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SUMMARY We consider the problem of reconstructing ar-
chitectural scenes from multiple photographs taken from arbi-
trary viewpoints. The original contribution is the use of a map
as a source of geometric constraints to obtain in a fast and simple
way a detailed model of a scene. We suppose that images are un-
calibrated and have at least one planar structure as a façade for
exploiting the planar homography induced between world plane
and image to calculate a first estimation of the projection matrix.
Estimations are improved by using correspondences between im-
ages and map. We show how these simple constraints can be used
to calibrate the cameras and recover the projection matrices for
each viewpoint. Finally, triangulation is used to recover 3D mod-
els of the scene and to visualise new viewpoints. Our approach
needs minimal a priori information about the camera being used.
A working system has been designed and implemented to allow
the user to interactively build a model from uncalibrated images
from arbitrary viewpoints and a simple map.
key words: 3D reconstruction, planar homography, self-
calibration

1. Introduction

The aim of this paper is to describe a system able to re-
construct architectural sites from uncalibrated images
and using information from the facades and maps of
buildings. Many approaches exist to attempt to re-
cover 3D models from calibrated stereo images [16] or
uncalibrated extended image sequences [1], [18], [23] by
triangulation and exploiting epipolar [15] and trilinear
constraints [10]. Other approaches consist of visuali-
sation from image-based representations of a 3D scene.
This approach has been successfully used to generate an
intermediate viewpoint image given two nearby view-
points and has the advantage that it is does to need to
make explicit a 3D model of the scene [7], [8], [19], [21],
[22]. Constructions of 3D model from a collection of
panoramic image mosaics and geometrical constraints
have also presented [12], [20].

We adopt a simple approach to build a 3D model
by exploiting strong constraints present in the scenes
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to be modelled [3], [5], [14]. The constraints which are
used are parallelism and orthogonality, leading to sim-
ple and geometrically intuitive methods to calibrate the
intrinsic and extrinsic parameter of the cameras and to
recover Euclidean models of the scene from only two
images from arbitrary positions. We propose an ex-
tension to the model presented in [3] dealing with the
problem of recovering 3D models from uncalibrated im-
ages of architectural scenes viewing façades by exploit-
ing the planar homography induced between world and
image and using a simple map. Many map-based ap-
proaches are presented in extracting object information
from aerial images for analizyng complex urban scenes
(for example [17]). We investigate the use of the map
in performing reconstruction of buildings and surround-
ings of a delimitated urban area using few images of it.

In the following, this paper describes our approach
for the reconstruction of architectural scene from uncal-
ibrated photos and map. First, we explain the princi-
pal steps of the modelling system. We then describe
the self-calibration method used and the process of es-
timation and improvement of projection matrices of the
different views. Finally, we include map constraints im-
proving the estimation of the 3D model.

2. The Modelling System

Our modelling system uses one or more pairs of images
of a façade. For each pair, the user indicates line, point
or plane correspondences between images and the map.
The modelling system attempts to use all possible con-
straints in a consistent and coherent way. The goal is
reached by decomposing the process into several linear
steps.

For a single view we perform the following steps:

1. Recovering the camera intrinsic parameters and ro-
tation R from two vanishing points;

2. Recovering camera translation t from two known
points on the map;

3. Rectification of the image based on the homogra-
phy induced in the image of the planar structure.

In this way we obtain a first approximation of the
projection matrix and the texture maps of planar struc-
tures [13]. These are directly placed in a 3D model by
the map correspondences. To have a better estimation
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Fig. 1 Four of the ten input images of an architectural scene
and its map.

of the projection matrix we use two strategies. The
first one exploits two images viewing the same planar
structure [22] and it deals with new homography esti-
mation [11] by automatically finding corner correspon-
dences. Decomposition of inter-frame homography ma-
trix gives the new estimation of the projection matrices
of two views (Fig. 1).

