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Abstract

Human face detection has always been an important problem for face,
expression and gesture recognition. Though numerous attempts have been
made to detect and localize faces, these approaches have made assump-
tions that restrict their extension to more general cases. We identify that
the key factor in a generic and robust system is that of using a large
amount of image evidence, related and reinforced by model knowledge
through a probabilistic framework. In this paper, we propose a feature-
based algorithm for detecting faces that is sufficiently generic and is also
easily extensible to cope with more demanding variations of the imaging
conditions. The algorithm detects feature points from the image using
spatial filters and groups them into face candidates using geometric and
gray level constraints. A probabilistic framework is then used to reinforce
probabilities and to evaluate the likelihood of the candidate as a face. We
provide results to support the validity of the approach and demonstrate its
capability to detect faces under different scale, orientation and viewpoint.

1 Introduction

With the advancement in computer and automated systems, one is seldom sur-
prised to find such systems applicable to many visual tasks in our daily activities.
Automated systems on production lines inspect goods for our consumption, and
law-enforcement agencies use computer systems to search databases of finger-
print records. Visual surveillance of scenes, visual feedback for control, etc., all
have potential applications for automated visual systems.

One area that has grown significantly in importance over the past decade is
that of computer face processing in visual scenes. Researchers attempt to teach
the computer to recognize and analyze human faces from images so as to produce
an easy and convenient platform for interaction between human and computers.
Law-enforcement can be improved by automatically recognizing criminals from
a group of suspects. Security can also be reinforced by identifying that the
authorized person is physically present. Moreover, human facial expressions
can be analyzed to direct robot motion to perform certain secondary, or even
primary, tasks in our routine work requirements.



In the daunting task of human face processing, face detection is one of the
most important problem to be solved. It is a pre-requisite for automatic face
recognition and expression analysis. Most automatic face recognition algorithms
have either assumed that the face has been cropped from the image (Craw
et.al. [6], Turk and Pentland [30]), or they have assumed some constraints about
the face and/or background such that the face detection process becomes trivial
(Chow and Li [4]).

This task is certainly not trivial when the background is complex, the illu-
mination is varied, and the pose of the face not fixed. Though many approaches
have been attempted towards face detection and localization, the assumptions
and the constraints made in these approaches are still too restrictive, making the
algorithm incapable of extension to more general cases. As such, face detection
still remains largely an unsolved problem.

2 Related Work

There are a few distinct approaches to face detection. The top-down model-
based approach assumes a different face model at different coarse-to-fine scales.
For efficiency, the image is searched at the coarsest scale first. Once a match
is found, the image is searched at the next finer scale until the finest scale is
reached. Some of the work using this approach were reported by Yang and
Huang [32], and Lanitis et.al. [13]. In general, only one model is assumed in
each scale (usually in the fronto-parallel view) and thus it is difficult to extend
this approach to multiple views.

The bottom-up feature-based approach searches the image for a set of fa-
cial features and groups them into face candidates based on their geometrical
relationship. Leung et.al. [14], Sumi and Ohta [26], and Yow and Cipolla [34] re-
ported work using this approach. Though this approach can be easily extended
to multiple views, it is unable to work well under different imaging conditions
because the image structure of the facial features vary too much to be robustly
detected by the feature detectors.

A texture-based approach was reported by Dai et.al. [8]. Faces are detected
by examining the spatial distribution of the gray-level information in the subim-
age (using Space Gray Level Dependency (SGLD) matrices proposed by Haralick
[10]). This is again not easily extensible to multiple viewpoints.

The neural network approach detects faces by subsampling different regions
of the image to a standard-sized subimage and then passing it through a neural
network filter. Recent work was reported by Sung and Poggio [27], and Rowley
et.al. [21]. The algorithm performed very well for fronto-parallel faces but is
difficult to be extended to different views of the face.

The colour-based approach labels each pixel according to its similarity to
skin colour, and subsequently labels each subregion as a face if it contains a
large blob of skin colour pixels (Chen et.al. [3], Dai and Nakano [7]). Tt can
cope with different viewpoint of faces (Chen et.al. [3]) but it is sensitive to skin
colour and the face shape.



Motion-based approaches use image subtraction to extract the moving fore-
ground from the static background. The face is then located by examining the
silhouette (Trew et.al. [28]) or the colour of the differenced image (Schiele and
Crowley [25]). This approach will not work well when there are a lot of moving
objects in the image.

3 About Image Evidence

So what can we learn from the attempts of these various researchers 7 Lanitis
et.al. 's approach is able to locate faces very well because they make use of gray-
level image profile in addition to edge information in their statistical shape model
(active shape model - Cootes et.al. [5]) of the face. Sung and Poggio’s method
works very well too because almost every pixel in a 19x19 subimage is used
to evaluate the output, and many of these pixels encode spatial and gray-level
information. However, these methods at present are limited to fronto-parallel
views. Leung ef.al. ’s feature-based approach seems to give the flexibility of
extension into different viewpoints, but the lack of evidential support in the
feature detection process curbed its success.

