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Image distortion induced by the relative mo-
tion between an observer and the scene is an im-
portant cue for recovering the motion and the
structure of the scene. It is known that the
distortion in images can be described by trans-
formation groups, such as Euclidean, affine and
projective groups. In this paper, we investigate
how the moments of image curves are changed
by group transformations, and we derive a rela-
tionship between the change in image moments
and the invariant vector fields of the transforma-
tion groups. The results are used to formalise a
method for extracting invariant vector fields of
affine transformations from changes in the mo-
ments of orientation of curve segments in images.
The method is applied to realtime robot visual
navigation task.

1 Introduction

Recent progress in computer vision has revealed the close
relationships between the class of objects in images and
transformation groups [21].

If an object is a surface of revolution and if it is pro-
jected in the image center, then the corresponding sym-
metric pair of contour curves of the object in the image
can be described by a transformation of the Euclidean
group as shown in Fig. 1 (a). If a planar object has
bilateral symmetry viewed under weak perspective, the
corresponding contour curves of the object in an image
can be described by a transformation of the special affine
group [11, 28] (see Fig. 1 (b)). The corresponding con-
tour curves of a 3D bilateral symmetry such as a butter-
fly are related by a transformation of the general affine
group [24] (see Fig. 1 (¢)).

In structure from motion, the image distortion caused
by the relative motion between the observer and the
scene can be described by an affine transformation under
weak perspective assumption [16, 15] (see Fig. 1 (e)). If
the viewer motion is restricted to a translation along the

(e) general affine

Figure 1:

groups. A symmetric pair of contour curves (white curves)

Image distortion and transformation

of (a) a surface of revolution, (b) planar bilateral symmetry and
(c) 3D bilateral symmetry can be described by Euclidean, spe-
cial affine (equi-affine) and general affine (proper affine) trans-
formations under the weak perspective assumption. The image
distortion caused by the relative motion between the observer
and the scene can also be described by group transformations as
shown in (d) and (e). The original images in (a) and (b) have
been provided courtesy of Tat-Jen Cham.



optical axis towards the object, the image distortion can
be described by the similarity group [7] (see Fig. 1 (d)).
Thus, extracting group transformations in images is an
integral part for object recognition and motion extrac-
tion.

Unfortunately, the existing methods for computing
group transformations suffer from the requirement for
corresponding image features [13, 22, 26], limitation to
the amount of image motions [8] and/or high sensitiv-
ity to noise [1, 3]. If the interest areas (focus of at-
tention) in images are identified, moment based meth-
ods [4, 9, 7, 12, 25] are useful. They do not require cor-
respondences of individual image features, do not suf-
fer from small image noise and allow large image mo-
tions. Unfortunately, the conventional analyses in the
moment based methods are limited to specific transfor-
mation groups [7, 12]. In this paper, we aim to formalise
a method for extracting general group transformations
in images from changes in image moment.

For this objective, we first review the Lie group the-
ory [23, 10], which has recently been imported to com-
puter vision research [8, 14, 29], and investigate how the
change in image moments under general group trans-
formations can be described by the basis vector fields
of the group. Especially, we will exploit a prolonged
space [23], an extended space for derivatives, and anal-
yse the change in values of functions with derivatives
explicitly from a geometric point of view. The results of
the analysis are exploited for formalising a method for
computing group transformations from the change in im-
age moments. The affine case is especially studied, and
a method for computing affine transformations from the
change in image moments is formalised.

2 Geometric Analysis of Differen-
tial Image Properties

We first review a geometric approach for analysing dif-
ferential properties of images. We consider that the
derivatives are added dimensions of the space and are
transformed as geometric objects. The methodology de-
scribed in this section is an established area in mathe-
matics [23], and thus the contents of this section are a
review of this field which is, as shown in the later section,
useful for investigating differential properties of images
in computer vision.

