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Abstract

This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution.

Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length

and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D

models. In this paper a novel and simple calibration technique is introduced, which is based on exploiting the

symmetry of images of surfaces of revolution. Traditional techniques for camera calibration involve taking images

of some precisely machined calibration pattern (such as a calibration grid). The use of surfaces of revolution, which

are commonly found in daily life (e.g., bowls and vases), makes the process easier as a result of the reduced cost

and increased accessibility of the calibration objects. In this paper, it is shown that two images of a surface of

revolution will provide enough information for determining the aspect ratio, focal length and principal point of a

camera with fixed intrinsic parameters. The algorithms presented in this paper have been implemented and tested

with both synthetic and real data. Experimental results show that the camera calibration method presented here is

both practical and accurate.
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I. INTRODUCTION

An essential step for motion estimation and 3D Euclidean reconstruction, two important tasks

in computer vision, is the determination of the intrinsic parameters of cameras. This process,

known ascamera calibration, usually involves taking images of some special pattern with

known geometry, extracting the features from the images, and minimizing their reprojection

errors. Details of such calibration algorithms can be found in [1], [2], [3], [4], [5, Chapter

7] and [6, Chapter 3]. These methods do not require direct mechanical measurements on the

cameras, and often produce very good results. Nevertheless, they involve the design and use of

highly accurate tailor-made calibration patterns, which are often both difficult and expensive to

be manufactured.

In this paper a novel technique for camera calibration is introduced. It relates the idea of

calibration from vanishing points [7], [8], [9] to the symmetry properties exhibited in the silhou-

ettes of surfaces of revolution [10], [11], [12], [13], [14]. The method presented here allows the

camera to be calibrated from two or more silhouettes of surfaces of revolution (like bowls and

vases, etc.), which are commonly found in daily life. The use of such objects has the advantages

of easy accessibility and low cost, in contrast to traditional calibration patterns.
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This paper is organized as follows. Section II gives a literature survey on existing camera cali-

bration techniques. Section III defines the camera model used and gives brief reviews on camera

calibration from vanishing points and the symmetry properties associated with the silhouettes of

surfaces of revolution. These provide the theoretical background needed for the camera calibra-

tion method [15] introduced in Section IV. The algorithms and implementation details are given

in Section V, followed by a discussion of the singular cases and an error analysis in Section VI

and VII. Section VIII first presents results of experiments conducted on synthetic data, which

are used to perform an evaluation on the robustness of the algorithms in the presence of noise.

Experiments on real data then show the usefulness of the proposed method. Finally, conclusions

are given in Section IX.

II. PREVIOUS WORKS

Classical calibration techniques [16], [17], [18] in photogrammetry involve full-scale non-

linear optimizations with large number of parameters. These techniques are able to cope with

complex camera models and they produce accurate results, but require a good initialization and

are computationally expensive. In [19], Abdel-Aziz and Karara presented thedirect linear trans-

formation (DLT) technique, which is one of the most commonly used calibration techniques in

the field of computer vision. By ignoring lens distortion and treating the coefficients of the3×4

projection matrix as unknowns, DLT only involves solving a system of linear equations, which

can be done by a linear least-squares method. In practice, the linear solution obtained from DLT

is usually refined iteratively by minimizing the reprojection errors of the 3D reference points [1],

[6]. In [2], [3], Tsai and Lenz introduced theradial alignment constraint (RAS) and developed

a technique which also accounts for lens distortion.

All the calibration techniques mentioned so far require the knowledge of the 3D coordinates of

a certain number of reference points and their corresponding image coordinates. In [7], Caprile

and Torre showed that, under the assumption of zero skew and unit aspect ratio, it is possible to

calibrate a camera from the vanishing points associated with three mutually orthogonal direc-

tions. This idea was further elaborated in [8], [9] to develop practical systems for reconstructing

architectural scenes. In contrast to traditional calibration techniques, these methods depend only

on the presence of some special structures, but not on the exact geometry of those structures.

The theory ofself-calibration was first introduced by Maybank and Faugeras [20], who es-
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tablished the relationship between camera calibration and the epipolar transformation via the

absolute conic [6]. Implementation of the theory in [20], together with real data experiments,

were given by Luong and Faugeras [21] for fixed intrinsic parameters. In [22], Triggs introduced

theabsolute quadric and gave a simpler formulation which can easily incorporate any constraint

on the intrinsic parameters. Based on [22], a practical technique for self-calibration of multiple

cameras with varying intrinsic parameters was developed by Pollefeys et al. in [23]. Specialized

methods of self-calibration have also been derived when the camera motion is restricted to pure

rotation [24] or planar motion [25].

The calibration technique introduced in this paper, namelycalibration from surfaces of rev-

olution, falls into the same category as calibration from vanishing points (see fig. 1). Like

calibration from vanishing points, which only requires the presence of three mutually orthogo-

nal directions, the technique presented here only requires the calibration target to be a surface of

revolution, but the exact geometry of the surface is not important. An important problem not ad-

dressed in this paper is how to detect surfaces of revolution in an image, so that they can be used

in the calibration algorithm. A practical solution to this has been presented by Zisserman et al. in

[13]. The technique developed in that paper is based on the same symmetry properties exploited

here, and works well even in the presence of partial occlusion and clustered background.
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Fig. 1. Different categories of camera calibration techniques.
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III. T HEORETICAL BACKGROUND

A. Camera Model

In this paper, a camera is modelled as a pinhole (perspective) camera and the imaging process

can be expressed as

α




u

v

1


 = P




X

Y

Z

1



, (1)

where(X, Y, Z) are the coordinates of a 3D pointX, (u, v) are the image coordinates of the

projection ofX, andα is an arbitrary scale factor.P is a3 × 4 matrix known as theprojection

matrix [26], which models the pinhole camera. The projection matrixP is not a general3 × 4

matrix, but has a special structure given by [6]

P = K[R t], (2)

whereK is a3×3 upper triangular matrix known as thecamera calibration matrix, R is a3×3

rotation matrix andt is a3 × 1 translation vector.R andt are called theextrinsic parameters

[6] of the camera, and they represent the rigid body transformation between the camera and the

scene (see fig. 2). The camera calibration matrixK has the form [6]