On the other hand, we can see why Leung et.al. ’s, Sumi and Ohta’s method
did not perform as well. The system is dependent on too few image features,
which cannot be extracted robustly due to image noise or noise in the feature
detector. Leung et.al. use the response from a set of steerable-scalable filters to
find facial features, and Sumi and Ohta use template matching to identify eyes.
In both these cases the evidence for a feature to be present comes largely from
the response of the filter or the correlation output. As a result, there is a lack
of evidence to support the hypothesis of a face and therefore the performance
of the algorithm is affected.

Human vision is very robust because we made use of a large amount of evi-
dence from the visual image that is formed in our retina. Some of these evidence
include edges, corners, lines, bars, blobs, intensity, shape, texture, colour and
even motion. These types of evidence are well-used by vision researchers in
their various approaches. Another form of evidence that is less well-exploited
is that of contextual evidence, i.e. the knowledge that certain features occur in
the vicinity of other features. For example, we know that eyes occur in pairs.
So, when we find an eye in the image, the existence of this eye is evidence for
the existence of the other eye.

In this paper, we adopt a bottom-up feature-based approach which has the
flexibility to be extended to different scale, orientation and viewpoint of faces in
the image. A large amount of geometric, spatial and gray-level measurements
are used for robustness. Due to the use of many different types of image evi-
dence, we can reduce the strictness of the requirement in each piece of evidence
(e.g. threshold level of edge detection filter response, etc.). This makes the
algorithm more robust to noise and occlusion, without creating too many false
positive candidate faces.



4 The Face Model

We always need a model of the object in any object recognition task. Leung
et.al. [14] model the face as a statistical graph consisting of 5 points, namely the
eyes, nostrils and nose tip. The advantages of choosing these points are clear :
these points are “interior” points on the face (as opposed to “exterior” points
lying on the face boundary which are easily influenced by background clutter).
These points are also “rigid”, i.e. the inter-feature geometry is not easily de-
formed by different facial expression or different personal identity. However, the
disadvantage of using these points are that they span only a small area on the
face (thus a large margin of error).

A model of an object in terms of low level image features (such as edges,
corners, etc.) is always very difficult to use because the image structure changes
very drastically in different images due to changes in scale, image noise, quanti-
zation noise and illumination variations. As such, models of explicit shape (e.g.
deformable template models - Yuille et.al. [35]), only work well in high resolu-
tion and relatively noise-free images. However, a model of the object described
in terms of higher level features (such as a face described in terms of eyes, nose
and mouth), is usually quite stable and robust.

We therefore model the face as a plane with 6 oriented facial features (namely,
the eyebrows, the eyes, nose and mouth). In addition, the “cheek” regions (re-
gions under the eyes and to the left or right of the nose and mouth positions),
must be relatively feature-free and edge-free. This face model has the advantage
of using “interior” points such as Leung et.al. ’s [14], and yet it spans a larger
area over the actual face, thus making the detection more robust and reliable.

Face TopPFG BottomPFG LeftPFG RightPFG

Hpairl Hpair2 Vpairl Vpair2 Vpair3
Figure 1: The face model and the component face groups.

Also, due to occlusion or missing features (eyebrows, usually), we need to
decompose the face model into components consisting of 4 features, which are
common occurrences of faces under different viewpoints or different identity.
These groups are called Partial Face Groups or PFGs (Yow and Cipolla [33]).
These PFGs are further subdivided into components consisting of 2 features
(horizontal and vertical pairs - Hpair and Vpair) (fig. 1) for the purpose of



perceptual grouping and evidence propagation.

In order for feature detection to be robust we have to use image features that
are invariant to changes in scale and illumination intensity. We observe that
at low resolutions, all the 6 facial features will appear only as dark elongated
blobs against the light background of the face. And since edges are illumination
invariant to a large extent, we model the 6 facial features as pairs of oriented
edges as shown in fig. 2. The image is smoothed before the feature detection
process so that any high-resolution features will take the form of the lower
resolution ones. The vertical edges in the eye and nose model are only used to
provide evidence in labelling the facial feature and is not an important criteria
in the detection of the feature.

i & O O T————
eyebrow eye nose mouth

Figure 2: The facial feature models.

The distinction between facial features and image features should be made
clear. In this paper, we define facial features as high-level entities which are
present on our faces in accordance to our intuitive idea of the components of a
face. Examples are eyes, nose, ears and mouth. We define image features as the
low-level entities which we can find from a digital image (e.g. edges, corners,
gray-level of pixels and regions). The term features can be used to mean either
or both facial features and image features.

5 Perceptual Grouping

It is obvious that with such a low resolution model, there will be lots of false
positive feature candidates. We therefore propose a perceptual grouping frame-
work that groups these feature candidates into faces using geometrical, gray-
level and spatial information. Feature candidates that cannot be grouped will
be discarded.

Perceptual organization is a phenomenon in human vision in which we are
able to immediately detect relationships such as collinearity, parallelism, con-
nectivity, and repetitive patterns among image elements. It has been extensively
studied by investigators in psychology and computer vision. Excellent surveys
of these works can be found in Lowe [15] and Palmer [18].

