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Affine Reconstruction of Curved Surfaces from 
Uncalibrated Views of Apparent Contours 

Jun Sato and Roberto Cipolla 

Abstract-in this paper, we consider uncaiibrated reconstruction of curved surfaces from apparent contours. Since apparent contours 
are not fixed features (viewpoint independent), we cannot directly apply the recent resuits of the uncaiibrated reconstruction from fixed 
features. We show that, nonetheless, curved surfaces can be reconstructed up to an affine ambiguity from their apparent contours 
viewed from uncaiibrated cameras with unknown linear translations. Furthermore, we show that, even if the reconstruction is nonmetric 
(non-Euclidean), we can stili extract useful information for many computer vision applications just from the apparent contours. We first 
show that if the camera motion is linear translation (but arbitrary direction and magnitude), the epipolar geometry can be recovered 
from the apparent contours without using any optimization process. The extracted epipolar geometry is next used for reconstructing 
Curved surfaces from the deformations of the apparent contours viewed from uncaiibrated cameras. The resuit is applied to 
distinguishing curved surfaces from fixed features in images. it is ais0 shown that the time-to-contact to the curved surfaces can be 
computed from simple measurements of the apparent contours, 

Index Terms-Curved surfaces, affine reconstruction, uncaiibrated reconstruction, apparent contours, epipolar geometry, time-to- 
contact. 

1 INTRODUCTION 
OR smooth curved surfaces, their apparent contours (or F profiles) are dominant in images and they are rich 

sources of geometric information about the surfaces and 
motions [9], [6], [22]. These are the projection of the locus of 
points on the surface which separate the visible and 
occluded parts on the surface (see Fig. 1). Under perspective 
projection, this locus, the contour generator, can be 
constructed as the set of points on the surface which are 
touched by rays through the projection center. 

The fundamental difficulty of recovering structure from 
apparent contours lies in the fact that the apparent contours 
are not fixed features. That is, the contour generator slips 
over the surface under viewer motion and the apparent 
contours observed from the different viewpoints do not 
have any correspondence in general (see Fig. 1). Giblin and 
Weiss 191 showed that if the camera motion is known and is 
coplanar, the curved surfaces can be recovered uniquely 
from their apparent contours. This result has been extended 
for general camera motion by Cipolla and Blake [6] and 
Vaillant and Faugeras [22]. For extracting curved surfaces 
reliably, these results are combined with 8-spline surface 
patches 1251, optimization processes [Z], and with purposive 
viewpoint control [16]. Unfortunately, all these methods 
assume that the cameras are calibrated and their motions are 

J. Sato is with the Department of Electrical and Computer Engineering, 
Nflgoya Institute of Technology, Nagoya 466-8555, Japan. 
E-mnil: junsntoOelcom.nitech.ac,jp. . R. Cipolla is with the Department of Engineering, University of 
Cambridge, Cambridge CB2 I P Z ,  England. 

Manuscript received 27 Nov. 1997; revised 17 Aug. 1999. 
Recommended f o r  acceptance by R. Szcliski. 
For infornration on obtaining reprints of this article, please send E-mail to: 
tpaniiBcoiripiiter.org, and reference IEEECS Log Number 107756. 

known or controlled for a specific position. To cope with 
unknown camera motion, Seales and Faugeras [21] derived 
a method for classifying the fixed features from apparent 
contours and estimating the camera motion from the 
extracted fixed features. The method assumes that the 
cameras are calibrated and some fixed features are visible 
together with the apparent contours. The question is that, if 
the camera motion is unknown and if the camera is 
uncalibrated, is it still possible to recover curved surfaces 
just from their apparent contours? 

It has been shown recently that there exist some points 
on contour generators which are visible on both apparent 
contours before and after the camera motion. Such points 
are calledjrontier points [lo], [20] and are visible from both 
viewpoints (see Fig. 2). The epipolar plane is tangent to the 
curved surface at the frontier point in 3D space and the 
epipolar line is tangent to the apparent contour at the 
projection of the frontier point in images, i.e., epipolar 
tangency 1191. Recent research [4], [l], [12] showed that, by 
iteratively searching for the frontier points, we can recover 
the epipolar geometry just from the apparent contours of 
curved surfaces. Although these works showed the possi- 
bility of recovering the epipolar geometry from apparent 
contours viewed under unknown arbitrary motions of a 
camera, the methods require nonlinear optimizations, 
which are sometimes unstable and fall into local minima. 

