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Short Papers

Estimating the Fundamental Matrix
via Constrained Least-Squares:
A Convex Approach

Graziano Chesi, Andrea Garulli, Member, IEEE,
Antonio Vicino, Fellow, IEEE, and
Roberto Cipolla, Member, IEEE

Abstract—In this paper, a new method for the estimation of the fundamental
matrix from point correspondences is presented. The minimization of the algebraic
error is performed while taking explicitly into account the rank-two constraint on
the fundamental matrix. It is shown how this nonconvex optimization problem can
be solved avoiding local minima by using recently developed convexification
techniques. The obtained estimate of the fundamental matrix turns out to be more
accurate than the one provided by the linear criterion, where the rank constraint of
the matrix is imposed after its computation by setting the smallest singular value to
zero. This suggests that the proposed estimate can be used to initialize nonlinear
criteria, such as the distance to epipolar lines and the gradient criterion, in order to
obtain a more accurate estimate of the fundamental matrix.

Index Terms—Stereo vision, fundamental matrix, convex optimization, linear
matrix inequality.
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1 INTRODUCTION

THE computation of the fundamental matrix existing between two
views of the same scene is a very common task in several applications
in computer vision, including calibration and reconstruction [9],
visual navigation, and visual servoing. The importance of the
fundamental matrix is due to the fact that it represents succinctly the
epipolar geometry of stereo vision. Indeed, its knowledge provides
relationships between corresponding points in the two images.
Moreover, for known intrinsic camera parameters, it is possible to
recover the essential matrix from the fundamental matrix and, hence,
the camera motion between the views [4].

Several techniques have been developed for the estimation of
the fundamental matrix from point correspondences, like the linear
criterion, the distance to epipolar lines criterion, and the gradient
criterion (see, e.g., [8], [11], [7], [13]). The first one is a least-squares
technique minimizing the algebraic error. This approach has
proven to be very sensitive to image noise and it does not consider
the fact that the rank of the fundamental matrix must be equal to 2.
The other two techniques take into account the rank constraint and
minimize a more indicative distance, the geometric error, in the
seven degrees of freedom of the fundamental matrix. This results
in nonconvex optimization problems that present local solutions in
addition to the global ones. Hence, the solution found via
numerical procedures is affected by the choice of the starting
point of the minimization algorithm [8]. Generally, this point is
chosen as the estimate provided by the linear criterion and forced
to be singular by setting the smallest singular value to zero, but
this choice does not guarantee to find the global minimum.
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In this paper, we present a new method for the estimation of the
fundamental matrix. It consists of a constrained least-squares
technique in which the rank condition on the matrix is ensured by
the constraint. In this way, we impose the singularity of the matrix
a priori instead of forcing it after the minimization procedure as in
the linear criterion. Our aim is twofold: first, we show how this
optimization problem can be solved avoiding local minima. Second,
we provide experimental results showing that our approach leads to
amore accurate estimate of the fundamental matrix. In order to find
the global minimum, we start by showing how this problem can be
addressed as the minimization of a rational function in two
variables. Then, we reformulate the minimization problem so that
it can be tackled by recently developed convexification techniques
[2], which guarantee that local optimal solutions are avoided and
only the global one is found.

The same problem has been studied by Hartley [7], who
provided a method for minimizing the algebraic error ensuring
the rank constraint, which requires an optimization over two free
parameters (position of an epipole). However, the resulting
optimization procedure does not guarantee to avoid local minima
in the general case. Another approach has been proposed by
Faugeras [5] in which the fundamental matrix is obtained via the
solution of a third degree homogeneous equation. Nevertheless, this
method does not guarantee minimization of the algebraic error
subject to the rank constraint.

2 PRELIMINARIES

First, let us briefly introduce the notation used in this paper: I, is
the n x n identity matrix; AT is the transpose of A; |ullyy =
VuTWu is the weighted Euclidean norm of u; adj(A) is the adjoint
of A; A\y(A) denotes the maximum real eigenvalue of A.