The Gestalt laws of organization (Koffka [11], Kohler [12]) states the com-
mon rules by which our visual system attempts to group information. Some of
these rules includes proximity, similarity, common fate, continuation and clo-
sure. Many good perceptual grouping algorithms (Sarkar and Boyer [24], Mohan
and Nevatia [17]) make use of such principles for effective grouping and high
performance.



Triesman [29] also proposed a two stage model of perception. The first stage,
which is described as pre-attentive perception, extracts image information into
points and regions of interest, which directs the attention of processing efforts
of the next stage. The second stage of perception, the attentive stage, will
perform grouping, comparison, evaluation and reasoning activities based on the
detection and identification of meaningful object groups in the image.

We will model our face detection process as a two stage model of percep-
tion based on Triesman. The first stage operates on the raw image data and
produce a list of interest points from the image, indicating likely location of
facial features. The second stage will examine these interest points, group them
based on Gestalt principles and label them accordingly to knowledge acquired
from training data. The labelled features are further grouped based on model
knowledge of where they should occur with respect to each other.

5.1 Preattentive feature selection

The preattentive feature selection is performed in two steps. First, a list of
interest points is found from the image using spatial filtering. As we pointed
out earlier, at a coarse scale the 6 facial features each resembles a dark elongated
bar on a light background. Hence, these features can be found by smoothing
the input image and then filtering the image using a matched bandpass filter.
A suitable filter will be that of a second derivative Gaussian, elongated at an
aspect ratio of 3:1 (Yow and Cipolla [34]). Local maxima in the response will
indicate the presence and the location of such structures in the image.

Next, the edges around each interest point are examined. Edges are linked
based on their proximity, and similarity in orientation and strength. A standard
boundary algorithm (such as that given in Ballard and Brown [1]) will suffice.
Assuming that the face is vertical, we look for almost horizontal edges above
and below the feature point. If the orientation is not known, we can look for
the existence of two roughly parallel edge segments with opposite polarity on
both sides of the interest point. If such a point is found, we flagged it as a facial
feature point. We further define the extent of the feature region by drawing a
box around the two edges. Fig. 3 illustrates this process.

-/ N —/ N
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Detected interest Edge detection Detected feature
point and linking and feature region

Figure 3: Preattentive feature selection process.

Measurements of the region’s image characteristics (such as edge length, edge
strength, gray-level variance) are then made and stored into a feature vector x.
From the training data of the facial features, e.g. “eyebrow”, we obtained a



mean vector fiprow and covariance matrix Xjqo,, which define the class of valid
“eyebrow” feature vectors in a n-dimensional space, where n is the number of
components defining the feature vector x.

A facial feature candidate ¢ is a valid facial feature j if the Mahalanobis
distance M;; of the feature vector x; is within an admission threshold 7; from
the class mean y;, i.e.

Mij <7y, where My = (xi — p)" B (xi — py) (1)

This is repeated for all the 4 classes of facial features, namely, eyebrow, eye,
nose, and mouth. If the facial feature does not belong to any of the 4 classes, it
is discarded from the list.

There is a significant advantage in using the Mahalanobis distance. The
Mahalanobis distance takes into account the variance of the individual param-
eters in the feature vector. If we use Euclidean distance, and when one of the
parameters has a large variance, the Euclidean distance of valid members from
the class mean will be large. If the Mahalanobis distance is used instead, this
will not be the case because the effect due to that parameter is scaled down by
its own variance. This is desirable because the effects of the other parameters
will then not be subsumed by the one with large variance, leading to a large
reduction in the number of false positives.

5.2 Attentive feature grouping

After obtaining a set of feature points and the associated feature region, these
feature regions are then actively grouped using our model knowledge of the face.
Single features are grouped into vertical and horizontal pairs, pairs are grouped
into partial face groups, and partial face groups are grouped into face candidates

(fig. 4).

new region
\ formed
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formed formed
feature region feature pair partial face group face candidate

Figure 4: Attentive feature grouping process.

For each level k of grouping, a set of ny measurements is made of the com-
ponent features and stored into a nj-dimensional vector. This vector is then
projected into its ni-dimensional class space, which was determined from mea-
surements obtained from faces in training data. The Mahalanobis distance M;;



of this feature vector is then evaluated and used to determine its membership
in the class.

This grouping process is effective in removing false positives because a large
number of geometric and gray-level measurements are used to determine its
validity. In particular, the edge and spatial information about the new region
formed that is not part of the components itself (fig. 4) prove to be the most
effective. The effectiveness of this grouping process in not detecting too many
false positives is due mainly to the examination of edge and intensity information
in these spatial regions.

One important advantage of this bottom-up approach is that though the
spatial region to be analyzed gets larger at higher levels, there are fewer of these
regions to process. As a result, the processing time is kept small throughout
the whole algorithm.

For each additional piece of evidence sought from the image, an additional
dimension is used in the feature vector for classification. The more evidence
we use from the image, the larger the dimension of the feature vector. In the
neural network approach used by Sung and Poggio [27], almost every single pixel
in a 19x19 subimage is used, leading to a 283-dimensional space. Though this
encodes a large amount of image evidence, the class space occupied by valid
members can be highly nonconvex, leading to great difficulty in selecting true
candidates.