K =




fu ς u0

0 fv v0

0 0 1


 =




af ς u0

0 f v0

0 0 1


 , (3)

wheref is thefocal length, a = fu/fv is the aspect ratio andς is theskew which depends on the

angle between the image axes.(u0, v0) is called theprincipal point, and it is the point at which

the optical axis (zc-axis) intersects the image plane (see fig. 2). The focal length, aspect ratio,

skew and principal point are referred to as theintrinsic parameters [6] of the camera, andcamera

calibration is the process of estimating these parameters. If the image axes are orthogonal to

each other, which is often the case,ς will be equal to zero. In practice, the aspect ratio and skew

of a camera are often assumed to be one and zero, respectively, to reduce the dimension of the

search space in camera calibration. This generally speeds up the calibration process and makes

the results more stable. Such an initial estimate of the intrinsic parameters can be further refined
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later by relaxing the unit aspect ratio and zero skew constraints. A camera is said to be calibrated

if its intrinsic parameters are known. If both the intrinsic and extrinsic parameters of a camera

are known, then the camera is said to be fully calibrated.
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Fig. 2. The extrinsic parameters of a camera represent the rigid body transformation between the world coordinate

system (centered ato) and the camera coordinate system (centered atc), and the intrinsic parameters represent the

camera internal parameters like focal length, aspect ratio, skew and principal point.

B. Calibration from Vanishing Points

In [7], Caprile and Torre showed that under the assumption of zero skew and unit aspect ratio,

the principal point of a camera will coincide with the orthocenter of a triangle with vertices

given at three vanishing points from three mutually orthogonal directions. Such properties of

the vanishing points, together with the symmetry properties associated with the silhouettes of

surfaces of revolution, will be used later in Section IV to derive a simple technique for camera

calibration. A simple derivation of Caprile and Torre’s result is given below.

Consider a pinhole camera with focal lengthf , unit aspect ratio, zero skew and principal point

x̃0. The vector from the camera center to any pointx̃ on the image plane, in camera coordinate

system, is given by[(x̃ − x̃0)
T f ]T. Let ṽq, ṽr andṽs be three vanishing points associated with

three mutually orthogonal directionsNq, Nr andNs respectively. The three vectors from the

camera center tõvq, ṽr andṽs will be mutually orthogonal to each other, and hence

(ṽq − x̃0) · (ṽr − x̃0) + f 2 = 0, (4)

(ṽr − x̃0) · (ṽs − x̃0) + f 2 = 0, (5)

(ṽs − x̃0) · (ṽq − x̃0) + f 2 = 0. (6)

Subtracting (6) from (4) gives

(ṽq − x̃0) · (ṽr − ṽs) = 0. (7)
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Equation (7) shows that̃x0 lies on a line passing through̃vq and orthogonal to the line joining

ṽr andṽs. Similarly, subtracting (4) from (5) and (5) from (6) gives

(ṽr − x̃0) · (ṽs − ṽq) = 0, (8)

(ṽs − x̃0) · (ṽq − ṽr) = 0. (9)

Equations (7)–(9) imply that the principal pointx̃0 coincides with the orthocenter of the triangle

with verticesṽq, ṽr and ṽs. Besides, equations (4)–(6) show that the focal lengthf is equal

to the square root of the product of the distances from the orthocenter to any vertex and to the

opposite side (see fig. 3). As a result, under the assumption of zero skew and unit aspect ratio, it

is possible to estimate the principal point and the focal length of a camera using vanishing points

from three mutually orthogonal directions. A similar derivation was also presented by Cipolla

et al. in [8].
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Fig. 3. The principal point̃x0 of the camera coincides with the orthocenter of the triangle with vertices given at

the vanishing points̃vq, ṽr andṽs associated with three mutually orthogonal directions, and the focal length of the

camera is given byf =
√

dqd′q =
√

drd′r =
√

dsd′s.

C. Symmetry in Surfaces of Revolution

As will be shown in the next paragraph, the silhouette of a surface of revolution, viewed

under a pinhole camera, will be invariant to a harmonic homology [13]. Such properties of the

silhouette can be exploited to calibrate the intrinsic parameters of a camera, as will be shown

in Section IV. A simple proof of such symmetry properties is given below, which also shows

that the axis of the associated harmonic homology is given by the image of the revolution axis,
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and that the center of the homology is given by the vanishing point corresponding to the normal

direction of the plane containing the axis of revolution and the camera center.

Consider a surface of revolutionSr, whose axis of revolution coincides with they-axis, being

viewed by a pinhole camerâP = [�3 − c] centered atc = [0 0 − dz]
T, with dz > 0 (see

fig. 4). By symmetry considerations, it is easy to see that the silhouetteρ̂ of Sr formed on the

image plane will be bilaterally symmetric about the image of the revolution axisl̂s = [1 0 0]T.

The lines of symmetry (i.e., lines joining symmetric points inρ̂) will be parallel to the normal

Nx = [1 0 0 0]T of the planeΠs that contains the axis of revolution and the camera center,

and the vanishing point associated withNx is given byv̂x = [1 0 0]T. The bilateral symmetry

exhibited inρ̂ can be described by the transformation [27], [28]

T =




−1 0 0

0 1 0

0 0 1




= �3 − 2
v̂xl̂

T
s

v̂T
x l̂s

. (10)

Note that the transformationT is aharmonic homology (see Appendix, and also [29], [30] for

details) with axiŝls and center̂vx, which maps every point in̂ρ to its symmetric counterpart in

ρ̂. The silhouettêρ is thus said to be invariant to the harmonic homologyT (i.e., ρ̂ = Tρ̂).

r
Πs

S

c

y

x
z

axis of revolution

o

Fig. 4. A surface of revolutionSr, whose axis of revolution coincides with they-axis, being viewed by a pinhole

cameraP̂ = [�3 − c] centered atc = [0 0 − dz ]T.