Recent progress [7], [ l l ]  in nonmetric reconstruction 
showed that, if we have fixed features, their correspon- 
dences in two views from uncalibrated cameras enable us to 
recover 3D structures up to a 3D projective ambiguity. 
Furthermore, it has been shown [18], 1171 that, if the camera 
has a fixed calibration matrix and its motions are limited to 
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Fig. 1. Structure and motion of curved surfaces. The contour generators 
separate the visible and occluded parts on a surface. The projections of 
the contour generators in images are apparent contours. The contour 
generator slips over the surface under viewer motion and the apparent 
contours OvseNed from the different viewpoints do not have any 
correspondence in general. 

pure translations,' the structure can be recovered up  to a 3D 
affine ambiguity. Unfortunately, we cannot apply these 
results to curved surfaces directly since apparent contours 
are not fixed features. To reconstruct curved surfaces from 
uncalibrated cameras, a purposive control of camera 
motions has been exploited under the assumption of 
orthographic projections [13]. 

In this paper, we consider the reconstruction of curved 
surfaces from uncalibrated views under perspective projec- 
tions without knowing or purposively controlling camera 
motions. We assume that the internal parameters of the 
camera are unknown but fixed during the camera motions. 
We also assume that the camera motions are unknown but 
are limited to linear translations (pure translations in a fixed 
direction). We show that, under these conditions, the 
epipolar geometry can be obtained without using any 
optimization method and the curved surfaces are recon- 
structed up to an affine ambiguity just from the changes in 
apparent contours, as in the case of fixed features. The 
result is applied to labeling image curves as belonging to 
the projection of curved surfaces or fixed features. We also 
show that the partial reconstruction of curved surfaces 
allow us to extract an important cue for visual navigation, 
i.e., time-to-contact to the curved surfaces, just from the 
changes in apparent contours viewed from an uncalibrated 
camera. 

In Section 2, we define a camera model considered in this 
paper. In Section 3, the epipolar geometry under pure 
translations is investigated. In Section 4, the computed 
epipolar geometry is used for recovering the structure of 
curved surfaces from uncalibrated views. It is also shown 
that the time-to-contact to the curved surfaces can be 
computed from the changes in apparent contours. In 
Section 5, a method for extracting epipolar geometry by 

1. This condition is exactly thc ~ a m c  as rcpcated structures observed in a 
single view [MI. 

cpipalc 

Fig. 2. The epipolar plane defined by the two projection centers touches 
to the surface at a frontier point. At this point, the contour generators 
from two viewpoints intersect each other. In the images, the epipolar 
lines are tangent to the apparent contours at the projections of the 
frontier point. 

using the Hough space is shown. The results of some 
experiments are shown in Section 6. 

2 CAMERA MODEL 
We first define a camera model. Consider a point X E R3 in 
a 3D space observed with camera coordinates X' so that X 
can be described by X' E R3 with rotation, R, and position, 
T of camera with respect to the world coordinates: 

X = RX' t T. (1) 
T Suppose X' is projected onto an image point m = [z, g, 11 

by a pinhole camera whose internal parameters can be 
described by a 3 x 3 upper triangular matrix, i.e., calibration 
matrix, A [8]: 

Am = AX', (2) 

where A is described by the focal length, f ,  horizontal and 
vertical scales, rC,: and ky, skew, s, and the principal point, zo 
and go of the camera: 

f k  S 50 

A = [ ;  f? (3) 

The scale factor, A, in (2) coincides with the depth to the 
point with respect to the camera coordinates. In this paper, 
we assume that the camera is uncalibrated but fixed, i.e., the 
calibration matrix, A, is unknown, but it does not change 
during camera motions. 

3 EPIPOLAR GEOMETRY UNDER PURE 
TRANSLATION 

In this section, we discuss the recovery of epipolar 
geometry from apparent contours viewed from uncali- 
brated cameras. 
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Fig. 3. Epipolar geornetly under linear translations. if the motion of the 
camera is a linear translation, as shown in (a), the epipole, e, and the 
epipolar lines, 1, in images from two viewpoints coincide as shown in (b). 

