to the target.

5.2.3 Landing reactions and object manipulation

If the translational motion has a component parallel to the image plane, the
image divergence is composed of two components. The first is the component
which determines immediacy or time to contact. The other term is due to
image foreshortening when the surface has a non-zero slant. The two effects can
be computed separately by measuring the deformation. The deformation also
allows us to recover the surface orientation.

Note that unlike stereo vision, the magnitude of the translation is not needed.
The camera parameters (focal length and aspect ratio are not needed for diver-
gence) are also not known. The magnitudes and directions of the camera rota-
tions needed to keep the target in the field of view are also not needed. Simple
measurements of area and its moments – obtained in closed form as a function
of the B-spline snake control points – are used to estimate divergence and de-
formation. The only assumption is of uniform motion and known direction of
translation.

Figure 9 shows an example in which a robot manipulator uses these esti-
mates of time to contact and surface orientation to approach the object surface
perpendicularly so as to position a suction gripper for manipulation. The image
contours are shown in Fig. 2 highlighting the effect of deformation due to the
sideways component of translation. The successful execution is shown in Fig. 9
c and d.

5.2.4 Qualitative visual navigation

Existing techniques for visual navigation have typically used stereo or the anal-
ysis of image sequences to determine the camera ego-motion and then the 3D
positions of feature points. The 3D data are then analysed to determine, for
example, navigable regions, obstacles or doors. An example of an alternative
approach is presented. This computes qualitative information about the ori-
entation of surfaces and times to contact from estimates of image divergence
and deformation. The only requirement is that the viewer can make deliberate
movements or has stereoscopic vision. Figure 10a shows the image of a door and
an object of interest, a pallet. Movement towards the door and pallet produce
a distortion in the image. This is seen as an expansion in the apparent area of
the door and pallet in Fig. 10b. This can be used to determine the distance to
these objects, expressed as a time to contact – the time needed for the viewer
to reach the object if the viewer continued with the same speed. The image
deformation is not significant. Any component of deformation can, anyhow, be
absorbed by (27) as a bound on the time to contact. A movement to the left
(Fig. 10c) produces image deformation, divergence and rotation. This is im-
mediately evident from both the door (positive deformation and a shear with a
horizontal axis of expansion) and the pallet (clockwise rotation with shear with
diagonal axis of expansion). These effects with the knowledge of the direction of
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translation between the images taken at figure 10a and 10c are consistent with
the door having zero tilt, i.e. horizontal direction of increasing depth, while the
pallet has a tilt of approximately 90o, i.e. vertical direction of increasing depth.
These are the effects predicted by (11, 12, 13 and 14) even though there are also
strong perspective effects in the images. They are sufficient to determine the
orientation of the surface qualitatively (Fig. 10d). This has been done with-
out knowledge of the intrinsic properties of the cameras (camera calibration),
the orientations of the cameras, their rotations or translational velocities. No
knowledge of epipolar geometry is used to determine exact image velocities or
disparities. The solution is incomplete. It can, however, be easily augmented
into a complete solution by adding additional information. Knowing the mag-
nitude of the sideways translational velocity, for example, can determine the
exact quantitative orientations of the visible surfaces.

6 Conclusions

We have presented a simple and efficient method for estimating image divergence
and deformation by tracking closed image contours with B-spline snakes. This
information has been successfully used to estimate surface orientation and time
to contact and exploited in the visual guidance of a robot manipulator.

The implemtation described in this paper required a high contrast image
contour on a flat surface and approximate knowledge of the direction of camera
translation. We have recently extended this work to highly textured images [34]
and when camera translation is unknown [12].
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Appendix A

Consider an arbitrary co-ordinate system (the final results will be invariant to
this choice) with the (x, y) plane spanning the image plane and the z-axis aligned
with the ray. Assume the viewer to have a translational velocity with compo-
nents {U1, U2, U3} and an angular velocity with components {Ω1,Ω2,Ω3}. Let
the image velocity field at a point (x, y) in the vicinity of the ray be represented
as a 2D vector field, v(x, y) with x and y components (u, v). The two compo-
nents of the image velocity of a point in space, (X,Y, Z), due to relative motion
between the observer and the scene are given by [29, 37]:

u =

[

−fU1 + xU3

Z

]