2.1 Group Transformation and Vector

Field

Let G be a Lie group, that is a group which carries the
structure of a smooth manifold in such a way that both

the group operation (multiplication) and the inversion
are smooth maps [23]. Transformation groups such as
rotation, Euclidean, affine and projective groups are Lie
groups. Consider vector fields on GG. There exist certain
distinguished vector fields, i.e. right (or left) invariant
vector fields, w, on G, which form a finite dimensional
vector space called the Lie algebra of G. Geometrically,
the Lie algebra of G is identified as the tangent space
to the manifold, G, at the identity. Consider an m-
parameter Lie group, GG. Since the Lie algebra of G is
an m dimensional vector space, any vector field, w, in
the Lie algebra can be described by a linear combination
of m basis vector fields, w;(i = 1,---,m), of the Lie
algebra. The flow generated by w through the identity
is a so called one-parameter subgroup of G, and there
is a one-to-one correspondence between one-parameter
subgroups of G and one dimensional subspaces of the
Lie algebra.

We next consider the action of an m-parameter Lie
group, G, on a manifold, M, which is in our case the
image plane R? with coordinates of z and y. Take the
m one parameter subgroups corresponding to m basis
vector fields of the Lie algebra of G. These act on M
and induce m vector fields, v;, on M:

a 0

. m) 1)
where, &; and 7); are functions of z and y. These are the
basis vector fields on M, and every vector field, v, in-
duced by one parameter subgroups of GG can be expressed
as a linear combination of the basis vector fields, v;, as
follows:
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where, a; is a coefficient of ith vector field. To extract
local group transformations is the same as to identify the
coefficients, a;(i = 1, ...,m), of the basis vector fields.

As we will see in the next section, the vector field
described in (1) acts as a differential operator of the Lie
derivative.

2.2 Lie Derivatives

Consider a function, F(z,y), of z and y to be defined on
the image plane R%. As G acts on a point on the image
plane, the x and y coordinates of the point change, and
thus the value of the function, F(z,y), also changes. It
is known [23] that the infinitesimal change in value, §F,
of the function, F', under the flow induced by a vector
field, v, can be computed by the Lie derivative of F' with
respect to v as follows:

O0F = £y[F(z,y)]
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Figure 2:

T". The curve C is transformed to C by a group transformation,

The vector field, v, and an integral curve,

so that the point P on the curve is transformed to P. The orbit
of the point caused by a group transformation coincides with the
integral curve, T, of the vector field at the point, P.

where, £y[-] denotes Lie derivative with respect to a
vector field, v. Since F' is a scalar function, the Lie
derivative is the same as the directional derivative with
respect to v:

5F = v[F(a.y)

Thus, we can compute the infinitesimal change in func-
tion caused by the flow induced by a vector field v by
using the differential operator defined by (1).

Up to now we assumed that F’ is a function of z and y.
In the next section, we introduce an important concept
known as the prolongation of vector fields, and consider
the changes in functions of z, y and the derivatives of y
with respect to & under the vector fields.

2.3 Prolongation of Vector Fields

The prolongation is a method for investigating the dif-
ferential world from a geometric point of view. Let a
smooth curve, C, on the image plane R? be described
by an independent variable z and a dependent variable
y with a smooth function f as follows:

y= f(z)

The curve, C, is transformed to C under the flow in-
duced by a vector field, v, as shown in Fig. 3. Consider
a jth order prolonged space, whose coordinates are z,
y and derivatives of y with respect to z up to jth or-
der, so that the prolonged space is j + 2 dimensional.

The curves, C' and C , in 2D space are prolonged and

described by curves, C @) and € (]), in the 5 + 2 dimen-
sional prolonged space. The prolonged vector field, vid),
is a vector field in j 4+ 2 dimension, which carries the

prolonged curve, cl ), to the prolonged curve, C v ex-
plicitly as shown in Fig. 3. More precisely, the jth order
prolongation, v(9) of a vector field, v, is defined so that
it transforms the jth order derivatives, y¥), of a function,
y = f(z), into the corresponding jth order derivatives,

79, of the transformed function § = f (7) geometrically.
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Figure 3:

order prolonged vector field, v transforms jth order deriva-

Prolongation of a vector field. The jth

tives of y into jth order derivatives of 3. That is the prolonged
curve, C(j), is transformed into the prolonged curve, é(]), by
the prolonged vector field, v(?). This enables us to investigate
derivatives of functions geometrically. pr(?) denotes jth order

prolongation. This figure illustrates the first order prolongation

G=1).