Given a pair of images, the fundamental matrix F € R¥? is
defined as the matrix satisfying the relation

WTFu=0 Vi u, (1)

where u/,u € R® are the projections expressed in homogeneous
coordinates of the same 3D point in the two images. The
fundamental matrix F' has seven degrees of freedom being defined
up to a scale factor and being singular [5]. The linear criterion for the
estimation of F is defined as

) n T 9
> (" Fui) 2
min 2 <uz i), (2)

where n is the number of observed point correspondences. In order
to obtain a singular matrix, the smallest singular value of the found
estimate is set to zero [6]. The distance to epipolar lines criterion and
the gradient criterion take into account the rank constraint using a
suitable parameterization for F. The first criterion defines the cost
function as the sum of squares of distances of a point to the
corresponding epipolar line. The second criterion considers a
problem of surface fitting between the data and the surface defined
by (1). These nonlinear criteria result in the minimization of
weighted least-squares

n

Zw(F, ué,u»(u;TFui)?, (3)

i=1

min
Frdet(F)=0

where w(F,u},v;) is a suitable weighting function [8]. The main
problem with these nonlinear criteria is that the cost function in (3)
turns out to be nonconvex. Hence, the solutions provided by

numerical optimization methods heavily depend on the starting
point of the optimization procedure. Experiments show a large
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difference between results obtained starting from the exact
solution and starting from the solution provided by the linear
criterion generally used to initialize these minimizations [8].

3 THE CONSTRAINED LEAST-SQUARES ESTIMATION
PROBLEM

The problem that we wish to solve can be written as

min
F:det(F)=0

n
> wiwl Fuy)?, (4)
i=1

where n > 8, w; € IR are positive given weighting coefficients and
the constraint ensures the rank condition on F. Let us introduce
A€ R"S, rank(A) = 8, and b € R" such that

> wiw]" Pun) = | Af = b3y
i=1

where f = (fi,..., fs) € IR® contains the entries of

fi fi fr
F=1|fi f5 fs
fs fo 1

and W € IR™" is a diagonal matrix with positive entries w;. Since F
is defined up to a scale factor, we have set F33 =1 (this
parameterization is not general since F3 3 can be zero; however, this
problem can be easily overcome by setting to 1 another entry of F,
which is not zero for the considered case). Then, (4) can be written as

min [ Af = bll5
subject to  T(A) f = r(N),
where A= (A, ) € R?, T(\) € R*?, and r(\) € R? are so

defined
A 0 0
T()\) = 13 )\1[3 0 )\2 5 I"()\) = 0 .
0 0 )

The constraint in (5) expresses the singularity condition on F
as the linear dependency of the columns of F' and, hence,
det(F) = 0. In order to solve problem (5), let us observe that the
constraint is linear in f for any fixed \. Therefore, the problem
can be solved using the Lagrange’s multipliers obtaining the
solution f*(A\) = v — ST(A\)PA)[T(M\)v —r()\)], where v = SATWb,
S=(A"TWA)" and P(\) = [T(\)STT(A)] . Now, it is clear that
the minimum J* of (5) can be computed as

()

Jr = mAin J(N) = mgn JAf*(N) — bH;W. (6)
Let us calculate J*()). Substituting f*()) into the cost function, we
obtain J*(\) = ¢y + 320, ¢;()), where

co = bW (I, — ASATW)b,

(V) = =207 TT (N P(V)r(N),

and

es(N) = T TE (NPT (M.

The constrained problem (4) in eight variables is equivalent to the
unconstrained problem (6) in two variables. In order to compute
the solution J*, let us consider the form of the function J*()). The
terms c¢;(\) are rational functions of the entries of A. In fact, let us
write P()\) as

Pu>:§%§7

d(X) = det [T(N)STT (\)].