Consider an uncalibrated camera, i.e., a camera whose 
calibration matrix A is unknown. It is known that if the 
camera motion is linear translation and the calibration 
matrix A is fixed during the motion, then the corresponding 
points observed from two different viewpoints are auto- 
epipolar [MI, i.e., the epipoles and epipolar lines before and 
after the camera motion coincide. Since the frontier points 
on contour generators can be regarded as fixed features, the 
above fact can be extended for the apparent contours 
viewed from the same but uncalibrated cameras. Suppose 
rn'? and mi  are the projections of a frontier point, Xo, in two 
views (i.e., before and after a translation). As shown in 
Fig. 3, if the camera motion is linear translation and the 
calibration matrix A is fixed: 

Property 1. The projections of a frontier point, m(i and m:, 
before and after the camera motion lie on the same epipolar 
line, 1. 

Since the projections of a frontier point are observed as a 
tangent point of an epipolar line to the apparent contour in 
the image, we have the following properties: 
Property 2 (Epipolar bitangency). A bitangent line to the 

corresponding apparent contours coincides with an epipolar 
line, 1, and the bitangent points coincide with the projections of 
a frontier point, my and m:. 

Fig. 4. Epipolar bitangency. (ai), (bl), and (cl) show the three cases of 
contour generators before and alter a camera motion. (a2), (b2), and 
(c2) show the intersections of apparent contours in these cases. The 
dashed lines in (a2) and (b2) show bitangents. For finding bitangents 
which correspond to frontier points, contour generators at two view- 
points must intersect each other. 

Thus, if the camera motions are limited to linear 
translation and if A is fixed, epipolar lines, 1, and epipoles, 
e, can be computed uniquely from the bitangency of 
apparent contours. 

However, bitangents which go through the projections of 
frontier points do not always exist in images. For example, 
when the camera is translating directly toward a sphere, 
contour generators do not intersect each other, and there is 
no bitangents on apparent contours (see Fig. 4cl and Fig. 
4c2). If there is no intersection of contour generators at two 
consecutive time instants, there is no frontier point on the 
surface. Hence, we have no bitangent which goes through 
the projections of a frontier point in images. On the other 
hand, if there is an intersection of contour generators at two 
consecutive time instants, a bitangent which goes through 
the projections of a frontier point always exists. The only 
critical case is when the contour generators intersect 
nontransversally (see Fig. 4bl). In this case, two apparent 
contours intersect nontransversally, as shown in Fig. 4b2. 
Nonetheless, it is possible to find a line which is tangent to 
both two apparent contours at the projections of a frontier 
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Fig. 5. The Infinitesimal motion, 6X, of a point X caused by a camera 
motion, bT, is observed as an infinitesimal motion, Sm. of the point in the 
image. 

point. This line is also considered as a bitangent, since it is 
tangent to both apparent contours (see Fig. 4b2). Thus, the 
bitangents which go though the projections of frontier 
points exist in images under linear translations, if and only 
if the following condition holds. 
Condition 1. The contour generators before and after U cumeru 

motion must intersect each other. 

As shown in Section 5, the bitangency can be extracted 
efficiently by using the Hough space. As we will see in the 
section, the above condition can also be characterized by 
using the Hough space. 

In the next section, we use the extracted epipole, e, and 
the projections of frontier points, m", for reconstruction. 

4 AFFINE RECONSTRUCTION OF CURVED 
SURFACES 

In this section, we show that, from given epipoles and 
frontier points, we can, up to an affine ambiguity, 
reconstruct curved surfaces from their apparent contours 
viewed from uncalibrated cameras. 

4.1 Epipolar Parameterization 
To analyze the 3D surface geometry from the changes in 2D 
image curves (apparent contours), we must identify the 
correspondences between the successive apparent contours 
and 3D surfaces. To do this, the epipolar geometry is useful. 