The second one involves a global refinement using
all possible map constraints. It allows reconstruction
of points out of the planes used for calibration and rec-
tification. The final steps are:

1. Global optimisation using map constraints (bundle
adjustment);

2. Triangulation and raw 3D model;
3. Texture mapping;
4. Export a VRML model.

3. Calibration and Estimation of the Projec-
tion Matrix

With respect to a pin-hole camera, perspective projec-
tion from Euclidean 3D space to an image can be rep-
resented in homogeneous coordinates by a 3×4 camera
projection matrix P [6]:
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 (1)

The projection matrix has 11 degrees of freedom and
can be decompose into a 3 × 3 orientation matrix R
and a 3 × 1 translation vector t and a 3 × 3 camera
calibration matrix, K:

P = K [ R t ] (2)

From line correspondences given by the user, we can
calculate vanishing points. In the worst case we only
have information about two perpendicular direction,
but it is enough to estimate the scale factor α of the
image plane if we suppose that the principal point co-
ordinates are equal to image centre. Then we calculate
the camera calibration matrix K and the rotation ma-
trix R for each image [2]. Moreover, we use two point
correspondences between the map and the image (or a
known length of a line on image) to obtain the transla-
tion vector t. From a common planar structure in the
pair of images we automatically improve the estimated
matrices above by exploiting the homography [6]. Sup-
posing points are on plane Z=0, we have:

λ1 w1 = K1 [r11|r21|t1] XP (3)

λ2 w2 = K2 [r12|r22|t2] XP (4)

where r11, r21 are the two first columns of R1, r12, r22 are
columns of R2, and XP is a 3× 1 vector which denote
point is on plane Π (Z = 0) in homogeneus coordinates.
Let be

H1 = K1 [r11|r21|t1] (5)

H2 = K2 [r12|r22|t2] (6)

and

H21 = H2 H−1
1 (7)

then

λ2 w2 = λ1 H21 w1 (8)

from which we obtain w2 = [u2 v2]T :

u2 = (h1 w1)/(h3 w1) (9)

v2 = (h2 w1)/(h3 w1) (10)

where h1,h2,h3 are rows of H21. By fixing for in-
stance a façade, and using a Harris corners detector
we find some correspondences between the two images.
For each detected feature found in the first image we
calculate where it is exactly in second image by the
homography. Only the stronger matches are selected
and we suppose them belonging to viewed plane. In
this way we have new estimates of correspondences on
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Fig. 2 Map constraint example: line to line correspondences.

second image and we improve estimate of homography.
The decomposition of the homography matrix gives a
new estimation of the inter-frame projection matrix.
(See Fig. 2.)

H21 = d12 ∗ R21 + t21n21
T (11)

3.1 Plane Rectification

Points on the world plane are mapped to points on
the image plane by a plane to plane homography, also
known as a plane projective transformation. It is used
for different pourpose such as object recognition, mo-
saicing and photogrammetry. A homography is de-
scribed by 3 × 3 matrix H. Once this matrix is de-
termined the back projection of an image point to a
point on the world plane is straightforward. The dis-
tance between two points on the world plane is com-
puted from the Euclidean distance between their back-
projected images. We can obtain a new image of the
plane in which the image plane is parallel to it, and
same distance from it as the first image:

H1 = K1 [r11|r21|t1] (12)

where r11,r21 are the two first columns of R1. If Xca =
−R1

−1 ∗t1; is camera position in world coordinate sys-
tem that has Xa as origin, then distance dca is:

dca =
√

Xca
T Xca; (13)

Hpar = K1


 1 0 0

0 1 0
0 0 −dca


 ; (14)

Hrect = Hpar H1
−1 (15)

Rectified image is used to obtain texture of the facade
in order to construct a more realistic 3D model (Fig. 3).

4. Using Map Constraints

The map gives us important constraints to improve the
estimation of the 3D model. We use the following con-
straints between geometric entities of image and map
[21], [22]:

1. point to point correspondences

Fig. 3 Example of image rectification in order to have image
plane and facade parallel.