We therefore have to choose measurements based on which features are sig-
nificant in the image. By examining the features in a large number of images,
the measurements that are found to be significant include :

1. the ratio of feature lengths (obtained from edge linking) to the size of the
image.

2. the ratio of feature lengths to other feature lengths.
3. the aspect ratio of a feature region.

4. the ratio of inter-feature distances.

5. the difference in orientation between features.

6. the number of directional edgels in a region (normalized to the size of the
region).

7. the ratio of edge strengths of edgels in a region to edge strengths of facial
features.

8. the mean gray level of a region (normalized to intensity distribution).

9. the variance in the gray-level distribution of a region.



6 Probabilistic Framework

The perceptual grouping framework enables us to reject grossly incorrect group-
ings of face candidates. Still, we have to deal with a reasonable number of false
positive faces which cannot be effectively removed by using detection thresholds
in the previous section. We thus propose a probabilistic framework to assign
and propagate probabilities among the facial features and facial groups so that
we will achieve a high confidence rate for true positive faces.

Bayesian networks, which are also known as belief networks, are directed
acyclic graphs, with nodes representing random variables and arcs signifying
conditional dependencies specified by conditional probabilities. Bayesian net-
works do not assume independence among features, they encode the dependen-
cies among features (Russell and Norvig [23]).

An example of a belief network is shown in fig. 5(a). The nodes with
arrows pointing away from them are the parents of those which the arrows are
pointing to. This encodes the dependency between the nodes. Each node can
take either of 2 values, True or False, and has a conditional probability table

(CPT) associated with it (fig. 5(b)).
Face | P(fq) P('fq)

T 0.6 0.4

(a) (b)

Figure 5: (a) A belief network. (b) Conditional probability table (CPT).

The entries in the CPT describe the conditional probability of each value of
the variable, given each possible combination of the values of the parent nodes.
These set of entries can be estimated directly by using the statistics of the set
of examples (Russell et.al. [22]). The crucial value in the belief network is the
prior probability of the root node (the “face” node in this case), and this is often
hard to estimate. Certainly, the choice of an appropriate prior depends on the
complete space of hypothesis. We may assume an uniform prior for our case.

In our previous approaches ([33], [34]), we used a belief network comprising
of 4 child nodes, one for each of the 4 partial face groups (fig. 5(a)). This was
shown to be highly effective for fronto-parallel view of faces because all 4 PFGs
can be detected in this view, giving a large amount of evidence for true face
candidates. However, for profile views, the probability of the face remained low
because only one PFG can be found in the image.

To overcome this, we propose a new belief network structure, using the facial
features as child nodes instead of the PFGs (fig. 6). The belief network now



has 6 child nodes instead of 4. Profile view of faces will thus have 4 pieces of
evidence (facial features) out of 6, instead of 1 (face group) out of 4 previously.
This leads to a better capability of detecting profile views of faces.

Figure 6: The belief network used in our approach.

So how do we update and improve the probabilities of these child nodes using
model knowledge 7 As mentioned earlier, one source of evidence that is often
overlooked is the presence of a neighbouring feature (e.g. presence of another
eye next to an eye candidate). To harness this extra piece of evidence, we build
a second belief network (fig. 7(a)) to reinforce the belief of each feature based
on the presence of neighbouring features.

propagation

virtual node

(a) (b)

Figure 7: (a) Reinforcement belief network. (b) Virtual nodes.

When evidence for a facial feature becomes available, a virtual node is cre-
ated (the “evidence” node) and instantiated, allowing the evidence, specified in
the form of a probability, to propagate through the entire network and update
all the other nodes (fig. 7(b)). The resulting effect is a large increase in the
probabilities of the feature candidates which are true facial features.

We use a propagation algorithm for singly connected networks given by
Pearl [19] which does not make any unfounded assumption of the conditional
independence of the system. In Pearl’s algorithm, each node when instantiated
with a piece of evidence will modify its parent or child nodes by sending A
or m messages to them. In addition, each node has a A and a 7 value which
are modified by these A and 7 messages. The main difference between this
propagation algorithm and the one for trees (used in our previous work [33],
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[34]) is that nodes in a singly connected network can have more than one parent.
Our belief network structure in fig. 7(a) clearly requires this.

Suppose a node B has two parents A and D, and a set of child nodes s(B)
where each child node C is a member of the set s(B), C € s(B). Also, let B
have k possible values b;, i = 1, .. , k. The updated probability P’(b;) of a node
B for the value b; is then given by

P'(b;) = aX(b;)x(b;) (2)

where A(b;) and w(b;) are the A and m values associated with node B for the
value b;. « is a normalizing constant so that all the probabilities b; sum to one.
The X value of a node B, A(b;) with a set of child nodes s(B) is given by

Ab) = T rew) (3)

Ces(B)

where Ac(b;) is the A message from the child C to node B for the value b;. The
« value, w(b;), is given by

ﬂ'(bz) = ZZP(Z}”CL]',dp)ﬂ'B(aj)ﬂ'B(dp) (4)

ji=1p=1

where P(b;|a;, d,) is the joint conditional probability of node B given its parents
A and D, and wg(a;), 7p(dp) are the 7 messages from the parents A and D
respectively.