G() =adj [TN)ST (V)] .

Since T'()\) depends linearly on A, we have that G(\) is a
polynomial matrix of degree 4 and d()) a polynomial of degree 6.
Straightforward computations allow one to show that J*()) can be
written as J*(\) = %, where h()) is a polynomial of degree 6

defined as

h(N) = cod(N) + rT (NG (N)r(N)

20T TT(NGN)r(A) + T TT(N)GAN)T (M. ®)

Let us observe that the function d() is strictly positive everywhere
being the denominator of the positive definite matrix 7'(\)STT ()).

4 PROBLEM SOLUTION VIA CONVEX PROGRAMMING

In this section, we present a convexification approach to the
solution of problem (4). The technique is based on Linear
Matrix Inequalities (LMI) [1] and leads to the construction of
lower bounds on the global solution of the polynomial
optimization problem (4). More importantly, it provides an
easy test to check whether the obtained solution is the global
optimum or just a lower bound. From the previous section, we
have that J* = min, h(A\)d(\)"'. Let us rewrite this as
J* =miné
Ab

9)

subject to Zgi; =0

where ¢ € R is an auxiliary variable. The constraint in (9) can be
written as y(A, §) = 0, where y(A,§) = h(X) — §d(X) since d(\) # 0
for all \. Hence, J* is given by

J* =miné
A6

: (10)
subject to  y(\, 6) =0,

where the constraint is a polynomial in the unknowns A and é.
Problem (10) belongs to a class of optimizations problems for which
convexification techniques have been recently developed [2]. The
key idea behind this technique is to embed a nonconvex problem
into a one-parameter family of convex optimization problems. Let
us see how this technique can be applied to problem (10). First, let us
rewrite the polynomials k() and d(A\) as h()\) = Z?:o hi(X\),
d(\) = Z§:0 d;i(A), where h;(\) and d;()\) are homogeneous forms
of degree i. Now, let us introduce the function y(c; A, 6)

6 ¢6—i

y(e; A, 6) = Zfr [hi(\) = ¢ d;(N)].

=0

(1)

We have the following properties:

1. fora fixed ¢, y(c; A, 6) is a homogeneous form of degree 6 in
A and §;

2. y(N o) =y(e A, 6) forall Nif § =c.
Hence, the form y(c; A, §) and the polynomial y(\, §) are equal on
the plane § =c. In order to find J*, let us observe that 6 >0
because J* is positive. Moreover, since h()\) is positive, then
y(A,6) > 0 for 6§ = 0. This suggests that J* can be computed as the
minimum 6 for which the function y(}, 6) loses its positivity, that is

J*=min{6 : y(A,6) <0 for some A}. (12)
Using the homogeneous form y(¢; A, 6), (12) can be transformed into

J* =min{c: y(c; A, 6) <0 for some A, 8} (13)
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The difference between (13) and (12) is the use of a homogeneous
form, y(c; A, 6), instead of a polynomial, y(A, §). Now, let us observe
that y(¢; A, §) can be written as

yle; A, 6) = 2L (N, 8)Y (e) (N, 6), (14)

where 2(), §) € IR' is a base vector for the forms of degree 3 in the
variables A\, Ao, 6, i.e.,

208) = (X XA X286 MAZ Mo M8 A A28 M6 69),

and Y(c) € R is a symmetric matrix depending on c. Now, it is
evident that positivity of the matrix Y'(¢) ensures positivity of the
homogeneous form y(c; A, ) (see (14)). Therefore, a lower bound ¢*
of J* in (13) can be obtained by looking at the loss of positivity of
Y (¢). To proceed, we observe that this matrix is not unique. In fact,
for a given homogeneous form there is an infinite number of
matrices that describe it, for the same vector z(}, §). So, we have to
consider all these matrices in order to check the positivity of
y(c; A, 0). It is easy to show that all the symmetric matrices
describing the form y(c; A, 6) can be written as Y(c¢) — L, where
L € £ and L is the linear set of symmetric matrices that describe
the null form