Let v;, (i = 1,..,m) be m basis vector fields on M.
The jth prolongation, vid), of a vector field, v, can be
described by a sum of jth prolongations, VEJ), of the
basis vector fields, v;, as follows:

v =Y gl
i=1

where as before a; is the coefficient of the ith basis vector
field. Consider a vector field, v;, defined by (1). Then,
its first and second prolongations, v(!), v(2), are com-
puted as follows [23]:

(3)

0
vz(' = v;+ (Dz(nz - fzy:c) + fzymx)i (4)
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where D, and D? denote the first and the second total
derivatives with respect to z, and y,, Yz, Y22z denote
the first, second and the third derivatives of y with re-
spect to z.

Let F(z,y,y") be a function of z, y and derivatives of
y with respect to x up to jth order, which is denoted by
y). Since the prolongation describes how the deriva-
tives are going to change, the infinitesimal change in
function, 6 F, under the flow induced by a vector field,
v, can be computed by using the prolongation as fol-
lows [23]:

OF = vVIF(z,y,yY)] (6)

Note that we require only the same order of prolongation
as that of the function, F.

in Moments under

3 Change

Group Transformations

In this section, we investigate how the moments in im-
ages vary under group transformations by applying the
prolonged vector fields introduced in the last section. We
first analyse the change in arc-length and orientation of
a tangent vector of an image curve under vector fields of
a Lie group.

3.1 Change in Orientation under Vector
Field

Consider an image curve, C, to be described by an inde-
pendent variable, x, and a dependent variable, y, with a
smooth function, f, as before. Then, the orientation, ¢,
of a tangent vector of the curve can be described by:

sinp =

ye(14y2) "2 (7)
(1+y2)"2 (8)

where y, denotes the first derivative of y with respect
to x as before. As we have seen in the last section, the
jth order derivatives are transformed by the jth order
prolongations of the vector fields. Since, as shown in (7),
 is a function of the first derivative, y,, the infinitesimal
change in orientation d¢ caused by a vector field, v, can
be described by using the first order prolongation (4) as
follows:

cosp =

sp = vyl
m 0
ai(vi[e] + (Da(ni — &iyz) + fz‘?/m)_aj )

=1

m

= D ailDu(ni = &) + Eyaa) L+ 13) 7" (9)
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where, we have used the derivative of ¢ with respect to
Yo for the last equation in (9). Note we do not need
prolongations higher than the first in this case.

3.2 Change in Arc-Length under Vector
Field

Next, we investigate how the Euclidean arc-length
changes under vector fields. The Euclidean arc-length,
v, is described by an Euclidean metric, g, and the differ-
ential dz as follows:

dv = gdx

(10)

where:
g=(1+y2) (11)

Since the metric, g, is described by first order deriva-
tives of y with respect to x, the infinitesimal change in
arc-length, ddv, caused by the vector field, v, is derived
by computing the Lie derivative of dv with respect to
the first order prolongation of the vector field, v(V), as
follows:

ddv = v(l)[dv]

1
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where, we used the derivative of g with respect to y, for
the last equation in (12). Note again the prolongations
higher than the first are not required.

3.3 Change in Curvature under Vector

Field

We now consider how the Euclidean curvature changes
under vector fields. The Euclidean curvature, x, is de-
scribed by:

K=y (1+y2) 7%

Since x is made of derivatives up to the second, the in-
finitesimal change in curvature, dx, caused by the vector
field, v, is derived by using the second prolongation as
follows:

ok = v

Ok
= v+ (D505 = &) + Eiveaa) 5 —(13)



These results will be used in the following sections for
deriving the relationship between the coefficients of the
vector field, a;, and the change in moments.

3.4 Change in Moments under Vector
Field

Consider the texture in an image to have oriented ele-
ments with distribution of orientation, p(p) (i.e. density
function with respect to the orientation, ¢, of the texture
element). Suppose F is a function of #, y and the deriva-
tives of y with respect to  up to jth order. The moment,
I, of the function F' is defined by I = f027r Fp(p)de.
If the image features are described by a parameterised
curve, C, the moment I can also be computed by inte-
grating a function F with respect to an Euclidean arc-
length, dv, along the curve, C":

I=/de
c

In this case, the distribution of orientation, p, can be
described by a Euclidean curvature, s, as follows:

_dv 1
p_d<,9_/§

(14)

In the remaining part of this paper, we assume that the
image features can be described by parameterised curves
which are differentiable as many times as required. (As
we will describe in the later experiments, these parame-
terised curves can be derived by fitting B-spline functions
to image data.)