Now consider an arbitrary pinhole cameraP by introducing the intrinsic parameters repre-

DRAFT August 27, 2002



WONG ET AL.: CAMERA CALIBRATION FROM SURFACES OF REVOLUTION 9

sented by the camera calibration matrixK to P̂, and by applying the rotationR to P̂ about its

optical center. HenceP = KR[�3 − c] or P = HP̂, whereH = KR. Let x be the projection

of a 3D pointX in P, hence

x = PX

= HP̂X

= Hx̂, (11)

wherex̂ = P̂X. Equation (11) implies that the3 × 3 matrixH represents a planar homography

which transforms the image formed byP̂ into the image formed byP. Similarly,H−1 transforms

the image formed byP into the image formed bŷP. The silhouetteρ of Sr, formed on the image

plane ofP, can thus be obtained by applying the planar homographyH to ρ̂ (i.e.,ρ = Hρ̂). Let

x̂ andx̂′ be a pair of symmetric points in̂ρ, andx = Hx̂ andx′ = Hx̂′ be their correspondences

in ρ. The symmetry between̂x andx̂′ is given by

x̂′ = Tx̂. (12)

Substitutinĝx andx̂′ in (12) byH−1x andH−1x′, respectively, gives [27], [28]

(H−1x′) = T(H−1x)

x′ = HTH−1x

= H(�3 − 2
v̂xl̂

T
s

v̂T
x l̂s

)H−1x

= (�3 − 2
vxl

T
s

vT
x ls

)x, (13)

wherevx = Hv̂x, and ls = H−Tl̂s. Note thatvx is the vanishing point corresponding to

the normal directionNx in P, andls is the image of the revolution axis ofSr in P. Let W =

HTH−1 be the harmonic homology with axisls and centervx. Equation (13) shows thatW will

map each point inρ to its symmetric counterpart inρ, and henceρ is invariant to the harmonic

homologyW (i.e.,ρ = Wρ).

In general, the harmonic homologyW has four degrees of freedom. When the camera is

pointing directly towards the axis of revolution, the harmonic homology will reduce to askew

symmetry [31], [32], [33], [34], where the vanishing pointvx is at infinity. The skew symmetry
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can be described by the transformation

S =
1

cos(φ− θ)




− cos(φ+ θ) −2 cosφ sin θ 2dl cosφ

−2 sinφ cos θ cos(φ+ θ) 2dl sinφ

0 0 cos(φ− θ)


 , (14)

wheredl = u0 cos θ + v0 sin θ. The image of the revolution axis and the vanishing point are

given byls = [cos θ sin θ − dl]
T andvx = [cos φ sin φ 0]T respectively, andS has only three

degrees of freedom. If the camera also has zero skew and unit aspect ratio, the transformation

will then become abilateral symmetry, given by

B =




− cos 2θ − sin 2θ 2dl cos θ

− sin 2θ cos 2θ 2dl sin θ

0 0 1


 . (15)

While ls will have the same form as in the case of skew symmetry, the vanishing point will now

be at infinity and will have a direction orthogonal tols. As a result,B has only two degrees of

freedom. These three different cases of symmetry are illustrated in fig. 5.

(a) (b) (c)

Fig. 5. (a) Silhouette of a surface of revolution under general viewing conditions. The symmetry of the silhouette is

described by a harmonic homology defined by the image of the revolution axis and a vanishing point. (b) When the

camera is pointing directly towards the axis of revolution, the transformation reduces to a skew symmetry, which

is a particular case of the harmonic homology where the vanishing point is at infinity. (c) If the camera also has

zero skew and unit aspect ratio, the transformation becomes a bilateral symmetry, in which the vanishing point is at

infinity and has a direction orthogonal to the image of the revolution axis.

IV. CAMERA CALIBRATION

A. Vanishing Points and the Harmonic Homology

Consider a surface of revolutionSr viewed by a pinhole cameraP = K[R t]. Let ρ be

the silhouette ofSr, ls be the image of the revolution axis ofSr, andvx be the vanishing point
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corresponding to the normal directionNx of the planeΠs that contains the revolution axis of

Sr and the camera center ofP. The silhouetteρ is then invariant to the harmonic homologyW

with axisls and centervx (see Section III-C).

vxls

axis of
revoluion

vy

vz

Π s

center
camera

Fig. 6. Three mutually orthogonal directions associated with a surface of revolution.

Consider now any two vectorsNy andNz parallel to the planeΠs and orthogonal to each

other, which together withNx form a set of three mutually orthogonal directions (see fig. 6).

Under the assumption of zero skew and unit aspect ratio, the vanishing points associated with

these three directions can be used to determine the principal point and the focal length ofP,

as shown in Section III-B. By construction, the vanishing pointsvy andvz, corresponding to

the directionsNy andNz respectively, will lie on the image of the revolution axisls. Given the

harmonic homologyW associated withρ, with an axis given by the image of the revolution axis

ls and a center given by the vanishing pointvx, the principal pointx0 of P will therefore lie on a

line lx passing throughvx and orthogonal tols, and the focal lengthf will be equal to the square

root of the product of the distances from the principal pointx0 to vx and tols respectively (see

fig. 7). As a result, given two or more silhouettes of surfaces of revolution, the principal point

can be estimated as the intersection of the lineslx and the focal length follows.

B. Pole-Polar Relationship and the Absolute Conic

Following the notations in the previous subsection, consider the equation of the planeΠs

which can be deduced fromP and the image of the revolution axisls, and is given by

Πs = PTls. (16)
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lsvx

lx d’
0

x

x

d

x

Fig. 7. The vanishing pointvx and the image of the revolution axisls define a linelx on which the principal point

x0 must lie, and the focal lengthf is equal to
√

dxd′x.