− fΩ2 + yΩ3 +
xy

f
Ω1 −

x2

f
Ω2 (35)

v =

[

−fU2 + yU3

Z

]

+ fΩ1 − xΩ3 −
xy

f
Ω2 +

y2

f
Ω1 (36)

The image velocity consists of two components. The first component is
determined by relative translational velocity and encodes the structure of the
scene, Z(x, y). The second component depends only on rotational motion about
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the viewer centre (eye movements). It gives no useful information about the
depth of the point or the shape of the visible surface. It is this rotational
component which complicates the interpretation of visual motion. The effects
of rotation are hard to extricate however, although numerous solutions have
been proposed [31]. As a consequence, point image velocities and disparities
do not encode shape in a simple efficient way since the rotational component is
often arbitrarily chosen to shift attention and gaze by camera rotations or eye
movements.

For a sufficiently small field of view and in a small neighbourhood of a smooth
surface such that

∆Z

Z0
≪ 1 (37)

x2 + y2

f2
≪ 1 (38)

where ∆Z is the variation in scene depth (relief) and Z0 = Z(0, 0), it is possible
to ignore the quadratic components of image motion. The image velocity field is
well approximated by a translation in the image (u0, v0) and by the first-order
partial derivatives of the image velocity (ux, uy, vx, vy). Namely to first order
the image velocity field at a point (x, y) in the neighbourhood of the origin can
be approximated by an affine transformation:

[

u
v

]

≈

[

u0

v0

]

+

[

ux uy

vx vy

] [

x
y

]

(39)

where:

u0 = −
fU1

Z0
− fΩ2 (40)

v0 = −
fU2

Z0
+ fΩ1 (41)

ux =
U3

Z0
+

fU1Zx

Z2
0

(42)

uy = +Ω3 +
fU1Zy

Z2
0

(43)

vx = −Ω3 +
fU2Zx

Z2
0

(44)

vy =
U3

Z0
+

fU2Zy

Z2
0

(45)

and where the x and y subscripts represent differentiation with respect to these
spatial parameters. Note that the average image translation (u0, v0) can always
be cancelled out by appropriate camera rotations (eye movements) (Ω1,Ω2).

Consider points that lie on a plane in space. The depth of each point is then
given by:

Z = Z0 + pX + qY (46)

and the inverse-depth by:

1

Z
=

1

Z0
(1− px/f − qy/f) (47)
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where p and q represent the orientation of the plane. Note that p and q are
related to the scaled depth gradients by:

p =
fZx

Z0
(48)

q =
fZy

Z0
(49)

The image velocity gradients can now be expressed in terms of the surface
orientation by:

ux =
U3

Z0
+

pU1

Z0
(50)

uy = Ω3 +
qU1

Z0
(51)

vx = −Ω3 +
pU2

Z0
(52)

vy =
U3

Z0
+

qU2

Z0
(53)

Appendix B

The velocity gradient tensor represents the distortion of the image shape. It can
be decomposed into three components which are invariant under a transforma-
tion of the image co-ordinate system. 8 These components are the first-order
differential invariants of the image velocity field – the vorticity (curl) , dilation
(divergence) and pure shear (deformation) components.

[

ux uy

vx vy

]

=
curlv

2

[

0 −1
1 0

]

+
divv

2

[

1 0
0 1

]

+

defv

2

[

cosµ − sinµ
sinµ cosµ

] [

1 0
0 −1

] [

cosµ sinµ
− sinµ cosµ

]

(54)

=
curlv

2

[

0 −1
1 0

]

+
divv

2

[

1 0
0 1

]

+
defv

2

[

cos 2µ sin 2µ
sin 2µ − cos 2µ

]

(55)

where curlv, divv and defv represent the curl, divergence and deformation com-
ponents and where µ specifies the orientation of the axis of expansion (maximum
extension). 9 curlv, divv and defv are defined in equations (3-6).