Since the Lie derivative describes the infinitesimal
change in function, the infinitesimal change in moment
61 caused by a vector field, v, is described by the Lie
derivative of I with respect to the vector field, v:

oI =v[I] (15)
Substituting (14) into (15), we have the following equa-
tion of change in moments:

oI = / v [Fldv + FvV[d] (16)

c

where, we have exploited 1st and jth order prolongations
of the vector field v, since dv and F are made of first and
jth order derivatives respectively.

3.5 Change in Directional Moment and
Vector Field

Since, as described in section 2.3, a prolonged vector field
transforms derivatives explicitly, we can use not only al-
gebraic functions, but also differential functions for F in

equation (16). This enables us to derive the relationship
between the vector fields and the change in moments of
orientation of texture in images.

Suppose F takes nth order trigonometric functions of
p, that is sin ny and cos ny. The nth order trigonometric
moments can be defined by [9, 19]:

/ sin npdv

c

/ cos ndv
c

These are the moments of orientation of texture in im-
ages. In the following part of this paper, we call the
above trigonometric moments directional moments to
make its physical meaning clear. Substituting sin ny and
cosng for F in (16), gives the infinitesimal change in di-
rectional moments as follows:

Isin ne — (17)

(18)

Ioos ne =

v [dv]

v
v [dv]

v

5Isinn¢=/(nv(1)[<p] cosny + sinnp)dv  (19)
c

0l cos mp=/ (—nv M [g] sinng + cos ny)dv(20)
c

where, v(!)[¢] and v(![dv] are as investigated in (9) and
(12). In (19) and (20), we have m unknowns, i.e. m
coefficients of basis vector fields, a;,(i = 1,2,---,m).
Thus, if we have q; order moments and m < 2¢;, we can
compute these coefficients, a;, uniquely.

3.6 Change in Curvature Moment and
Vector Field

We next consider the change in curvature moments. We
define nth order curvature moment, I, so that I’ takes
nth order curvature function, x", as follows:

/ K" dv
c

Substituting x™ for F in (16), we have the infinitesimal
change in curvature moments as follows:

I,in = (21)

MTdv
0lin = /(nn"‘lv(z)[n]—i—v[dl]n”)dv (22)
c dv

The variation of n in (22) provides interesting properties
as it will be described in section 4.5. We have again m
unknowns, ie. a;(i = 1,2, ---,m) in (22). Thus, if we
have g, order moments and m < ¢, we can compute
these coefficients, a;, uniquely. In the following part of
this paper, we concentrating on the affine case, and de-
rive a method for computing the affine transformations
from these image moments.



4 Changes in Moments under

Affine Transformations

Up to now we have derived the change in moments under
vector fields of general Lie groups. We now consider a
specific Lie group, the general affine group, and derive
the relationship between the change in moments and an
affine transformation.

4.1 Affine Transformation and Affine
Vector Field

A 2D affine transformation consists of a 2 x 2 invertible
matrix, A € GL(2), and a 2 x 1 vector, ¢ € R?, and
transforms € R? to z € R? as follows:

T =Ax +1t

where, the symbol, = , denotes the components trans-
formed by an affine transformation. If we consider rela-
tive components, Az = &, —x (g, z; € R?), the affine
transformation can be simplified as follows:
Az = AAz

If (p) is a point on a curve parameterised by p, the
derivative of  with respect to p can also be transformed
in the same simple manner [20]:

z, = Az,
where, z,, and x;,, denote the derivatives of £ and x with
respect to p. In the following part of this paper, we
simply consider the linear part of the affine transforma-
tion, A, and neglect the translation component, t. If
the determinant, [A], of the matrix A is equal to one,
the transformation is called a special affine (equi-affine)
transformation. A general (proper) affine transforma-
tion takes any real value except zero for the determinant
Consider a smooth planar curve, C' € R?, to be trans-
formed to C € R? by an affine transformation, A:
C = AC (23)
It is well known that if the image distortion caused by
the affine transformation is small, the affine transforma-
tion can be decomposed into four components [7, 14, 17],
that is divergence, curl and two components of deforma-
tion as shown in Fig. 5 (a2), (b2), (c2) and (d2). The
affine vector field is described by the linear combination
of these four components as follows:

V =a1vy + azve + azvs + asvy (24)

where, v, vy, v3, v4 are divergence, curl and deforma-
tion vector fields, and are described by:

vi = ooyl

YT Tor y@y
vy = 2 +z

2 Yor 770

vi = o2yl

T Tor Jy

0 0

= y—+zr— 25
and a; (i = 1,---,4) are the coefficients of these vector

fields. The distortions of an image caused by these four
components are shown in Fig. 4.

(c) Deformation 1

(d) Deformation 2

Figure 4: Four components of an affine transfor-
mation. We can observe how the square and the circle are
distorted under the divergence, curl and two components of de-
formations.

4.2 Prolonged Affine Vector Field

We next apply the prolongation described in section 2.3,
and derive prolonged affine vector fields.

From (4) and (25), the first order prolongations of di-
vergence, vi, curl, vy, and two deformation vector fields,



vy and vy, are computed by:

e 2,0
! Oz Jy
0 0
ny - _, 2 Y 2
v = g9 9 5 9
3 T oz y@y yz@ym
0 0 0
(1 — Y v )

where, as before y, denotes the first derivative of y with
respect to x. These are the vector fields in a three di-
mensional space whose coordinates are z, y and y, as
illustrated in Fig. 5 (al), (bl), (c1) and (d1). The in-
terpretation of these prolonged affine vector fields is as
follows:

e The prolonged divergence vector field (al) in-
duces a flow which does not change in the y, direc-
tion. Thus, the prolonged curve in this vector field
does not move in the y, direction meaning the tan-
gential direction, ¢, at each point on the original
image curve does not change.

¢ The prolonged curl vector field (b1) induces
an upward screw flow, meaning the tangential di-
rection, , at any point on the original image curve
increases monotonically.

e The prolonged first deformation vector field
(c1) induces a downward flow if y, > 0 and an
upward flow if y, < 0 approaching y, = 0 asymp-
totically. This means the tangential direction, ¢, at
any point on the original image curve approaches 0°
monotonically under this vector field.

e The prolonged second deformation vector
field (d1) induces an upward flow if -1 < y, < 1
and a downward flow if y, < —1 or 1 < y,. Thus,
if the tangential direction, ¢, of the original image
curve takes —45° < p < 45°, then the direction in-
creases, and if ¢ < —45° or 45° < ¢ the direction
decreases.

The projection of these vector fields onto the z—y plane
coincides with the original affine vector fields as shown
in Fig. 5 (a2), (b2), (c2) and (d2).

Similarly, the second prolongations of the affine vector
fields are computed from (5) and (25) as follows:

@ o 0 )
T +y0_?/ —ymﬁ

<
Il

a 0 0 0
yax+xay+( +yl)ayl_+3yy 3o

<
[V
|

@ _ 0 _. 0 0 _ 0
2 0 0 N 0
Vy = y(?l’ + xi&y + (]— yl)ayz 3YaYae Oym(w)

These are the vector fields in a four dimensional space
whose coordinates are z, y, y, and ¥y,,, and the projec-
tion of these vector fields onto z, y and y, coincides with
the first order prolongation of the affine vector fields.

These prolonged vector fields will be used for inves-
tigating how the orientation, ¢, arc-length, dv, and the
curvature, k, change under an affine transformation in
the next section.

4.3 Orientation, Arc-Length and Curva-
ture under Affine Transformations

We now investigate how the orientation of the tangent
vector and the arc-length change under affine transfor-
mations.