Consider an instantaneous motion of a camera so that the 
view point O(t,) at time t l  moves to O(t2)  at time t2 ,  
Suppose an apparent contour, C(t) ,  in an image at time t 
corresponds to a contour generator, r(t), on the surface. The 
two projection centers, O(t l )  and O(t z ) ,  define a family of 
epipolar planes, n(.q). Then, the contour generators, I ' ( t l )  
and r(tZ), at time tl and 12 cross over an epipolar plane, 
 SI), at X(SI, t l )  and X ( s ~ , t z ) ,  respectively. Since X(sl,tl) 
and X(si, t 2 )  are on the same epipolar plane, II(si), their 
projections, m(s,,tl) and m(sl ,  t2 ) ,  are on the correspond- 
ing epipolar lines in images. In the infinitesimal limit, this 
provides a natural spatio-temporal parameterization of the 
image and contour generators. This parameterization of 
curved surfaces and image sequence with respect to B and t 
parameters is called the epipoluv parumeterizution [6] ,  and the 

0 200 400 
(4 
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Fig. 6 .  Extraction of frontier points. The contour curves in images (a) 
taken before and after a camera motion are transformed into the Hough 
space in (b). The frontier points are found as intersection points in (bj. 
The extracted frontier points are shown by circles in (a). The dashed 
lines in (a) show epipolar lines computed from the frontier points. 

trajectory of a surface point, X(s,t), with a fixed s 
parameter is called the epipolar curve. Since it enables us to 
identify correspondences between the changes in apparent 
contours and the changes in contour generators, the 
epipolar parameterization is very useful for recovering the 
surface geometry from apparent contours. The following 
analyses are based on the epipolar parameterization. 

4.2 3D Motion and Changes in Images 
Consider an infinitesimal motion, 6X, of the 31) point X 
caused by an instantaneous motion, 6T, of the camera (see 
Fig. 5). By differentiating (1) with respect to the time, t ,  the 
velocity and the acceleration of the point X along the 
epipolar curve caused by the camera motion are described 
as follows: 
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Fig. 7. Results of the affine reconstruction. (a), (b), and (c) show sequential images of a curved surface, i.e.. head. These images are used for affine 
reCOnStruCtiOn of the CUNed surface. The back of the head is recovered and is shown in ($)# Since we do not know the camera parameters, the 
recovered Surface is ambiguous up to a 3D affine. (e) shows the projection of the recovered surface in the first image, Note thsre is no ambiguity in 
the projected suriace in (e). (a) t = 1, (b) t = 2, (c) t = 3. 

(4) X1 = RtX' + RX't + U 

Xti = RitX' + 2RtX'I + R X ' t t  +Ut, ( 5 )  

where the subscripts t and tt denote the first and the second 
derivatives with respect to time, t. Also, U = T, denotes the 
translational velocitv of a camera and is described bv the 

vanish. Substituting Xp = 0 and X:l = 0 into (7) and (8), we 
find that the magnitude of motion, U ,  and its time 
derivative, ut, can be computed from the projection of 
frontier Points, mo, mpr & and epipoles, e, up to the depth 
to the frontier point, A", (i.e., speed-scale ambiguity) as 
follOws: 

~, 
epipole, e and the magnitude of a camera motion projected 
into the image, U ,  as follows: (9) 

Substituting (2) and (6 )  into (4) and (5) and, since we where EL and FZ are computed from: - 
assume that there is no rotational motion (i.e., RI = 0, 
R,, = 0). we have: F,eAm' = -m;Am' 

&eArn' = -2FleAme ~ myfAm", 

where A denotes the vector product. Note, epipoles are 
XI = RA-"(Xlm + Aml + ue) (7) 

xtt = R A ~ ' ( x ~ , ~ + ~ x ~ ~ ~ + x ~ ~ ~ + u ~ ~ + u ~ ~ ) .  
unchanged (i.e., et = 0) under linear translations. From (9) 
and (lo), we find that, even if the camera is uncalibrated, (8) 

This equation shows how the changes in position of an 
apparent contour caused by the camera motions are 
observed in images. 

4.3 Camera Motion from Frontier Points 4.4 Recovery of Surface Depth 

both U and ut are computed from the changes in apparent 
contours in images up to the depth A' and are independent 
of A, R, and T. 

We now consider how the camera motion can be computed 
from frontier points, X', on curved surfaces. Since a frontier 
point does not move under linear translations, Xf and X:l, 

The magnitude of camera motions computed from the 
frontier points is next used for recovering the depth to 
curved surfaces. 
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Fig. 8. Results of the distinction of apparent contours. (a) shows sequential images of a curved surface (vase) with fixed features (lip). the 
reconstructed surface is projected into the first image. (c) shows the distances, IAml. The apparent contours are distinguished from the fixed 
features by using lam\. The distinguished apparent contours and fixed features are shown by (0) and ( x )  in (b), respectively. 