Appendix C

The relationships between the observed differential invariants, the three-dimensional
configuration and the viewer motion are given below. We first express the differ-
ential invariants in terms of the viewer translation (U1/Z0, U2/Z0, U3/Z0) and

8The decomposition is known in applied mechanics as the Cauchy–Stokes decomposition
theorem [2].

9(cos µ, sinµ) is the eigenvector of the traceless and symmetric component of the velocity
gradient tensor. It corresponds the positive eigenvalue with magnitude defv. The other
eigenvector specifies the axis of contraction and is orthogonal. It corresponds to the negative
eigenvalue with magnitude −defv.
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the surface orientation (p, q). From (3-6) and (50 -53) we have:

divv =
2U3

Z0
+

(pU1 + qU2)

Z0
(56)

curlv = −2Ω3 +
(−qU1 + pU2)

Z0
(57)

(defv) cos 2µ =
(pU1 − qU2)

Z0
(58)

(defv) sin 2µ =
(qU1 + pU2)

Z0
. (59)

The differential invariants depend on the viewer motion, depth and surface
orientation. We can express them in a co-ordinate free manner by introducing
two 2D vector quantities: the component of translational velocity parallel to the
image plane scaled by depth, Z0, A where:

A =

(

U1

Z0
,
U2

Z0

)

=
U− (U.Q)Q

Z0
(60)

and the depth gradient scaled by depth, F, to represent the surface orientation
and which we define in terms of the 2D vector gradient10:

F = (p, q) (61)

=
f∇Z

Z
. (62)

With this new notation equations (56, 57, 58 and 59) can be re-written to
show the relation between the differential invariants, the motion parameters and
the surface position and orientation – equations (11,12 and 13).

The relationship between µ (which specifies the axis of maximum extension)
and A and F (14):

µ =
̸ A+ ̸ F

2
.

follows from the trigonometric relation:

tan(̸ A+ ̸ F) =
tan(̸ A) + tan(̸ F)

1− tan(̸ A) tan(̸ F)
(63)

10There are three simple ways to represent surface orientation: components of a unit vector,
n; gradient space representation (p, q) and the spherical co-ordinates (σ, τ). Changing from
one representation to another is trivial and is listed here for completeness.

tan σ =
√

(p2 + q2)

tan τ =
q

p

n = (sinσ cos τ, sinσ sin τ, cos σ).
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a) 2D rotation (curl) b) Isotropic expansion (divergence)

c) Shear (deformation) d) Shear (deformation)

Figure 1: Differential invariants of the image velocity field.

To first order the image velocity field can be decomposed into curl (vorticity), divergence
(dilation) and pure shear (deformation) components. The curl, divergence and the mag-
nitude of the deformation are differential invariants and do not depend on the choice
of image co-ordinate system. Their effect on apparent image shape can be described by
four independent components of an affine transformation. These are: (a) a 2D rotation;
(b) an isotropic expansion (scaling); (c) and (d) two deformation components. The lat-
ter two are both pure shears about different axes. Any deformation can be conveniently
decomposed into these two components. Each component is dependent on an arbitrary
choice of co-ordinate system and is not a differential invariant.
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(a) (b)

(c) (d)

Figure 2: Distortions in apparent shape due to viewer motion.

(a) The image of a planar contour (zero tilt and positive slant, i.e. the direction of
increasing depth, F, is horizontal and from left to right). The image contour is localised
automatically by a B-spline snake initialised in the centre of the field of view. (b) The
effect on apparent shape of a viewer translation towards the target. The shape undergoes
an isotropic expansion (positive divergence). (c) The effect on apparent shape when the
viewer translates to the left while fixating on the target (i.e. A is horizontal, right to
left). The apparent shape undergoes an isotropic contraction (negative divergence which
reduces the area) and a deformation in which the axis of expansion is vertical. These
effects are predicted by equations (11,12,13 and 14) since the bisector of the direction
of translation and the depth gradient is the vertical. (d) The opposite effect when the
viewer translates to the right. The axes of contraction and expansion are reversed. The
divergence is positive. Again the curl component vanishes.
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(a)

(b) (c)

Figure 3: Image deformations and rotations due to viewer motion.