The X message from a node B to one of its parents A, Ag(a;), is given by

Mp(aj) = 3 wa(dy) (3 P(bilaj, dp)A(h:) (5)

and the 7 message received by a node B from its parent A, wp(q;), is

P'a;)
mgla;) = 6
( J) /\B (aJ) ( )
In the case of a node with more than two parents (e.g. Vpair3), the equations
are a straightforward extension of the above. For example, if a node B has
another parent E, with r possible values, then equation 4 and 5 will become

w(bi) =YY D P(bilaj, dy, e)mp(a;)7n(dy) T (es) (7)

s=1j=1p=1

M) = 30 3 wn(emaldy) (30 Plbilaj. dpcod)  (®)

s=1p=1

Using these equations, we are able to propagate evidence through the network
when evidence for one of the nodes is found. A node when instantiated will send
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A messages to its parents, and 7 messages to its children. In turn, the parent
node will send new A messages to its parents, and = messages to its other
children. A child node receiving a 7 message will only send new 7 messages to
its own children. In this way, nodes which are conditionally dependent on the
node that was instantiated will all be updated.

The evidence for each facial feature or face group ¢ is related to its Maha-
lanobis distance, Mj;, and the admission threshold for the jth feature class, 7;,

by :

Mlv .. .
P = { (1- TJL): Mi; <75 (9)

0, otherwise

Each facial feature that is detected is assigned 4 probability values, Pyrow,
Peye, Prose and Ppoysp using the above equation. When a higher level group
is formed, only the probability of the corresponding feature is propagated. For
example, if a vertical brow-eye pair (Vpairl) is formed from two facial features,
only Pproy of the upper feature and Py, of the lower feature is propagated.
Likewise, only these values are updated in the propagation process. As a result,
only true positive faces are updated to a high confidence level.

7 Preliminary Implementation and Results

We implement the described algorithm making the assumption that the orien-
tation of the faces are vertical and the viewpoint of the faces are fronto-parallel.
This allows us to look at the intermediate results and evaluate the performance
and robustness of the algorithm in the simplest case. The scale parameter is
specified by the user as the algorithm is run on each image. We will extend the
algorithm in the next few sections and show how it can cope with variations in
scale, orientation and viewpoint.

7.1 Learning the Parameters of the Feature Class Space
and Conditional Probabilities

A set of 40 images taken of different subjects under different scale and slightly
different viewpoint is used as a training set. Facial features are marked by hand
and the algorithm is run through these test images. For each facial feature or
face group, the image measurements that is used for classifying each feature is
recorded from the training images to define each class space. The frequency of
occurrences of each feature and the component face groups are also measured
and entered into the conditional probability tables.

7.2 Perceptual Grouping

In the preattentive feature selection stage we convolve the image with a matched
bandpass filter for detecting dark bars against a light background, which is

12



essentially a spatial filter with a second derivative of Gaussian in one direction,
and a Gaussian in the orthogonal direction. The aspect ratio of the filter is
elongated to 3:1 for better orientation selectivity. Since the scale is specified by
the user, and the orientation is assumed to be vertical, we use only a single filter
at the specified scale and orientation. If scale and orientation are unknown, we
can use a family of such filters at different scale and orientation, and examine
the output of each. This family of filters can be efficiently implemented using
steerable-scalable basis filters (Perona [20], Freeman and Adelson [9]).

Local maxima in the response are then found which give a list of attention
points to search for facial features. We then perform edge detection using a
Canny edge finder with hysteresis threshold set to zero. This will output all
edgels and will ensure maximum robustness against illumination variations.

A local window around the interest point is then searched for edgels in
the expected orientation and polarity. The size of the search window is the
same as the size of the Gaussian derivative filter used in the preattentive stage.
These edgels are then linked to form chains. We use a boundary following
algorithm given in Ballad and Brown [1] to link the edges. The search continues
to edgels not in the local window and these edgels are linked if they have similar
orientation, polarity and strength as the neighbouring edgel (Gestalt laws). By
making image measurements of the various image features in the region and

comparing it with the class space determined from the learning stage, we obtain
a list of facial feature points for the attentive grouping stage.
The results after verification with each feature class is shown in fig. 8.

Figure 8: (a) Interest points obtained from matched bandpass filtering (81
points). (b) Canny edge detection with zero threshold. (c) Linked edges of
approximately horizontal orientation. (d) Feature regions detected (21 points).

The list of feature candidates is then examined to form pairs, and each
horizontal pair and vertical pair is further examined to form partial face groups.
If any two partial face groups have some component features that are the same,
they are combined to form a face candidate (e.g. if a top PFG and a left PFG are
found, we combine them to give a 6-feature face candidate). If not, each PFG
by itself will become a 4-feature face candidate. The results for the perceptual
grouping stage is given in fig. 9.
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Figure 9: (a) Horizontal pairs (4 pairs). (b) Vertical pairs (7 pairs). (c) Partial
Face Groups (1 top, 2 bottom, 1 left, 1 right). (d) Face candidates detected (1
face).