L={L=L" e R : 2T(\ &Lz 35) =0 VA b}

Since L is a linear set, every element L can be parametrized
linearly. Indeed, let L(«) be a generic element of £. It can be shown
that £ has dimension 27 and, hence, L(a) = ZZ] o;L; for a given
base Ly, Lo,...,Ly; of L. Hence, all the symmetric matrices
describing y(c; A, §) can be written as Y(c¢) — L(«). Summing up,
a lower bound c¢* of J* can be obtained as

¢ =minc

subject to  min Al\,jf’L(a) -Y(¢)] >0. (15)

This means that ¢* can be computed via a sequence of convex
optimizations indexed by the parameter c. Indeed, for a fixed ¢, the
minimization of the maximum eigenvalue of a matrix parame-
trized linearly in its entries is a convex optimization problem that
can be solved with standard LMI techniques [10], [1]. Moreover, a
bisection algorithm on the scalar ¢ can be employed to speed up
the convergence.

It remains to discuss when the bound ¢* is equal to the sought
optimal J*. It is obvious that this happens if and only if y(c*; A, 6) is
positive semidefinite, i.e., there exists A* such that y(c*; A", ¢") = 0.
In order to check this condition, a very simple test is proposed. Let
K be defined as: K =Ker [L(a*) —Y(c*)], where o* is the
minimizing « for the constraint in (15). Then, J* = ¢* if and only
if there exists A* such that z(\*, ¢*) € K. It is possible to show that,
except for degenerate cases when dim(K) > 1, the last condition
amounts to solving a very simple system in the unknown A*. In
fact, when K is generated by one only vector k, \* can be obtained
from the equation

(,*3

2\, ") = .

k. (16)

In order to solve the above equation, it is sufficient to observe that
if (16) admits a solution \*, then

; Ji
N=c 2 N=c—~
0

y=c Ty (17)

Now, we have just to check if \* given by (17) satisfies (16). If it does,
then ¢* is optimal and the fundamental matrix entries f* solution of
(5) are given by

fr=1\) =v=STA)PAN)T(N)v —r(A7)]. (18)
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Criterion | Geometric error e,
I 1.733

Iy, 0.6578

Iy 0.6560

Fy 0.6560

Fig. 1. Table 1: King’s College sequence (40 used point correspondences) with
epipolar lines superimposed.

Whenever ¢* be not optimal, standard optimization procedures
starting from the value of A given by (17) can be employed for
computing J*. This is expected to prevent the achievement of local
minima. However, in our experiments, we did not experience any
case in which ¢* is strictly less than J*.

Remark. In order to avoid numerical problems due to too small
values of ¢ in (11), the above procedure can be implemented
replacing ¢ in (9) by 6 — 1. This ensures ¢ > 1.

5 EXPERIMENTAL RESULTS

In this section, we present some results obtained by applying the
proposed method for solving (4). The goal is to investigate its
performance with respect to the linear criterion. Let us denote by
e, the algebraic error minimized in (4). In the sequel, we will refer
to the estimate of the fundamental matrix given by the linear
criterion with Fj; to the estimate provided by the proposed
method, constrained least-squares criterion, with Fys; and to the
estimate provided by the distance to epipolar lines criterion with
Fy when initialized by F;, and with F; when initialized by Fy,. In
all cases, we scaled the image data in order to work with
normalized data and set w; = 1 (a different weighting is possible,
but goes beyond the scope of the paper). The algorithm we use to
compute Fy;, is summarized below.

