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Abstract—This paper sets out a tracking framework, which is applied to the recovery of three-dimensional hand motion from an image

sequence. The method handles the issues of initialization, tracking, and recovery in a unified way. In a single input image with no prior

information of the hand pose, the algorithm is equivalent to a hierarchical detection scheme, where unlikely pose candidates are rapidly

discarded. In image sequences, a dynamic model is used to guide the search and approximate the optimal filtering equations. A

dynamic model is given by transition probabilities between regions in parameter space and is learned from training data obtained by

capturing articulated motion. The algorithm is evaluated on a number of image sequences, which include hand motion with self-

occlusion in front of a cluttered background.

Index Terms—Probabilistic algorithms, video analysis, tracking.

Ç

1 INTRODUCTION

ONE of the fundamental problems in vision is that of
tracking objects through sequences of images. Within

this paper, we present a Bayesian algorithm for tracking the
3D position and orientation of rigid or nonrigid objects. The
application considered here is tracking hands in monocular
video sequences, but the method is equally applicable to
full body tracking [28], [29]. Great strides have been made
in the theory and practice of tracking, for example, the
development of particle filters recognized that a key aspect
in tracking was a better representation of the posterior
distribution of model parameters [11], [17], [20], [36], [37].
Particle filters go beyond the unimodal Gaussian assump-
tion of the Kalman filter by approximating arbitrary
distributions with a set of random samples. The advantage
is that the filter can deal with clutter and ambiguous
situations more effectively, by not placing its bet on just one
hypothesis. However, a major concern is that the number of
particles required increases exponentially with the dimen-
sion of the state space [10], [27]. In addition, even for low-
dimensional spaces there is a tendency for particles to
become concentrated in a single mode of the distribution
[12] and the tracker’s stability mostly relies on the quality of
the importance sampler.

Within this paper, we consider tracking an articulated
hand in cluttered images, without the use of markers. In
general, this motion has 27 degrees of freedom (DOF),
21 DOF for the joint angles, and 6 for orientation and
location [13], [32]. This state space can be reduced by

reparameterization. Wu et al. [45] show that due to the
correlation of joint angles, the state space for the joints can
be approximated with 7 DOF by applying PCA; however,
the tracker has difficulties dealing with out-of-plane
rotations and scale changes.

There are several possible strategies for estimation in
high-dimensional spaces. One way is to use a sequential
search, in which some parameters are estimated first, and
then others, assuming that the initial set of parameters is
correctly estimated. This strategy may seem suitable for
articulated objects. For example, Gavrila and Davis [16]
suggest, in the context of human body tracking, first locating
the torso and then using this information to search for the
limbs. Unfortunately, this approach is, in general, not robust
to different view points and self-occlusion. MacCormick and
Isard [27] propose a particle filtering framework for this type
of method in the context of hand tracking, factoring the
posterior into a product of conditionally independent
variables. This assumption is essentially the same as that
of Gavrila and Davis and tracking has been demonstrated
only for a single view point with no self-occlusion.

The development of particle filters was primarily
motivated by the need to overcome ambiguous frames in
a video sequence so that the tracker is able to recover.
Another way to overcome the problem of losing lock is to
treat tracking as object detection at each frame [1], [2], [33],
[34]. Thus, if the target is lost in one frame, this does not
affect any subsequent frame. Template-based methods have
yielded good results for locating deformable objects in a
scene with no prior knowledge, e.g., for pedestrians [15].
These methods are made robust and efficient by the use of
distance transforms such as the chamfer or Hausdorff
distance between template and image [4], [19], and were
originally developed for matching a single template. A key
suggestion was that multiple templates could be dealt with
efficiently by building a tree of templates [15], [31]. Given
the success of these methods, it is natural to consider
whether or not tracking might not be best effected by
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template matching using exhaustive search at each frame.
The answer to this question is generally no, because
dynamic information is needed, first to resolve ambiguous
situations, and second, to smooth the motion. One approach
to embed template matching in a probabilistic tracking
framework was proposed for complete image frames by
Jojic et al. [24] and for exemplar templates by Toyama and
Blake [43]. However, it is acknowledged that “one problem
with exemplar sets is that they can grow exponentially with object
complexity. Tree structures appear to be an effective way to deal
with this problem, and we would like to find effective ways of
using them in a probabilistic setting.” This paper presents one
solution, which combines ideas from hierarchical view-
based detection and probabilistic tracking in the object
parameter space. A large number of templates are gener-
ated from a 3D model and a hierarchy of these templates is
constructed offline by partitioning the parameter space. The
finest partition corresponds to the leaves of the tree. At each
time instant, the posterior distribution of the state para-
meters is estimated over these partitions. If no dynamic
information is available, for example, in the first frame of a
sequence, this corresponds to a hierarchical detection
scheme. In subsequent frames, the distribution is propa-
gated over time while making use of global and intrinsic
object dynamics.