By applying (26), we have the following Lie derivatives
of ¢ and dv with respect to each basis vector field of affine
transformations:

vil[p] =0 v [ = —sin2p
Vo] =1 vy g] = cos 2
a 1 (28)
v [dv] = dv v )[dv] = cos 2pdv
vo W [dv] =0 v4 M [dv] = sin 2pdv

Similarly, we have the Lie derivatives of £ by using the
second prolongations of affine vector fields as follows:

v3P k] = —3k cos 2
vy K] = =3k sin 2p

viD[K] = -k
vy (2) [x] =0

(28) and (29) show how the orientation, ¢, the arc-
length, dv, and the curvature, x, are affected by diver-
gence, curl and two components of deformation. Since
as we have seen in (3) prolonged vector fields are linear,
we have the change in orientation, d, the change in arc-
length, ddv, and the change in curvature, dx, caused by
an affine transformation as follows:

vy
= aviV[g] + avi ] + aavi ] + asv Y [e]
(30)

(29)

dp =
= az —agsin2p + ay cos2p

bdv = v [dv]
= alvgl)[dv] + agvél)[dv] + agvgl)[dv] + a4vi1)[dv]

= (a1 + azcos2p + ay sin2yp)dv (31)

v k]

= arv[x] + axviD ] + azvi? [8] + asv i [x]

ok =

= (—a1 — 3as cos 2¢p — 3a, sin 2p)k (32)
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Figure 5: Prolonged affine vector fields and their top view.



Note that the change in orientation is made up of the
curl and deformation components, and is not affected by
the divergence component; the changes in arc-length and
curvature are made up of the divergence and deformation
components, and is not affected by the curl component.

4.4 Change in Directional Moments un-
der Affine Transformations

In the last section, we have investigated how the change
in orientation and the change in arc-length are described
by the four components of an affine transformation. We
now apply these results and derive the relationship be-
tween the change in moments of orientation and the
affine transformation.

Suppose the function F is a trigonometric function of
orientation ¢. Substituting trigonometric functions of ¢
for F in (16) and substituting (30) and (31) into (19)
and (20), we derive the relationship between the change
in nth order directional moments and the coefficients,
a;(i =1,---,4), of affine vector fields as follows:

|:6ISin "‘P:|_|:m?lvm?27m?37m?4 az (33)

- n n n n
JIcos ne Moy, Moo, Mag, Moy as

where:

My = Linng

mYy =nleosng

myy = ((n+ l)Isin (n—2)p— (n— l)-[sin (n+2)4,a)/2

miy = ((n+1)Leos (n—2)pt+ (n—1)1 08 (n+2)¢)/2

mgl = leos ne

Myy = —Nlgin ne

Mgy = ((N+1)eos (n-2)p— (N—=1)Leos (n+2)) /2

miy = (= (n+1)Lin (n-2)p — ("= 1) Lin (n+2)) /2
Note that the change in moments of orientation can be
described by simple linear combinations of the moments

of orientation and the coefficients of affine vector fields.
If we have the directional moments in two different

orders, i.e. n = 2 and n = 4, then four coefficients,
a; (1=1,---,4), can be computed uniquely from:
0Lsin 24 miy, miy, miz, mi, ai
6160524/9 _ m%lﬂ m%Z’ m%S’ mg4 az (34)
dIsin 4 - m41117 m£1127 m£1137 m£114 as
6Icos 4 m%la m%za m%3? m34 aq

4.5 Change in Curvature Moments un-
der Affine Transformations

We next investigate how the curvature moments change
under affine vector fields. Substituting (28) and (29) into

(22), we have the change in curvature moments under
affine vector fields:

0L = (1=n)ayIun+(1=3n)aglircos 24

+(1—3n)a4L€nSin2¥, (35)
This means by choosing n = %, n=1and n = 2 in
(35), we have the following simple relationship between
the change in curvature moments and the coefficients of

affine vector fields:

ol 1 21, 0 0 ai

K3 3763
51}{ = (T _2Irc cos2¢ _2Ilcsin 2¢ as (36)
5-[,-;2 =Tz =512 cos 2¢ =512 gin 2¢ Ay

Thus, divergence, a;, and deformation, ag and a4, are
computed uniquely from the change in curvature mo-
ments. The interesting properties of curvature moments
are as follows:

1. The change in I’i 1 is irrelevant to the deformation
and rotation components of an affine transforma-
tion. Thus, divergence component, a;, can be com-
puted simply from the change in IK i

2. The change in I, is irrelevant to the divergence and
rotation components of an affine transformation.

3. The rotation component, az, cannot be determined
from curvature moments.

5 Experiments

5.1 Implementation

Up to now we have described the theoretical framework
of a method for computing group transformations from
the change in image moments. In this section, we de-
scribe how to implement the method.