By definition,vx is the vanishing point corresponding to the normal directionNx of the plane

Πs, and hence

vx = PNx. (17)

Now letΩ =


 �3 03

0T
3 0


 be theabsolute dual quadric [22]. Observe thatΠs can be expressed

asΠs = [nT
x − d]T, wherenx is the normal direction ofΠs in Cartesian (non-homogeneous)

coordinates. Therefore,ΩΠs = [nT
x 0]T = Nx, which allows equation (17) to be rewritten as

vx = PΩΠs

= PΩPTls

= KKTls

K−TK−1vx = ls

ω vx = ls, (18)

whereω = K−TK−1 is the projection of the absolute quadric inP, known as theimage of the

absolute conic. Equation (18) gives the pole-polar relationship, with respect to the image of the

absolute conic, between the vanishing pointvx of the normal direction of the planeΠs and the

vanishing linels of Πs [35]. By assuming the skew ofP to be zero, expanding (18) gives



1
f2

u
0 −u0

f2
u

0 1
f2

v
− v0

f2
v

−u0

f2
u

− v0

f2
v

(u0

fu
)2 + ( v0

fv
)2 + 1


vx = ls, (19)

wherefu, fv and (u0,v0) are the intrinsic parameters ofP. It follows that the harmonic homology

associated with the silhouette of a surface of revolution will provide two constraints on the four
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intrinsic parameters of a camera. As a result, under the assumption of fixed intrinsic parameters

and zero skew, it is possible to calibrate a camera from two or more silhouettes of surfaces of

revolution. Further, under the assumption of unit aspect ratio (i.e.,fu = fv), it can be derived

from equation (19) that the focal lengthf is equal to the square root of the product of the

distances from the principal point(u0, v0) to the vanishing pointvx and to the image of the

revolution axisls. These results agree with the analysis of the vanishing points in the previous

subsection.

V. ALGORITHMS AND IMPLEMENTATIONS

A. Estimation of the Harmonic Homology

The silhouetteρ of a surface of revolution can be extracted from the image by applying a

Canny edge detector [36] (see fig. 8). The harmonic homologyW that maps each side of the

silhouetteρ to its symmetric counterpart is then estimated by minimizing the geometric distances

between the original silhouetteρ and its transformed versionρ′ = Wρ. This can be done by

samplingN evenly spaced pointsxi along the silhouetteρ and optimizing the cost function

CostW(vx, ls) =

N∑
i=1

dist(W(vx, ls)xi, ρ)
2, (20)

wheredist(W(vx, ls)xi, ρ) is the orthogonal distance from the transformed sample pointx′
i =

W(vx, ls)xi to the original silhouetteρ.

Fig. 8. The silhouette of a surface of revolution (candle holder) extracted by applying a Canny edge detector.

The success of most nonlinear optimization problems requires a good initialization so as to

avoid convergence to local minima. This is achieved here by using bitangents of the silhouette

[10]. Two points in the silhouetteρ near a bitangent are selected manually and the neighborhood

of each point is transformed into a curve in the Hough space (see fig. 9). The bitangent and the
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bitangent points can then be located by finding the intersection of the two transformed curves in

the Hough space (see [37] for details).

curve 1 

curve 2 

Image Space 
−3 −2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

θ
R

curve 2 

curve 1

Hough Space 

Fig. 9. Two points in the silhouetteρ near a bitangent are selected manually and the neighborhood of each point is

transformed into a curve in the Hough space. The bitangent and the bitangent points can then be located by finding

the intersection of the two transformed curves in the Hough space.

Consider two corresponding bitangentslb andl′b on the two sides ofρ, with bitangent points

x1, x2 andx′
1, x′

2 respectively (see fig. 10). Letld be the line joiningx1 andx′
2, andl′d be the

line joining x′
1 andx2. The intersection oflb with l′b and the intersection ofld with l′d define

a line which will provide an estimate for the image of the revolution axisls. Let lc be the line

joiningx1 andx′
1, andl′c be the line joiningx2 andx′

2. The intersection oflc with l′c will provide

an estimate for the vanishing pointvx. The initialization ofls andvx from bitangents often

provides an excellent initial guess for the optimization problem. This is generally good enough

to avoid any local minimum and allows convergence to the global minimum in a small number

of iterations. Note that bitangents are used here only to provide an initial estimate forls andvx,

which will be further refined by optimizing the cost function given in (20). As a result, error

in the estimation of the bitangents will not directly affect the accuracy of the final estimation

of the intrinsic parameters. Alternatively in the absence of any bitangents,ls can be initialized

manually by observing the symmetry in the silhouette, andvx can be initialized to be a point at

infinity having a direction orthogonal tols.

The above approach of estimating the harmonic homology is similar to the one presented in

[13]. However, the initialization using bitangent points allows for optimizing the full projective

model, represented by the harmonic homology, in contrast to the affine approximation used in

[13], which corresponds to a skew symmetry transformation. An alternative method, which
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Fig. 10. Initialization of the optimization parametersl s andvx from the bitangents and lines formed from the

bitangent points.

computes the harmonic homology implicitly, was developed in [38]. The method presented

here is much simpler than the one shown in [38], which relies on an unnecessarily complicated

prediction, verification and selection scheme. An important point to note is that both the results

in [13] and [38] demonstrate that the harmonic homology can be successfully computed in the

presence of partial occlusion and clustered background.

B. Estimation of the Intrinsic Parameters

Method I:

Under the assumption of zero skew and unit aspect ratio, the linelx passing through the prin-

cipal point(u0, v0) and the vanishing pointvx will be orthogonal to the image of the revolution

axisls (see Section IV). Letvx = [v1 v2 v3]
T andls = [l1 l2 l3]

T. The linelx can be expressed

in terms ofvx andls, and is given by

lx =
1√

(l2v3)2 + (l1v3)2




l2v3

−l1v3

l1v2 − l2v1


 . (21)
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Given two such lineslx1 andlx2, the principal point(u0, v0) will then be given by the intersection

of lx1 with lx2. When more than two lines are available, the principal point(u0, v0) can be

estimated by a linear least-squares method from



lTx1

lTx2

...

lTxM







αu0

αv0

α


 = 0, (22)

whereM ≥ 2 is the total number of lines (i.e., number of silhouettes) andα is a scale factor.

The estimated principal point(u0, v0) is then projected onto each linelxi orthogonally asx0i,

and the focal lengthf will be given by

f =
1

M

M∑
i=1

√
dist(x0i,vxi) × dist(x0i, lsi), (23)

wheredist(x0i,vxi) is the distance betweenx0i and vxi, anddist(x0i, lsi) is the orthogonal

distance fromx0i to the image of the revolution axislsi. Note that the terms for summation

are the focal lengths estimated from each pair ofvxi andlsi with the estimated principal point

projected onto the correspondinglxi (see Section IV), and the focal lengthf is then taken to be

the mean of these estimated values.