If the point X on the contour generator is not a frontier 
point, Xt and Xtt in (7) and (8) do not vanish. As was 
shown in [6], since the viewing ray, X - T, is always 
tangent to the surface at a point X, the change XL must be 
parallel to X - T 

XI A (X - T) = 0. (11) 

Note, T is the position of the camera. Substituting (I), (Z), 
(7), and (9) into (U), we have: 

X = XuF3(mo,mp,m,mt,e), ( l a )  

where F3 is computed from: 

l$mt A m = -Eje A m. 

Thus, the following proposition holds: 

Proposition 1. The depth to R point on a contour generator can 
be computed from the changes in apparent contour viewed 
from nn uncalibrated camera with linear translations, up to the 
depth to thefiontier point A'. 

4.5 Recovery of Curved Surfaces 
We next consider how curved surfaces are recovered from 
apparent contours viewed from uncalibrated cameras. 

Substituting (l), (2), and (7) into (11) and differentiating 
with respect to t ,  we find that the time derivative of the 
depth, X i ,  is computed from the changes in apparent 
contour and epipole as follows: 

At = Xo6(mo, my, myt, m, mt, mtt, e), (13) 

where 9 is computed from: 

F4mlAm = -FJmltAm-F~eAm -FleAml 

Substituting (12) into (2) and using (l), the contour 
generator at time t = 0 is reconstructed as follows: 

X(O) = x ~ ( o ) R A - ~ E , ( o ) ~ ( o )  + T. (14) 

Substituting (9), (IZ), and (13) into (7), we can compute the 

change in the contour generator at time t caused by the 
camera motion as follows: 

~ , ( t ) = ~ ~ ( t ) ~ ~ - ~ ( ~ ~ ~ ( t ) m ( t ) + ~ ~ ( t ) m ~ ( t ) + ~ ~ ( t ) e ( t ) ) .  

From ( S ) ,  it is clear that the the depth to the frontier point, 
X"(tl), at time tl is computed from the depth, A"(0), at time 

t = 0 as follows: 

P(t , )  = XO(O)F,(t;), (15) 

where &(t l )  = e-Sd" ' i ( f )d t .  Thus, by computing X, itera- 
tively, the curved surface, X ( s l ,  tl), can be reconstructed 

with respect to the epipolar parameterization, (s, t ) ,  as 
follows: 

where X is a 3 x 1 column vector whose components are 
computed from the image measurements as follows: 
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Fig. 9. Results of the computation of the time-to-contact. (a) Shows sequential images of a head. (b) Shows the extracted contour curves (solid 
lines), frontier points (small circles), and the epipolar lines (dashed lines). (c) Shows the computed time-to-contact to the frontier point (solid lines) 
together with the calibrated time-to-contact (dashed lines). 

I ,  

x(s , , t , )  = F?(O)m(O) + / ~ ) ( ~ ) m ( t )  
0 

+ FS(t)mt(t) + F1(t)e(t))dt. 

In (16), the 4 x 1 vector [XT 11'' is available from the image 
measurements and the 4 x 4 matrix 

[""";"-' 'I 1 

represents an unknown 3D affine transformation. This 
means that, even if the camera is uncalibrated and its 
translational motion is unknown, the curved surfaces can be 
reconstructed up to a 3D affine transformation: 
Theorem 1. The curved surfaces can be reconstructed from the 

changes in npparent contour viewed fiom an uncalibrated 
camera with linear trnnslations, up to a 3D affine ambiguity. 

4.6 Distinction of Apparent Contours 
Up to now we have shown the affine reconstruction of 
curved surfaces. In this section, we show that the affine 
reconstruction can be used for distinguishing apparent 
contours from fixed features. This extends the results from 
orthographic views [15], [261. 

Substituting (16) into (1) and using (12) and (15), we find 
that the reconstructed contour generator at time t = tl can 
be projected back into the original image at time t = 0 
without any ambiguity as follows: 

where &(SI,  t , )  denotes the projection of a reconstructed 
contour generator, X(sl, t , ) ,  on to the image at time t = 0. 
We now compute the differential component between the 
projection, m ( s 1 ,  t l ) ,  and the original contour curve, 
m(sl,O), along the epipolar line: 

A m = m ( s l , t l )  -m(s,,O). (18) 

If the image curve is of a fixed feature, the projection, 
&(sl,tl) must coincide with m(sl,O), and Am vanishes. If 
the image curve is an apparent contour, m(s,, t , )  does not 
coincide with m(s,,O), and Am is not equal to zero. Thus, 
the magnitude IAml can be exploited for distinguishing 
apparent contours from fixed features even if the camera is 
uncalibrated. 