If the texture pattern in an image is simple, then we
can compute image moments from the parameterised
curves fitted to edge data or gray scale images. The
procedure of this is as follows:

1. We first extract edge points in images by using the
Canny edge detector [5].

2. The B-spline curves are fitted to the Canny edge
data by using the MDL-based curve fitting algo-
rithm proposed by Cham and Cipolla [6].

3. The directional moments (n = 2,4) defined in (17)
and (18) or the curvature moments (n = g,1,2) de-
fined in (21) are computed from the parameterised
curves.



4. The affine transformation is computed from these
moments by using (34).

If the image is highly textured, we cannot fit parame-
terised curves in general. In such cases, we use the image
moments based on the discrete sampling at every edge
point. Consider the image measurement, ¢ = [p,v],
which consists of the measured orientation, ¢, and the
measured length, v, of a texture segment at each edge
point. If we have r sampling points, z;(¢ = 1,---,7), on
an image curve, C, then the discrete approximation of
the image moments can be described as follows:

I ~ ZF(arz)V(wl)

where, F(z;) and v(x;) are the values of the function F
and the length v at the image point ;.

5.2 Extracting Affine Transformations

In this section, we demonstrate the accuracy of the ex-
tracted affine transformations.

Fig. 6 shows images used in this experiment and the
results of estimating surface motions. The images in the
first and second columns in Fig. 6 show the original im-
ages of various texture patterns and the distorted images
after affine transformations. The affine transformations
extracted by the directional moment method proposed
in this paper are shown by flows in the images in the sec-
ond column. The calibrated affine transformations are
shown in the third column. The results are qualitatively
good even for highly textured images. This is because
the proposed method does not require correspondences
of individual image features. Unlike the methods based
on spatiotemporal gradients of image intensity [1], the
amount of visual motion allowed is relatively large as
shown in these images. The proposed method however
requires the area of interest between the two images to
be identified.

5.3 Visual Navigation from Image Mo-
ments

To demonstrate the usefulness of the proposed method,
we in this section exploit the proposed method in the
realtime visual guidance of a robot. We first show how a
moving observer can determine the object surface orien-
tation and time to contact from the affine transformation
estimated from image moments. The relations between
the motion parameters and the surface position and ori-
entation were presented in [7, 15].

Consider a 3D point P to be projected onto a unit
image sphere, X, so that P is specified by a unit vector
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Q@ and the depth A to the point from the viewer center
(see Fig. 7).

P=)Q

Let x and y be the horizontal and the vertical axes of an
image plane tangent to the image sphere at @, and z be
the axis lying in viewing direction. Suppose the viewer
is moving with translational velocity of U = [Uy, Uz, Us]
and rotational velocity of € = [Q1, Qs, Q3] with respect
to the above coordinates. It is convenient to consider the
three dimensional configurations projected onto the im-
age, that is the translational velocity component parallel
to the image plane scaled by the depth, A:
1

B=-

3 (U1, Us)

and the depth gradient component of a surface scaled by
depth:

1
F=1 )

where, A, and )\, denote the derivatives of A with respect
to x and y respectively. Thus, the direction and the
magnitude of F' are equal to the tilt angle, ¢, and the
tangent of the slant angle, ¢, of the surface as follows:

/

"
tan ¢

3
|F|

(37)
(38)

where, /F and |F| are the angle and the magnitude of
F.

It is well known that the relations between the shape,
motion and the coefficients of affine vector fields, a;, (i =

1,---,4), are given by [7, 15]:
@ = (U;\Q>+%(F,B) (39)
© = —(@.Q)+[F.B] (1)
(@ +ad)} = SIF|B| (41)

where, (u;,u2) denotes a scalar product of two vectors,
u; and wug, and [ug, us] denotes the determinant of a
matrix consisting of two vectors, u; and u,. The axis of
deformation (or the direction of maximum expansion),
i, bisects B and F [15] as follows:

_/B+!(F

: (42)