7.3 Evidence Propagation and Bayesian Classification

Each facial feature that is detected is assigned 4 probability values, Py, Peye,
Prose and Ppoutn. These probabilities are assigned using eqn. 9. If the Maha-
lanobis distance of the facial feature in a particular feature class is greater than
the admission threshold, the facial feature is given a probability value of zero
for that feature class.

After the perceptual grouping process, each face candidate will have between
4 to 6 features associated with it. A reinforcement belief network is initialized
for each face candidate and virtual nodes are created for each facial feature that
is found in the process.

Fig. 10 shows the face candidates for 2 subjects found by the perceptual
grouping process. As these faces cannot exist simultaneously because they
overlap, the face with the highest probability will be selected among all the
overlapped ones.

Figure 10: (a),(b) Face candidates found for subject 1. (¢),(d) Face candidates
found for subject 2.
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For subject 1, in fig. 10(a), the top PFG is not found in the process and
so the computed probability of the face candidate is lower. Moreover, since the
hypothesized eye location (on the right) is actually a brow, the image evidence
that is propagated in this case is actually P.,. which is very low compared to
Pprow in fig. 10(b) . The probabilities of the two face candidates of subject 1
are 0.6578 and 0.9255 respectively.

For subject 2, only the bottom PFG is found in the first case. The probabil-
ities of the two face candidates of subject 2 are 0.5045 and 0.9486 respectively.
Clearly, without the use of the probabilistic framework and the reinforcing of
evidence from all the other facial features, the difference between the true and
false positive candidates will be very close, thus making it very difficult to suc-
cessfully reject the false candidates.

7.4 Preliminary Results

We run our preliminary implementation of the algorithm on 60 test images of size
256x256 containing faces at different scale but mainly in the fronto-parallel view
with vertical orientation. 54 are successfully detected, giving a 90% detection
rate. Some of the successful results are shown in fig. 11. We can see from
the results that the algorithm is able to cope with variations in orientation and
viewpoint (to a small extent), although we have made the assumption that the
orientation is vertical and the viewpoint fronto-parallel. The algorithm also
seemed to be robust to distractions such as glasses, and is also able to manage
under a small amount of occlusion and absence of facial features.

e O

=

Figure 11: Result of face detection on various test images.

Some of the unsuccessful cases are shown in fig. 12. In the first image, the
subject’s eyebrows are actually very close to the eyes, and at that viewpoint, it
is indistinguishable from the eyes. However, the algorithm groups two points in
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the hair region into a Hpairl component group, forming false evidence leading
to a wrong identification of facial features.

Figure 12: Some unsuccessful cases.

In the second image, the subject’s left eyebrow (the right eyebrow in the
image) coincides nicely with a dark horizontal strip in the background. As a
result, the eyebrow is grouped with the background feature into a long feature,
failing to be classified as a facial feature. A similar case happens to the mouth,
which is also grouped with the strong edge caused by the shadow on the cheek,
leading to a shift in the detected location of the mouth. Furthermore, due to
the shift of the mouth location, the subject’s right eye is not detected correctly
because the actual location will give an incorrect geometric configuration of the
face. Hence, a neighbouring point which has the next highest probability is
selected instead.

In the third image, the face has rotated beyond the angle that the algorithm
can cope. And since no other possible face candidates can be formed, no faces
are detected.

8 Approaches with Invariance to Scale, Orien-
tation and Viewpoint

Many present approaches to solve the face detection problem have some invari-
ance to scale, orientation and viewpoint changes, though either one or two of
these are usually assumed to be fixed. We will examine how these approaches
cope with scale, orientation and viewpoint changes.

The common approach to deal with scale variations is by examining the
image at different scales and finding a match to a face template at each scale.
Fixed-shape regions at different scales from the image are extracted, subsampled
to the size of the template or filter, and then matched to the template. Experi-
ments using this approach has been carried out by Lanitis et.al. [13], Sung and
Poggio [27], Yang and Huang [32]. The common problem with this approach
is that the face template (or filter) is restricted to detecting only a single view
and orientation of the face.

The feature-based approach used by Leung et.al. [14], Yow and Cipolla [34]
addresses the problem of orientation invariance by using the inter-feature dis-
tance or the affine geometry between the facial features. However, the facial
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features need to be extracted using a family of oriented filters — a rather com-
putationally expensive task.

Chen et.al. [3] extended the matching to 3 views (1 fronto-parallel and 2
profile views) using a fuzzy pattern matcher based on colour. Little geometric
information is used. Sumi and Ohta [26] also attempted detection of profile
views but their approach is largely based on image correlation.

9 Scale Invariance

In this section, we will look at the effects of varying scale on the detection of
faces. In our approach, two types of filters are used, the preattentive filter
and the edge detection filter. Both of them are Gaussian derivative filters: the
preattentive filter is a second derivative Gaussian while the edge detection filter
is a first derivative Gaussian.