Algorithm for computing Fi;

1. Given the point correspondences u},u;, form the polynomials
h(X) and d(\) as shown, respectively, in (8) and (7).

2. Build a symmetric matrix function Y'(c) satisfying (14).

3. Solve the sequence of LMI problems (15).

4. Compute \* as shown in (17) and check for its optimality.

5. Retrieve f* as shown in (18) and form F;.

In order to evaluate the algorithm performance, we define the
geometric error e, as the mean geometric distance between points
and corresponding epipolar lines. Fig. 1 shows one of two typical
views used to estimate the fundamental matrix. The point

correspondences are found by a standard corner finder. The
values of e, obtained by F; and F;, are, respectively, 0.1551 and
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Criterion | Geometric etror e,
F 1.255

Flus 0.6852

Fy 0.5836

Fy 0.5836

Fig. 2. Table 2: Cambridge street sequence (27 used point correspondences).

0.0272 (in order to compare the algebraic errors, we set the
Frobenius norm of F; and F; to 1, as the fundamental matrix is
defined up to a scale factor). It can be seen that the proposed
method outperforms the classic linear algorithm, as long as the
algebraic error is considered. This has been observed in all
experiments on real data.

Let us consider now the geometric error ¢,. Table 1 reports the
values of e, given by linear and constrained least-squares criterion
and by the distance to epipolar lines criterion initialized by F; (Fy)
and by F,; (F})). As we can see, the geometric error achieved by F.;
is consistently smaller than the one achieved by F;. Table 2 shows

Criterion | Geometric crror ¢,
F 0.5109
Fy 0.1690
Fy 0.3591
)y 0.3591

Fig. 3. Table 3: house sequence (26 used point correspondences).

Criterion | Geometric crror e,
3 1.0891
Fs 0.8852
Fy (.7846
Fy 0.7846

Fig. 4. Table 4: statue sequence (126 used point correspondences).

the geometric error obtained for the example in Fig. 2. Again, F,
achieves a significant improvement with respect to F;, while Fj
and F; coincide. Tables 3, 4, 5, and 6 report the geometric error
obtained for the examples used in [7] and shown, respectively, in
Figs. 3, 4, 5, and 6. Observe that, for the Oxford sequence and the
calibration Jig one, not only F;; achieves a smaller geometric error
than Fj, but also F} is smaller than F, indicating the presence of
different local minima in the epipolar lines criterion. Moreover, in
the calibration Jig example (Fig. 6), F;; provides a better result
even with respect to Fj;. For the statue example (Fig. 4), Hartley’s
algebraic error minimization [7] has also been performed. It

Criterion | Geometric error e,
I 0.4503
Fys 0.1106
Fy 0.1791
Fy 0.1607

Fig. 5. Table 5: Oxford basement sequence (100 used point correspondences).
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Criterion | Geometric error e,
5 0.4066
I, 0.1844
Iy 0.1943
Ey 0.1844

Fig. 6. Table 6: calibration Jig sequence (128 used accurate point
correspondences).

achieves e, = 4.59 x 107! (which leads to e, = 0.8852 when the
geometric error is minimized) if initialized by the epipoles
provided by F, but e, = 0.0462 (e, = 24.49) if initialized by (0,0).
This clearly shows the presence of local minima in Hartley’s
minimization of the algebraic error and, hence, the dependence of
the found solution on the chosen starting point. As we can see from
the above results, the solution provided by the proposed method
returns smaller algebraic and geometric errors with respect to the
linear criterion. Moreover, initializing nonlinear criteria with the
obtained solution allows us to achieve more accurate estimates of
the fundamental matrix.

6 CONCLUSIONS

In this paper, we have proposed a new method for the estimation of
the fundamental matrix. It consists of minimizing the same algebraic
error as that used in the linear criterion, but taking into account
explicitly the rank constraint. It has been shown how the resulting
constrained least-squares problem can be solved using recently
developed convexification techniques. The experiments show that
this method provides a more accurate estimate of the fundamental
matrix compared to that given by the linear criterion in terms of
epipolar geometry. This suggests that our estimation procedure can
be used to initialize more complex nonconvex criteria minimizing
the geometric distance in order to obtain better results.
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