When the aspect ratio of the camera is known but not equal to one, there exists a planar ho-

mographyA(a) that transforms the image into one that would have been obtained from a cam-

era with the same focal lengthf , unit aspect ratio and principal point(u′
0, v

′
0). The homography

A(a) is given by

A(a) =




1
a

0 −u0

a
+ u′0

0 1 −v0 + v′0

0 0 1


 , (24)

wherea is the aspect ratio of the original camera, and(u0, v0) and(u′0, v
′
0) are the principal points

of the original and transformed cameras respectively. By setting the principal point(u ′
0, v

′
0) of

the transformed camera to(u0/a, v0), the homographyA(a) is reduced to

A′(a) =




1
a

0 0

0 1 0

0 0 1


 . (25)
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The vanishing pointsvxi and the images of the revolution axislsi are transformed byA′(a) and

A′−T(a) respectively, and equations (21)–(23) can then be applied to obtain the principal point

(u′0, v
′
0) and the focal lengthf . Note that the principal point(u′

0, v
′
0) obtained in this way is the

principal point of the transformed camera, and the principal point(u0, v0) of the original camera

is simply given by 
 u0

v0


 =


 au′0

v′0


 . (26)

Method II:

When the aspect ratio of the camera is unknown, the camera can be calibrated by first esti-

mating the image of the absolute conicω. Let vx = [v1 v2 v3]
T and ls = [l1 l2 l3]

T. From

(19), under the assumption of zero skew, each pair ofvx andls will provide the following two

constraints

v1l3ω1 + (v3l3 − v1l1)ω2 − v2l1ω4 − v3l1ω5 = 0, and (27)

v1l2ω2 − v2l3ω3 + (v2l2 − v3l3)ω4 + v3l2ω5 = 0, (28)

whereωi are the matrix elements of the absolute conicω:

ω =




ω1 0 ω2

0 ω3 ω4

ω2 ω4 ω5


 . (29)

Hence the image of the absolute conic can be estimated, up to a scale factor, by a linear least-

squares method when there are two or more pairs ofvx andls. After obtaining an estimate forω,

the camera calibration matrixK can then be obtained fromω by Cholesky decomposition [39,

Chapter 2]. Note that the unit aspect ratio constraint can also be easily incorporated by setting

ω1 = ω3 in equations (28) and (29).

VI. SINGULAR CASES

The algorithms presented in the previous section have two main steps: the computation of the

harmonic homologies, and the subsequent computation of the camera intrinsic parameters using

the just computed homologies. Therefore, the only two situations where the algorithms fail are

when the homologies cannot be computed, and when the homologies do not provide enough
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information for the calibration of the camera. The following subsections analyze the occurrence

of these degeneracies.

A. Conic Silhouette

If the silhouetteρ of a surface of revolution is a conic, there will be an infinite number of

harmonic homologies to which the silhouetteρ will be invariant. Such a situation results in a

singular case for camera calibration from surfaces of revolution.

Consider a conic represented by a3 × 3 symmetric matrixC, such that every pointx on the

conic satisfies

xTCx = 0. (30)

Given a pointxe outside the conicC, two tangents can be drawn fromxe to C (see fig. 11), and

the linele passing through the two tangent points is given by

le = Cxe. (31)

Let We be a harmonic homology with axisle and centerxe, i.e.,

We = �3 − 2
xel

T
e

xT
e le

. (32)

Substituting (31) into (32) gives

We = �3 − 2
xex

T
e CT

xT
e Cxe

. (33)

Let x be a point onC andx′ = Wex, and consider the equation

x′TCx′ = (Wex)TC(Wex)

= xT(WT
e CWe)x. (34)

Substituting (33) into (34) gives

x′TCx′ = xT[(�3 − 2
xex

T
e CT

xT
e Cxe

)TC(�3 − 2
xex

T
e CT

xT
e Cxe

)]x

= xT[(�3 − 2
Cxex

T
e

xT
e Cxe

)(C − 2
Cxex

T
e CT

xT
e Cxe

)]x

= xTCx

= 0. (35)
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Equation (35) implies that any pointxe outside the conicC and the corresponding linele = Cxe

will define a harmonic homologyWe to which the conicC will be invariant. As a result, if the

silhouette of the surface of revolution is a conic, there will not be a unique solution to the

optimization problem of the harmonic homologyW associated with the silhouette, and hence it

provides no information on the intrinsic parameters of the camera.

 C 

 x
e
 

 l 
e

Fig. 11. A conicC will be invariant to any harmonic homology with a center given by any pointx e outside the

conic, and an axis given byle = Cxe.

Assume now that the silhouette can be represented as a homogeneous algebraic curveg of

degreed [40]. As a result of Bezout’s theorem, the silhouette will havek = 3d(d− 2) inflection

points [41]. If a curve is invariant to a harmonic homologyW, its inflection points, which are

projective invariants, will be mapped to each other byW. If d ≥ 3, there will bek ≥ 9 inflection

points, providing at least four matches for computing the harmonic homology. Observe that this

result is valid even when the inflection points are imaginary, since there is no problem in mapping

an imaginary inflection point to an also imaginary counterpart by a real harmonic homology. The

result also holds when the inflection points have multiplicity greater than one, because then the

derivatives ofg at the inflection point will also be preserved byW. As a result, ifd ≥ 3 and

the matching of the inflection points is known, the harmonic homology can be determined. If

the matching of the inflection points is not known, there will be at most a finite number of

solutions, for different choices in the matching. In general, it should be possible to choose the

correctW by validating it against the rest of the curve. The discussion above demonstrates that

conics are the only general (i.e., not for a particular view of a particular example) degeneracy in

the computation of the harmonic homology when the silhouette is in the class of homogeneous

algebraic curves. It is worthwhile noting that any curve that admits a rational parameterization,
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such as B-splines and NURBS, can be expressed in homogeneous algebraic form [42], and

therefore the proof is also valid in these particular cases.