2. point to line correspondences
3. line to line correspondences

For each image the user gives some correspondences to
a map and the system tries to improve the projection
matrix estimation. Point to point correspondences are
strong constraints because they are directly related to
the projection matrix:

λkwk = PXk (16)

Point to line correspondence is expressed by equation:

LP−1
4×4

[
λw
1

]
= 03×1 (17)

where L is a 3×4 matrix of coefficients of 3 dimensional
line equations and P−1

4×4 is inverse matrix of projection
matrix P with adding the last row [0 0 0 1]. 3D line
through points X2 and X1 can be expressed by:

(X2 − X1) ∧X+ (X2 ∧ X1) = 0 (18)

Let us denote a = x2 − x1, b = z2 − z1, c = y2 − y1,
d1 = z1y2 − y1z2,d2 = −z1x2 + x1z2, d3 = y1x2 − x1y2;
the line is described by a pair of equations from

by − cz + d1 = 0
az − bx + d2 = 0
cx − ay + d3 = 0

(19)

From equations system (17) we eliminate λ and use 2
constraints. Line to line correspondences are expressed
as: 

 a
b
c


 = w1 ∧ w2 = (PX3) ∧ (PX4) (20)

where a,b,c are coefficients of line equation au+bv+c =
0 on image passing trough generic points w1 and w2,
and X3i,X4i are two generic points of line map.

All constraints given by the user are used to define
a minimisation problem in order to obtain new esti-
mates of the projection matrices. Decomposing new
matrices by QR decomposition we have also new esti-
mates of camera calibration matrix K, rotation matrix
R, translation vector t and camera position Xc of each
image.
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4.1 Minimizing Criterion

For point to point correspondence we can use algebraic
error between image point given by user and image
point which arises using projection matrix to improve.
If we have n correspondences we minimize:∑

i ‖λiwi − PXi‖ i = 1 . . . n; (21)

Point to line correspondence minimizing criterion is
given by:

∑
i

∥∥∥∥LiP−1
4x4

[
λiwi

1

] ∥∥∥∥ i = 1 . . . n; (22)

In the process used to estimate better projection matrix
we use to introduce also point to point correspondences
which arise from vanishing point calculated. In this way
we have always at least two point-to-point correspon-
dences, and we obtain robust reconstruction even user
does not introduce others such correspondences. Line
to line correspondences minimizing criterion is given
by: ∑

i=1...n

‖w1i ∧w2i − λi[(PX3i) ∧ (PX4i)]‖ (23)

where w1i,w2i are two generic points of line image and
X3i,X4i are two generic points of line map. All these
criterions are used together with different normalisation
weights.

4.2 Performance Analysis

Results of the experimental evaluation of the proposed
method are shown in Fig. 4. The mean of the repro-
jection error is plotted against the number of map con-
straints used to compute the projection matrices. The
graph (a) shows the results of different combinations
of weights used in minimizing criterion. In particular,
it is shown the contribution of each type of correspon-
dences (PP point to point, PL point to line, LL line to
line) and the results of the best combination of them
( aPP = 0.5, aPL = 0.25, aLL = 0.25 have given in ev-
ery experiment the minimum of the error). The graph
(b) shows the results of three different scenes including
the Senate House, widely described in the paper. Both
show the effectiveness of the method and the accuracy
of estimating the projection matrices by introducing
map-image correspondences.

5. Rendering and Texturing

The obtained 3D structure is rendered afterwards us-
ing a texture mapping procedure and the final model
is stored in standard VRML 1.0 format (Fig. 5). In or-
der to preserve the information given by primitive seg-
ments, we use a Delaunay triangulation on 2D texture
(that is an image used for reconstruction).

Fig. 4 Results of the experimental evaluation: the graph (a)
shows the results of different combinations of weights used in
minimizing criterion; the graph (b) shows the results of three
different scenes

6. Conclusion

The techniques presented have been successfully used to
interactively build models of architectural scenes from
pairs of uncalibrated photographs. Using information
only from planar structure such as façades and a simple
map, we recover precise projection matrices with only
a few point correspondences.
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Fig. 5 Some views of VRML model of the scene.
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