Fig. 13 shows the result of varying the scale of the preattentive filter from
o = 3.0 to 0 = 1.0 while keeping the scale of the edge detection filter fixed at
o = 3.0. We observe that although 3 different values of ¢ are used, the face
detected for all the 3 cases is the same. We also observe that at a scale (o =
1.0) smaller than the one required for matched filtering (¢ = 3.0), the correct
facial features are still detected, though there is a much larger number of false
detected feature points.

Figure 13: Varying the scale of the preattentive filter. The facial features de-
tected by the preattentive feature selection stage is shown. (a) o = 3.0 (81
points). (b) ¢ = 2.0 (177 points). (¢) ¢ = 1.0 (332 points). (d) Face detected
(same for all 3 cases of o).

We subsequently vary the size of image while keeping the scale of the preat-
tentive filter constant at ¢ = 1.0. The scale of the edge detection filter is also
reduced and kept at ¢ = 1.0. Fig. 14 shows the result for the image being
reduced to 80%, 60%, 40% and 20% of the original size. We fail to detect the
facial features when the face is too small because the image structure of these
facial features are corrupted by quantization noise. However, we are successful
in detecting the facial features of large faces even though our preattentive filter
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is small. This is because the size of the facial features are actually determined
by the edge detection and edge linking process, and not by the scale of the
preattentive filter.

Figure 14: Varying the size of the face in the image. (a) percentage size = 80%.
(b) percentage size = 60%. (c) percentage size = 40%. (d) percentage size =
20%.

We do a further test by varying the aspect ratio of the preattentive filter.
Fig. 15 shows the result of varying the aspect ratio from 3:1 to 1:1. We observe
that the facial features are still detected even though we reduce the aspect
ratio to 1:1. The significance of this is that we can steer a 1:1 second derivative
Gaussian exactly by using only 3 basis filters (Freeman and Adelson [9]), instead
of using 16 basis filters to give a 1% error approximation for a 3:1 filter (Perona
[20]) - a huge saving in computational requirements.

Figure 15: Varying the aspect ratio of the preattentive filter. (a) aspect ratio =
3:1 (81 points). (b) aspect ratio = 2:1 (110 points). (c) aspect ratio = 1:1 (201
points). (d) Face detected (same for all 3 cases of o).

The Gaussian functional minimizes the product of localization in space and

frequency (Marr and Hildreth [16]), but its trade-off between the signal-to-noise
ratio and the accuracy of localization is well studied (Canny [2]). Since the edge
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detection filter is a first derivative Gaussian, choosing a small ¢ will result in
noisy edges that are difficult to link. A large o, however, will generate too much
smoothing and may blur the image features, or even cause two separate edges
to be smoothed into one. For an application of detecting the face of a person
sitting in front of a computer terminal, a ¢ = 1.0 is found to be sufficient.

10 Orientation Invariance

We will now look at the effects of varying the orientation. We use an image
in which the subject’s head is rotated approximately 30° to the right, i.e. at
an orientation of -30° from vertical. We keep the preattentive filter at the 3:1
aspect ratio and rotate the filter from -60° to 60° in 30° increments.

Figure 16: Varying the orientation of the preattentive filter. (a) orientation =
—60° (99 points). (b) orientation = —30° (89 points). (¢) orientation = 0° (90
points). (d) orientation = 30° (89 points). (e) orientation = 60° (92 points).

The results in fig. 16 show that though the correct orientation is -30°, the
facial features can still be detected by the filter at orientations of -60° and 0°.
Thus, the algorithm can tolerate an orientation variation of about 30°.

Figure 17: Varying the orientation with aspect ratio = 1:1. (a) orientation =
—60° (225 points). (b) orientation = —30° (205 points). (c) orientation = 0°
(283 points). (d) orientation = 30° (223 points). (e) orientation = 60° (226
points).
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We again reduce the aspect ratio of the preattentive filter. Fig. 17 shows the
result of varying the orientation at an aspect ratio of 1:1. We observe that the
facial features are now detected in all the different orientations of the filter. The
significance of this is that we can make do without steerable filters completely.
We can simply use only one single orientation of the preattentive filter and just
examine the vicinity of the attention points for pairs of edges that are roughly
parallel and have the correct polarity.

11 Viewpoint Invariance

In Yow and Cipolla [34] we have shown that the Gaussian derivative filter (the
preattentive filter described in this paper) is able to detect facial features under
different viewpoint, even under profile view.

Fig. 18 shows the features detected by the preattentive filter in profile views
of faces. The scale of the preattentive filter used is ¢ = 3.0 and the aspect ratio
is 1:1. We observe that all the facial features which can be seen in the image
are detected by the preattentive filter.

Figure 18: Detecting features in profile views. (a) 195 points. (b) 174 points.
(c) 185 points.

However, the difficulty in detecting faces under such viewpoints is that the
facial features which we have chosen in our model can all be seen from only
a limited range of viewpoints (mainly fronto-parallel). Thus, for general view-
points (especially profile view), some of these features may be occluded and the
evidential support for the face becomes low.