(a) The image of a planar contour (90o tilt and positive slant – i.e. the direction of
increasing depth, F, is vertical, bottom to top). (b) The effect on apparent shape of a
viewer translation to the left. The contour undergoes a deformation with the axis of
expansion at 135o to the horizontal. The area of the contour is conserved (vanishing
divergence). The net rotation is however non-zero. This is difficult to see from the
contour alone. It is obvious, however, by inspection of the sides of the box, that there
has been a net anticlockwise rotation. (c) These effects are reversed when the viewer
translates to the right.
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Figure 4: The temporal evolution of image contours.

For small fields of view the distortion in image shape can be described locally by an affine
transformation. The components of the affine transformation can be expressed in terms of
contour integrals of normal image velocities. More conveniently the temporal derivatives
of the area and its moments can be used to characterise the distortion in apparent shape
and the affine transformation.
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0:00 2:00

4:00 6:00

Figure 5: Using image divergence to estimate time to contact.

Four samples of a video sequence taken from a moving observer approaching a stationary
car at a uniform velocity (approximately 1m per time unit). A B-spline snake automat-
ically tracks the area of the rear windscreen. The image divergence (figure 6) is used to
estimate the time to contact (figure 7). The next image in the sequence corresponds to
collision!
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Figure 6: Apparent area of windscreen for approaching observer.
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Figure 7: Estimated time to contact for approaching observer.
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(a) (d)

(b) (c)

Figure 8: Using image divergence for collision avoidance.

A CCD camera mounted on a robot manipulator (a) fixates on the lens of a pair of glasses
worn by a mannequin (b). The contour is localised by a B-spline snake which “expands”
out from a point in the centre of the image and deforms to the shape of a high contrast,
closed contour (the rim of the lens). The robot then executes a deliberate motion towards
the target. The image undergoes an isotropic expansion (divergence)(c) which can be
estimated by tracking the closed loop snake and monitoring the rate of change of the area
of the image contour. This determines the time to contact – a measure of the distance
to the target in units of time. This is used to guide the manipulator safely to the target
so that it stops before collision (d).
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(a) (b)

(c) (d)

Figure 9: Visually guided landing and object manipulation.

Two examples in which a robot manipulator uses the estimates of time to contact and
surface orientation to land on a target surface (approaching perpendicular to object sur-
face) and to pick it up. The tracked image contours used to estimate image divergence
and deformation are shown in figure 2. In (a) and (b) the estimate of the time to contact
and surface orientation is used to guide the manipulator so that it comes to rest per-
pendicular to the surface with a pre-determined clearance. Estimates of divergence and
deformation made approximately 1m away were sufficient to estimate the target object
position and orientation to the nearest 2cm in position and 1o in orientation.
In the second example, figures (c) and (d), this information is used to position a suction
gripper in the vicinity of the surface. A contact sensor and small probing motions can
then be used to refine the estimate of position and guide the suction gripper before ma-
nipulation. An accurate estimate of the surface orientation is essential. The successful
execution is shown in (c) and (d).
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(a) (b)

(c)

viewer translation A

axis of contraction

door

F

axis of contraction

pallet

F

(d)

Figure 10: Qualitative visual navigation using image divergence and deforma-
tion.

(a) The image of a door and an object of interest, a pallet. (b) Movement towards the
door and pallet produces a deformation in the image seen as an expansion in the apparent
area of the door and pallet. This can be used to determine the distance to these objects,
expressed as a time to contact – the time needed for the viewer to reach the object if
it continued with the same speed. (c) A movement to the left produces combinations of
image deformation, divergence and rotation. This is immediately evident from both the
door (positive deformation and a shear with a horizontal axis of expansion) and the pallet
(clockwise rotation and shear with diagonal axis of expansion). These effects, combined
with the knowledge that the movement between the images, are consistent with the door
having zero tilt, i.e. horizontal direction of increasing depth, while the pallet has a tilt
of approximately 90o, i.e. vertical direction of increasing depth. They are sufficient to
determine the orientation of the surface qualitatively (d). This has been done with no
knowledge of the intrinsic properties of the camera (camera calibration), its orientations
or the translational velocities. Estimation of divergence and deformation can also be
recovered by comparison of apparent areas and the orientation of edge segments.
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