B. Vanishing Point at Infinity

When the camera is pointing towards the revolution axis of the surface, the silhouette will

exhibit bilateral or skew symmetry (see Section III-C), and the vanishing pointvx will be at

infinity (i.e., v3 = 0). In this situation, the linelx, on which the principal point is constrained to

lie, cannot be determined, and this may cause the calibration equations to be under constrained.

To simplify the analysis, consider a camera with zero skew and unit aspect ratio. Assume

now that one homologyW(vx, ls) with v3 �= 0 is available. If a second homologyW(v′
x, l

′
s) �=

W(vx, ls) is also available, there will then be four distinct possibilities for the computation of

the principal pointx0 and the focal lengthf :

(i) v′3 �= 0 andlx �= l′x: there will be a unique solution forx0, given byx0 = lx × l′x.

(ii) v′3 �= 0 andlx = l′x: there will be exactly one solution forx0 such thatlTx x0 = 0 satisfying

f 2 = dist(x0,vx) × dist(x0, ls) = dist(x0,v
′
x) × dist(x0, l

′
s).

(iii) v′3 = 0 andlx �= l′s: note that the principal point is now constrained to lie onl ′s, and there

will be a unique solution forx0, given byx0 = lx × l′s.

(iv) v′3 = 0 andlx = l′s: there will be infinite number of solutions forx0.

The discussion above demonstrates that whenever there are two distinct homologiesW and

W′ such that bothv3 andv′3 are not equal to zero, the computation of the principal point and

therefore of the focal length is possible. Moreover, even when there is only one homology with

v3 �= 0, the computation of the principal point and the focal length is still possible, as long as the

highly unlikely condition thatlx = l′s does not occur. When the camera is pointing towards the

revolution axis in all images (i.e.,v3 = 0 ∀vx), then only the principal point can be estimated.

VII. ERROR ANALYSIS

A. Proportionality of the Error with the Focal Length

Experiments show that in estimating the harmonic homologyW associated with the silhouette

ρ of a surface of revolution, the uncertainty is essentially in the vanishing pointvx. Sincevx is,

in general, tens of thousands of pixels away from the axisls, its error in a direction orthogonal to

ls can be neglected in the computation of the principal point and focal length. On the other hand,
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the error ofvx in a direction parallel tols will lead to the same error in the estimated principal

pointx0. This is due to the fact that, under the assumption of zero skew and unit aspect ratio,x0

must lie on the linelx passing throughvx and orthogonal tols (see Section IV).

x’

dx dx’

x 0

ls

w’

vx lx

εx

w

ξ

Fig. 12. Error analysis in the estimation of the principal point as the focal length varies.

Fig. 12 shows a pointx in ρ which is transformed byW to its symmetric counterpartx ′ in ρ.

If vx has an errorξ in a direction parallel tols, then the transformed point will have an errorε

(see fig. 12). It is easy to see thatξ andε are related to each other by

ξ

ε
=
dx + d′x − w

w + w′ . (36)

Sincedx = f 2/d′x is much greater thand′x, w andw′, and thatw andw′ have nearly the same

value, equation (36) can be rewritten as

ξ

ε
� f 2

2d′xw
=

f

2 tanψw
, (37)

whereψ is the angle between the optical axis and the planeΠs, andd′x = f tanψ. Equation (37)

implies that ifψ, w andε are assumed to be approximately constant, then the errorξ of vx, and

hence the error of the principal pointx0, in a direction parallel tols, will be proportional tof .

This might limit the usefulness of the technique to wide angle cameras.

B. Validation of the Error Analysis

To validate the error analysis described in the previous subsection, a simple experiment was

performed. Four coplanar points configured into a square were placed in front of a camera with

zero skew, unit aspect ratio and variable focal length. Initially, the image plane of the camera

was parallel to the square formed by these four points, and the optical axis of the camera passed

through the center of this square. The camera was then rotated about its optical center and away

from the symmetry plane of the four points, distorting the otherwise bilaterally symmetric image
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to one invariant to a harmonic homology with the vanishing point at a finite position. Gaussian

noise was then added to the coordinates of the projected points, and the corresponding harmonic

homology was computed. One can easily relate the parameters in this experiment with those in

equation (37):ε is the standard deviation of the noise (i.e., noise level),ψ is the angle by which

the camera was rotated from the symmetry plane prior to the projection of the points, andw was

taken as the average distance from the points tols. It is important to notice thatw changes as the

focal length changes, thus introducing a nuisance factor that will hide the true linear dependency

between the magnitude of the focal length and the error in the position of the principal point.

To compensate for that, the optical center of the camera was translated according to the value

of the focal length (i.e., the larger the focal length, the further away from the four points the

camera was placed), keeping the average value ofw constant. Intuitively, this has the effect

of maintaining the size of the calibration object (in this case, the four points) approximately

constant in the image, despite the changes in the focal length. This experiment was repeated

one hundred times for each noise level, and the average norm of the errors in the position of

the principal point is shown in fig. 13, as a function of the focal length. The linear relationship

described in equation (37) clearly holds, and the proportionality of the error with the noise level

σ is also apparent.
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Fig. 13. Linear dependency between the error in the position of the principal point and the magnitude of the focal

length. Each point on each curve is the average norm of the errors in the position of the principal point over one

hundred experiments.
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VIII. E XPERIMENTS AND RESULTS

Experiments on both synthetic and real data were carried out, and the results are presented in

the following subsections. In both cases, the cameras were assumed to have zero skew.

A. Synthetic Data

A.1 Generation of Data

The experimental setup consisted of a surface of revolution viewed by a synthetic camera at

three different positions, as shown in fig. 14. The synthetic images had a dimension of640×480

pixels, and the intrinsic parameters of the synthetic camera were given by the calibration matrix

K =




f 0 320

0 f 240

0 0 1


 where f = 700, 1400. (38)

The surface of revolution was composed of two spheres intersecting each other. Each sphere

was represented by a4 × 4 symmetric matrixQi whose projection was given by [43]

Cij = (PjQ
−1
i PT

j )−1, (39)

wherePj was a3 × 4 projection matrix andCij was a3 × 3 symmetric matrix representing the

conic, which was the projection ofQi in Pj. The silhouette of the surface of revolution in each

image was found by projecting each sphereQi onto the imagej as the conicCij and finding

points on each conic that lie outside the other conic. The silhouettes in the three images taken

by the synthetic camera withf = 700 are shown in fig. 15.