4.7 Time-to-Contact to Curved Surfaces 
As shown in some previous work [5], time-to-contact can 
provide a useful visual cue for robot navigation. It has been 
shown that, if the object is planar, the time-to-contact can be 
computed from the first order derivatives of image flow, 
i.e., image divergence and deformation [5]. Unfortunately, 
these analyses are limited to fixed features on planar 
surfaces. In this section, we show that it is also possible to 
compute time-to-contact to curved surfnces from apparent 
contours. 
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Fig. 10. Results of the computation of time-to-contact. (a) and (b) show two sequential images from the film Star Wars. The dashed lines and the 
circles in (c) show epipolar lines and frontier points extracted by using the Hough space. The time-to-contact to the left and the right frontier points is 
computed from the extracted epipolar geometly and is shown in (d). 

From (9) and since U = -Ay, we find that the time-to- 
contact, t,, to the frontier point on a surface is computed 
simply from F, as follows: 

Thus, I, to frontier points is computed from the first 
derivatives of image curves with respect to time, t. 
Furthermore, from (12) and (13), we find that 1, to 
nonfrontier points on a surface can be computed from the 
second derivatives of image curves with respect to time, t, as 
follows: 

Note, since Xo cancels out, the time-to-contact to curve 
surfaces can be computed uniquely just from their apparent 
contours in images. The time-to-contact does not depend on 
camera calibration either. Thus, the following theorem holds: 

Theorem 2. The time-to-contuct to ufrontier point is computed 
/?om the first derivatives of apparent contours with respect to 
time and the time-to-contact to U nonfrontier point on a curued 
surface is computed from the second derivatives of upparent 
contours. 

Note, for computing the time-to-contact, Condition 1 must 
hold. 

5 IMPLEMENTATIONS 
In this section, we provide a method for extracting frontier 
points by using Hough transformations. 

As we have seen, if the camera motions are linear 
translations, the frontier points are observed as bitangent 
points in images. We transform the image curves into the 
Hough space, that is, the space whose two coordinates are 
the orientation and the distance to the tangent line at every 
point on the curve (see Fig. 6). Then, the transformed curves 
produce intersections in the Hough space. It is known [24] 
that these intersections correspond to the bitangent in 
images and the envelope of curves in the Hough space 
corresponds to a convex hull of the image curves (for 
enveloping, the reference point must be in the convex hull). 
Thus, the curves in the Hough space produce an intersec- 
tion if and only if the image curves have a bitangent at the 
corresponding points in images. Although not all bitangents 
correspond to frontier points, the following property of 
curves in the Hough space is very useful to distinguish 
frontier points from other bitangents. 
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Fig. 11. Results of the computation of time-to-contact. (a) and (b) show two sequential images from the film 2001. The dashed lines and the circles in 
(c) show epipolar lines and frontier points extracted by using the Hough space. The time-to-contact to the upper and the lower frontier points is 
computed from the extracted epipolar geometry and is shown in (d). 

Property 3. If the intersection point is on the envelope of curves 
in the Hough space, then it corresponds to afvontier point. 

This is because the bitangent points on convex hull of two 
consecutive image curves always correspond to frontier 
points, and the convex hull is observed as an envelope of 
curves in the Hough space. 

The point il and C in Fig. 6b thus correspond to frontier 
points (although A is on the envelope, it does not 
correspond to a frontier point since this is a self-intersection 
and corresponds to a self-bitangent). The small circles in 
Fig. 6a show the extracted frontier points and the dashed 
lines show the computed epipolar lines. The epipole, e, is 
computed simply as the intersection of two or more 
epipolar lines. 