As shown in the previous work [7], we can obtain par-
tial solutions to the 3D motion of the observer and the
structure of the scene from these relations. For example,
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Figure 6: Extracting Affine Transformations. Images in the first and second columns are the original and the affinely

transformed images. The affine flows estimated by the proposed method are shown in the images in the second column. The
calibrated affine flows are shown in the third column. Examples include (a) stained glass window, (b) leaves and (c) a cloth with
texture.
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(a) projection

/Q}ﬂ

(b) image

Figure 7: 3D configuration. The point P is specified by
a unit vector, @, and the depth, A. The disk is projected onto
the plane tangent to the image sphere, 3, at Q. The orientation
of the disk is specified by the slant angle, ¢, and the tilt angle,

b

if we know the direction of motion of the observer, /B,
we can compute the tilt angle, 1, of the surface from
(37) and (42). Then, we can compute the rotational
and translational motion of the observer from (40), (39)
and (41). The second observation is very important for
visual navigation, since it is directly related to the time-
to-contact, t., to the surface as follows:

A
U,Q)

If we also know the magnitude of the motion of the ob-
server, |B|, we can extract the slant, ¢, of the object
surface from (41) and (38). By using the coefficients,
a;(i =1,---,4), of affine vector fields extracted from the
changes in moments (34), time-to-contact, t., 2D rota-
tion of the viewer, , slant, ¢ and tilt i) are computed

t, =

from the following equations:

1
el ay —azcos2/B —aysin2/B
# = —as+agcos2/B —a3sin2/B
, 2 2 241
t = — 2
an@ |B|(a3 +CL4)
v = 2u—/B (43)

Although we do not know the absolute distance to the
surface, the computed slant, tilt and time-to-contact are
sometimes sufficient for robot navigation. In this experi-
ment, a robot with a camera is navigated to an unknown
surface, so that the robot lands on to the surface safely
at the right angle to the surface. The computed slant
and tilt angles are used to control the posture of the
robot, and the time-to-contact is used to stop the robot
just in front of the surface.

Fig. 8 (a) shows the horizontal and vertical motion
of the robot with a camera. These motion causes dis-
tortion in the image as shown in Fig. 8 (b) and (c),
and the affine distortion is measured from the change
in directional moments as described in this paper. The
computed distortions are used to derive time-to-contact
and the orientation of the object surface from (43). The
computed axis of deformation and orientation of the sur-
face is shown in Fig. 8 (c) and (d). As shown in Fig. 8
(e), the robot is controlled in realtime according to this
information and is made to land on the object surface
at the right angle to the surface. All necessary informa-
tion for landing can be computed from the changes in
moment in images, and no correspondence of individual
image features is required.

6 Discussion

We now summarise and discuss the properties of the pro-
posed method for extracting group transformations.

1. Correspondence:
Since the proposed method does not require any
correspondence of individual image features, group
transformations can be computed even for highly
textured images. The correspondence-based meth-
ods sometimes fail catastrophically due to a small
number of incorrect correspondences. The proposed
method however requires the area of interest be-
tween two images to be identified. We should also
note that the research for improving the perfor-
mance of correspondence based methods is also ac-
tive [2, 18, 27, 30].

2. The Class of Transformations:
Although moment based methods have been studied

12



(b) () ()

Figure 8: Landing using the affine transform. (a) shows inspection of time-to-contact and the orientation of surface.
(b) and (c) show example images extracted during the camera motion. The tilt angle of the surface is estimated from the direction
of camera translation, A, projected in an image, and the axis of deformation, p, computed from the proposed method, and is
shown in (c) by the white line. (d) shows computed slant and tilt angles using an oriented circle and a normal. As shown in (e),
the robot uses the extracted tilt, slant and time-to-contact to land on the surface at a right angle in realtime.
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previously [7, 12], these methods are limited to spe-
cific transformation groups, such as the affine group.
The proposed method is general and can be applied
for extracting transformations in various Lie groups
such as Euclidean, similarity and projective groups.
This is done, by simply substituting the basis vec-
tor fields of these transformation groups into (16)
instead of the affine vector fields.

The Class of Texture Patterns:

The methods based on area moments [7, 12] require
closed curves to be extracted in images, while the
method based on directional or curvature moments
does not require the curves in images to be closed.
Thus the method based on these moments can be
applied to images with a wider class of texture pat-
terns.
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