To overcome this, we look for additional features when we have a face hy-
pothesis at a different viewpoint (e.g. profile view). We observe that in a profile
view, there is a large region of the cheek that is roughly featureless. Hence we
can mark out additional regions in the image that are the likely location of the
cheeks, and examine the number, strength and orientation of edges in it. Face
candidates that are formed from a single partial face group are examined for
these cheek regions. The same Class space - Mahalanobis distance method is
used to verify the group of features and regions as a valid profile view of a face.

20



The same situation applies to views which some of the facial features are
occluded. The different cheek regions that are used for the different views are
shown in fig. 19.

new cheek new cheek
! region region i
T j I L}
. new cheek new cheek ) additional additional additional additional
region region region region region region
right profile view left profile view views with partial occlusion or missing features

Figure 19: The additional cheek regions used under different viewpoints and
when facial features are missing or occluded.

12 Results

Our algorithm is implemented on a SUNSparc20 workstation. The images are
taken from subjects sitting in front of a workstation mounted with a Pulnix
monochrome CCD camera. The subject is free to turn his head or move his
chair forward. A total of 11 images are taken from 10 subjects at varying
distances and viewpoints (7 frontal-parallel view, 2 with head rotated to either
side, and 2 profile views). The images used are 256x256 pixel resolution. The
time taken to run the algorithm on these images with a user-specified scale are
about 10 seconds each.

Figure 20: (a) Interest points (466 points). (b) Feature regions (180 points). (c)
Partial Face Groups (28 top, 10 bottom, 5 left, 1 right). (d) Face candidates (2

faces). The probabilities associated with the upper and lower face candidates
are 0.6124 and 0.9578 respectively.

We implement the face detection algorithm as described in the preliminary
implementation but we do away with the user-specification of the filter scale.
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We use only one single scale and orientation of the filter for the preattentive
feature selection process. The scale of the preattentive filter is chosen to be
the same as the edge detection filter (¢ = 1.0) so that we only need to smooth
the image once. However, the time taken to process the images is increased
to about 90 seconds due to the much larger number of feature points detected.
The intermediate results are shown in fig. 20.

Comparing the results of fig. 20 with that of figs. 8 and 9, we observe a
large increase in the number of feature points (% /R 5.7H times increase in
the number of points). However, the perceptual grouping process is able to
reduce the number of face candidates down to only two. The belief propagation
process will also be able to assign a high confidence value to the true positive
face because many of the component face groups are present. Since these two

faces overlap, only one face (the one with the higher probability) will be selected.

Figure 21: Result of face detection on various face images at different scales.

We achieved a successful face detection rate of 85% on a database of 110
images of faces at different scale, orientation and viewpoint. Some of the results
of testing the algorithm are shown in fig. 21. We observe that the algorithm is
able to handle a good range of scale variations.

Figure 22: Result of face detection on face images at different orientation.
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We also show the results of the algorithm when tested on images with differ-
ent face orientation, as well as on profile views of the face. The results in figs.
22 and 23 show that the algorithm is able to cope with variations in orientation
and viewpoint.

Figure 23: Result of face detection on face images at profile views.

13 Discussion

Though our algorithm is invariant to scale to some extent, it is by no means
universal. Tt is nevertheless not sufficient for cases where the face is very small,
or when the scale of the spatial filter is very large. Feature points will move or
even disappear under scale-space filtering (Witkin [31]), and facial features will
take on a very different image structure due to quantization noise. Hence, the
evidence that can be extracted from the image will be quite different at differ-
ent scales. So a different set of facial features, or even head or body features
(e.g. face texture, hair texture, head and shoulder boundaries, silhouettes of
the body) need to be used at different scales. However, the proposed percep-
tual grouping and probabilistic framework will remain the same throughout the
different scales.

The difficulty with feature-based algorithms is that the image features can
be badly corrupted due to illumination, noise or occlusion. Feature boundaries
can be weakened by illumination, and shadows can cause numerous strong edges
that render perceptual grouping algorithms useless. Worse still, such failures
usually occur in the early, low-level stages. A truly robust system must make
use of a huge number of features, each of which must be invariant to different
kinds of imaging conditions.

Our future work will be aimed at coping with smaller scales of faces. Ap-
proaches used will be finding the head boundary, which is a difficult task because
the boundary may not be clearly defined when background clutter is present.
Textual algorithms will also be investigated to harness the texture of hair and
skin in detecting faces.
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14 Conclusion

We have proposed a feature-based face detection framework which extracts in-
terest points using spatial filtering techniques, groups these points into face
candidates using perceptual grouping principles, and selects true candidates
from false ones using a probabilistic framework. We also make use of model
knowledge as evidence to improve the confidence of faces in the image. As a re-
sult, we can make less assumptions about the image structure of faces and thus
make our algorithm more robust to different imaging conditions. The algorithm
is shown to be able to be easily extended to work for different scale, orientation
and viewpoint of the face. The framework can be further extended to more
difficult imaging conditions by adding more components to the face model and
finding more evidence in the image to support the face hypotheses.
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