In order to evaluate the robustness of the algorithms described in Section V, uniform random

noise was added to each silhouette. Each point in the silhouette was perturbed in a direction

normal to the local tangent, and the magnitudes of the noise were smoothed by a Gaussian filter

so as to avoid unrealistic jaggedness along the silhouette (see fig. 16).

A.2 Results on Synthetic Data

Experiments on the synthetic data with seven different noise levels were carried out. The

seven noise levels were0.5, 0.7, 1.0, 1.2, 1.5, 1.7 and2.0 pixels respectively. The noise level for

typical real images ranges from0.7 to 1.5 pixels, and the distortion of the silhouette will be too
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3

1

2

Fig. 14. The experimental setup consisted of a surface of revolution, which was composed of two intersecting

spheres, viewed by a synthetic camera at three different positions.

image 1 image 2 image 3

Fig. 15. Silhouettes of the surface of revolution in the three images taken by the synthetic camera withf = 700.

great to be realistic when the noise level is above2.0 pixels. For each noise level, one hundred

experiments were conducted using the algorithms described in Section V. In the estimation

of the harmonic homology, the number of sample points used was100. Both method I and II

described in Section V-B were used for the computation of the intrinsic parameters.

The experimental results are presented in table I, which shows the root-mean-square (rms)

errors of the estimated intrinsic parameters. Note that the values listed in the table have been

normalized and are the percentage errors relative to the corresponding ground truth focal lengths.

It can be seen from table I that the focal lengths obtained using method II were better than those

obtained using method I, regardless of whether the unit aspect ratio constraint was imposed or

not. For different versions of method II (i.e., IIa with free aspect ratio and IIb with unit aspect

ratio), IIb gave the best results. This is consistent with the well-known fact that the enforcement

of known constraints gives more accurate results in camera calibration. Observe that this does

not contradict the fact that method IIa gave better results than method I, for in this case different

algorithms are being compared. As the noise level increased, the relative errors in the estimated
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Fig. 16. (a) The original silhouette. (b) The resultant silhouette after uniform random noise of maximum 0.5 pixels

being added. (c) The noise-free and noisy silhouettes are represented by solid and dash lines respectively, and the

dotted lines indicate the bounds for noise along the normal direction of each point.

intrinsic parameters increased. Table I also shows that the errors increased with the focal length

of the camera (see also fig. 17), and this agrees with the error analysis presented in Section VII.

For a noise level of 2.0 pixels, the errors in the estimated focal lengths were less than 6.0% and

7.5% for the synthetic cameras withf = 700 andf = 1400 respectively.
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Synthetic Camera 2 (f = 1400)

Fig. 17. Normalized rms errors of the estimated focal lengths obtained using method IIb under different noise

levels.

B. Real Data

B.1 The Ground Truth

The camera used in the real data experiments was a digital camera with a resolution of640×
480 pixels. The ground truth for the intrinsic parameters of the camera was obtained using

a calibration grid. Six images of a calibration grid were taken with the camera at different

orientations (see fig. 18). Corner features were extracted from each image using a Canny edge

detector [36] and line fitting techniques. For each image, the camera was calibrated using the
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TABLE I

EXPERIMENTAL RESULTS OF CALIBRATION FROM SILHOUETTES UNDER DIFFERENT FOCAL LENGTHS AND

NOISE LEVELS.

Synthetic Camera 1 (f = 700) Synthetic Camera 2 (f = 1400)

Percentage Errors (%) Percentage Errors (%)

noise lv method fu fv u0 v0 fu fv u0 v0

0.5 I 1.1921 1.1921 0.6325 0.3354 2.2382 2.2382 0.7371 0.4008

0.5 IIa 1.1516 1.0945 0.6023 0.7591 2.0834 2.0280 0.6254 0.8150

0.5 IIb 1.1254 1.1254 0.5687 0.7462 2.0541 2.0541 0.6108 0.8082

0.7 I 1.7181 1.7181 0.8986 0.4725 3.1868 3.1868 1.1699 0.5610

0.7 IIa 1.7111 1.6250 0.8417 1.0659 2.7825 2.7070 1.0280 1.2551

0.7 IIb 1.6711 1.6711 0.7937 1.0478 2.7423 2.7423 1.0052 1.2454

1.0 I 2.4277 2.4277 1.3113 0.7239 4.3078 4.3078 1.8183 0.9197

1.0 IIa 2.3610 2.2334 1.2908 1.6372 3.6626 3.5731 1.2814 1.5222

1.0 IIb 2.3007 2.3007 1.2184 1.6064 3.6161 3.6161 1.2513 1.5134

1.2 I 3.0194 3.0194 1.7414 0.8761 5.5788 5.5788 1.7734 1.0189

1.2 IIa 2.5415 2.4044 1.5292 2.1493 4.6212 4.5503 1.4714 1.7224

1.2 IIb 2.4749 2.4749 1.4469 2.1164 4.5831 4.5831 1.4401 1.7127

1.5 I 4.5876 4.5876 2.7362 1.3309 6.2149 6.2149 1.9063 1.5326

1.5 IIa 4.0019 3.8079 2.0678 3.1898 5.9250 5.8213 1.7284 2.1655

1.5 IIb 3.9031 3.9031 1.9597 3.1490 5.8700 5.8700 1.6910 2.1504

1.7 I 5.6534 5.6534 3.1541 1.7898 8.0902 8.0902 2.9027 1.4357

1.7 IIa 4.3192 4.1158 2.1550 3.7542 6.4024 6.2320 1.8617 2.3701

1.7 IIb 4.2144 4.2144 2.0343 3.7192 6.3107 6.3107 1.8216 2.3488

2.0 I 6.7864 6.7864 4.3649 3.4956 8.8957 8.8957 2.6345 1.9192

2.0 IIa 5.8438 5.6100 3.1055 5.3920 7.2582 7.1219 2.1700 2.3457

2.0 IIb 5.7052 5.7052 2.9625 5.3566 7.1867 7.1867 2.1304 2.3292

method IIa : method II without the unit aspect ratio constraint

method IIb : method II with the unit aspect ratio constraint

DRAFT August 27, 2002



WONG ET AL.: CAMERA CALIBRATION FROM SURFACES OF REVOLUTION 27

DLT technique [19] followed by an optimization which minimized the reprojection errors of the

corner features [1], [6]. The results of calibration from the calibration grid are shown in table II.