6 EXPERIMENTS 
6.1 Reconstruction of Curved Surfaces 
We now show the results from reconstruction experiments. 
Fig. 7a, Fig. 7b, and Fig. 7c show the three sequential images 
of a head which are observed from a camera with unknown 
linear translations. The apparent contours are extracted by 
fitting 8-spline curves [3] and the Hough space is used for 
computing frontier points. The curved surface is recon- 
structed from the changes in apparent contours and the 

frontier points and is shown in Fig. 7d. Fig. 7e shows the 
projection of the reconstructed surface in the first image. 
Although the reconstructed surface, Fig. 7d, has 3D affine 
ambiguity, its projection in the image, Fig. 7e, has no 
ambiguity as described in Section 4.6. 

6.2 Distinction of Apparent Contours 
We next show the results from the distinction of apparent 
contours from fixed features. Fig. 8a shows a curved surface 
(vase) used in this experiment. The contour curve of a lip of 
the vase is a fixed feature, while the contour curve of the 
side of the vase is an apparent contour. We now distinguish 
the fixed features (lip of the vase) from the apparent 
contour (side of the vase) by using the proposed method. 

The contour curves of the vase in sequential images are 
extracted and used for the affine reconstruction of contour 
generators. The reconstructed contour generators of the vase 
are projected back into the first image as shown in Fig. 8a. As 
shown in this image, the projected contour generators 
coincide with the original curves at the lip of the vasc, and 
do not coincide at the side of the vase. The distances, lAm1, 
between the projected contour generators and the original 
curves along epipolar lines are computed and plotted in Fig. 
8c. The points on the apparent contour are distinguished from 
fixed features by using IAml and are shown in Fig. 8b by (0 ) .  

(x)  in Fig. 8b shows extracted fixed features. The lip of the 
vase is clearly distinguished from the apparent contours. 
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6.3 Computation of Time-to-Contact 
We next show the results from the computation of time-to- 
contact to curved surfaces. Fig. 9a shows five sequential 
images of a head observed from a camera with unknown 
linear translations and Fig. 9b shows their contour curves 
extracted by B-spline fitting. The frontier points and the 
epipolar lines are extracted by using the Hough space as 
before and are shown in Fig. 9b. The time-to-contact to the 
frontier point (upper frontier point) is computed and is 
shown in Fig. 9c by small circles and solid lines. The exact 
time-to-contact is shown by dotted lines in Fig. 9c. As 
shown in this figure, the computed time-to-contact is quite 
accurate and reliable. 

Fig. 10 shows a result from another example. Fig. 10a and 
Fig. 1Ob are two sequential images from the film Star Wars. 
The motion of the spaceship is considered as a linear 
translation. The dashed lines in Fig. 1Oc show the computed 
epipolar lines and circles show the extracted frontier points. 
It is computed from the extracted geometry and frontier 
points that the time-to-contact to the left and the right 
frontier points on the spaceship is -2.15 frames and 
-1.98 frames, respectively (minus means that the point is 
going away from the observer). Fig. 11 shows a result from 
the film 2001, 

Since the spaceships in Fig. 10 and Fig. 11 are curved 
surfaces, we cannot compute the exact time-to-contact just 
from the changes in area of apparent contours. However, as 
we have seen, the exact time-to-contact is computed 
efficiently by using the proposed method. 

7 CONCLUSIONS 
We have shown that, from apparent contours of curved 
surfaces viewed from uncalibrated cameras, we can 
reconstruct the curved surfaces up to a 31) affine ambiguity. 

We first showed that if the camera motion is a linear 
translation, the epipolar lines and the frontier points 
coincide with bitangent lines and bitangent points in 
sequential images. It has been shown that these epipolar 
lines and frontier points can be extracted efficiently by 
transforming image curves into the Hough space and 
finding intersection points on the envelope of curves in 
the Hough space. The epipolar geometry is thus recovered 
without any optimization process, unlike previous work [I], 
[4]. We next showed that, given the epipolar geometry, the 
curved surfaces can be reconstructed up to a 3D affine 
ambiguity from their apparent contours viewed from an 
uncalibrated same camera. 

The result is used for distinguishing apparent contours 
from fixed features from uncalibrated views. It has also 
been shown that the time-to-contact to a curved surface can 
be computed just from apparent contours. For computing 
the time-to-contact to nonfrontier points, the second 
derivatives in spatio-temporal images are required and, 
for frontier points, the time-to-contact is computed just from 
the first derivatives in spatio-temporal images. These were 
implemented and tested on real images of curved surfaces. 
The results are promising. 
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