Fig. 18. Six images of a calibration grid taken by the digital camera for calibration.

TABLE II

RESULTS OF CALIBRATION FROM THE SIX IMAGES OF THE CALIBRATION GRID.

assumption: zero skew and unit aspect ratio

fu fv u0 v0

mean 687.92 687.92 320.98 230.88

std 1.90 1.90 4.00 3.35

assumption: zero skew

fu fv u0 v0

mean 687.70 688.09 320.98 230.88

std 1.83 2.10 4.00 3.34

(all units are in pixels)

B.2 Results on Real Data

Two sets of real images of surfaces of revolution were used for the calibration of the digital

camera. The first set consisted of three images of two bowls, which provided four silhouettes

for camera calibration (see fig. 19). The second set consisted of eight images of a candle holder,

which provided eight silhouettes for camera calibration (see fig. 20). The results of calibration

from the two image sets are shown in table III, and table IV shows the percentage errors of the
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estimated intrinsic parameters relative to the ground truth focal lengths. Similar to the results of

the synthetic experiments, the intrinsic parameters obtained in the real data experiments using

method II were better than those obtained using method I. The focal lengths estimated from both

the bowls set and the candle holder set (using method II with unit aspect ratio constraint) had

an error of only around 3% relative to the ground truth focal length. Fig. 19 and 20 show the

extracted silhouettes and the estimated images of the revolution axis. Fig. 21 shows the lines

lxi passing through the corresponding vanishing pointvxi and orthogonal to the corresponding

image of the revolution axislsi.

Fig. 19. Three images of two bowls with the extracted silhouettes and estimated images of the revolution axis

plotted in solid and dash lines respectively.

Fig. 20. Eight images of a candle holder with the extracted silhouettes and estimated images of the revolution axis

plotted in solid and dash lines respectively.

From table III and table IV, it can be seen that the intrinsic parameters estimated from the

candle holder set were slightly better than those from the bowls set. This can be explained as

the silhouettes in the candle holder set showed much greater perspective effect than those in the

bowls set (see fig. 19 and fig. 20). Besides, the candle holder set also provided more silhouettes,

and hence more constraints, than the bowls set for the estimation of the intrinsic parameters.
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TABLE III

RESULTS OF CALIBRATION FROM THE BOWLS AND CANDLE HOLDER SETS.

image set method fu fv u0 v0

bowls I 727.12 727.12 332.34 227.21

bowls IIa 706.65 708.55 321.25 246.25

bowls IIb 708.63 708.63 322.15 244.75

candle holder I 727.93 727.93 279.21 231.40

candle holder IIa 708.44 705.47 331.53 231.18

candle holder IIb 707.40 707.40 330.60 231.54

(all units are in pixels)

TABLE IV

PERCENTAGE ERRORS IN THE RESULTS OF CALIBRATION FROM THE TWO IMAGE SETS.

Percentage Errors (%)

image set method fu fv u0 v0

bowls I 5.70 5.70 1.65 0.53

bowls IIa 2.76 2.97 0.04 2.23

bowls IIb 3.01 3.01 0.17 2.02

candle holder I 5.82 5.82 6.07 0.08

candle holder IIa 3.02 2.53 1.53 0.04

candle holder IIb 2.83 2.83 1.40 0.10

bowls set candle holder set

Fig. 21. The solid lines represent the lineslxi passing through the corresponding vanishing pointvxi and orthogonal

to the corresponding image of the axis revolutionl si. Since the principal pointx0 must lie on these lines, it can be

estimated as the intersection of two or more lineslxi.
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IX. CONCLUSIONS

By exploiting the symmetry properties exhibited in the silhouettes of surfaces of revolution

and relating them to vanishing points, a practical technique for camera calibration has been de-

veloped. The use of surfaces of revolution makes the calibration process easier in not requiring

the use of any precisely machined device with known geometry, such as a calibration grid. Be-

sides, a surface of revolution can always be generated by rotating an object of any arbitrary shape

around a fixed axis. It means that the calibration technique introduced here can be integrated

into a motion estimation and model building system for turntable sequences [44], [28].

Despite the fact that strong perspective effect is required, the method introduced here is

promising as demonstrated by the experimental results on both synthetic and real data. The

focal lengths were estimated with high accuracy, having an error of only around 3% with respect

to the ground truth. Nonetheless, note that neither of the implementations proposed in Section V

is statistically optimal, even though the computation of each individual harmonic homology is.

The statistically optimal way, which will not be discussed in details here, would be integrating

all the information provided by the silhouettes to estimate the intrinsic parameters and the har-

monic homologies simultaneously. For a set ofN images, this would involve an optimization

over a2N + 4 parameter space: 4 for the intrinsic parameters, or equivalently, for the image of

the absolute conicω; and2N for theN vanishing pointsvx, or equivalently, for theN images

of the revolution axesls (asωvx = ls). This might be included in future work.

APPENDIX

DEFINITION OF THE HARMONIC HOMOLOGY

A perspective collineation [30], with centerxc and axisla, is a collineation which leaves all

the lines throughxc and points ofla invariant. If the centerxc and the axisla are not incident,

the perspective collineation is called ahomology [30]; otherwise it is called anelation [30].

Consider a pointx which is mapped by a homology with centerxc and axisla to the pointx′.

Let x′
c be the point of intersection between the axisla and a line passing through the pointsx

andx′. The homology is said to be harmonic if the pointsx andx ′ are harmonic conjugates with

respect toxc andx′
c (i.e., the cross-ratio{xc,x′

c;x,x′} equals−1). The matrixW representing

a harmonic homology [30] with centerxc and axisla, in homogeneous coordinates, is given by
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W = �3 − 2xclTa
xT

c la
. More details on harmonic homology can be found in [29], [30].
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