2 HIERARCHICAL FILTERING

This section proposes an algorithm for Bayesian tracking,
which is based on a multiresolution partitioning of the state
space. It is motivated by methods introduced in the context
of hierarchical object detection, which are briefly outlined in
the next section.

2.1 Tree-Based Detection

Methods for detecting objects are becoming increasingly

efficient. Examples are real-time face detection or pedes-

trian detection [15], [44], both of which are based on

hierarchical or cascaded methods. However, applying these

techniques to hand detection from a single image is difficult

because of the large variation in shape and appearance of a

hand in different poses. In this case, detection and pose

estimation are tightly coupled. One approach to solving this

problem is to use a large number of shape templates and

find the best match in the image. In exemplar-based methods,

such templates are obtained directly from the training sets

[8], [15], [26], [43]. For example, Gavrila uses approximately

4,500 shape templates to detect pedestrians in images [15].

To avoid exhaustive search, a template hierarchy is formed

by bottom-up clustering based on the chamfer distance. A

number of similar shape templates are represented by a

cluster prototype. This prototype is first compared to the

input image, and only if the error is below a threshold

value, are the templates within the cluster compared to the

image. The use of a template hierarchy is reported to result

in a speed-up of three orders of magnitude compared to

exhaustive matching [15].
If a parametric object model is available, another option

to build such a tree of templates is by partitioning the state
space. Let this tree have L levels, each level l defines a

partition Pl of the state space into Nl distinct sets
l ¼ 1; . . . ; L, such that Pl ¼ fSi;lgNl

i¼1. The leaves of the tree
define the finest partition of the state space PL ¼ fSi;LgNL

i¼1.
The use of a parametric model also allows the combination
of a a template hierarchy created offline with an online
optimization process. Once the leaf level is reached, the
model can be refined by continuous optimization of the
model’s parameters. In [42], we used this method to adapt
the shape of a generic hand model to an individual user in
the first frame.

A drawback of a single-frame exemplar-based detector,

such as the one presented in [15], is the difficulty of

incorporating temporal constraints. We take inspiration

from Jojic et al. [24] who modeled a video sequence by a

small number of image exemplars and modeled the motions

by a discrete label set, imposing dynamics by a hidden

Markov model. This idea was taken further by Toyama and

Blake [43] who suggested a metric mixture model for

exemplar-based tracking. The integration of a dynamic

model is useful, first to resolve ambiguous situations, and

second, to smooth the motion. However, in [43], no

template hierarchy is formed as the problem is not seen

as one of efficient object detection. The following section

introduces an algorithm which combines the efficiency of

hierarchical methods with Bayesian filtering.

2.2 Tree-Based Filtering

Tracking is formulated as a Bayesian inference problem,
where the internal parameters of an object at time t are
given by values xt 2 IRn of a random variable X t, and the
measurement obtained are values zt 2 IRm of the random
variable Zt. Given the observations up to and including
time t, z1:t ¼ fzigti¼1, the state estimation is expressed as a
pair of recursive prediction and update equations [23]:

pðxtjz1:t�1Þ¼
Z
pðxtjxt�1Þ pðxt�1jz1:t�1Þ dxt�1 ð1Þ

and

pðxtjz1:tÞ ¼ c�1
t pðztjxtÞ pðxtjz1:t�1Þ; ð2Þ

where

ct¼
Z
pðztjxtÞ pðxtjz1:t�1Þ dxt: ð3Þ

In the general case, it is not possible to obtain analytic

solutions for these equations, but there exist a number of

approximation methods which can be used to obtain a

numerical solution [12], [38].
An important issue in each approach is how to

represent the prior and posterior distributions in the
filtering equations. One suggestion, introduced by Bucy
and Senne [9], is to use a point-mass representation on a
uniform grid. The grid is defined by a discrete set of
points in state space, and is used to approximate the
integrals in the filtering equations by replacing contin-
uous integrals with Riemann sums over finite regions.
The distributions are approximated as piecewise constant
over these regions. The underlying assumption of this
method is that the posterior distribution is band-limited,

STENGER ET AL.: MODEL-BASED HAND TRACKING USING A HIERARCHICAL BAYESIAN FILTER 1373



so that there are no singularities or large oscillations
between the points on the grid. Typically, grid-based
filters have been applied using an evenly spaced grid and
the evaluation is thus exponentially expensive as the
dimension of the state space increases [5], [9]. Bucy and
Senne suggest modeling each mode of the distribution by
a separate adapting grid, and they devise a scheme for
creating and deleting local grids online. A different
approach is taken by Bergman [5], who uses a fixed
grid, but avoids the evaluation at grid points where the
probability mass is below a threshold value.

The aim in this section is to design an algorithm that can

take advantage of the efficiency of the tree-based search to

efficiently compute an approximation to the optimal

Bayesian solution using a grid-based filter. In the following,

assume that the values of the state vectors x 2 IRn are

within a compact region R of the state space. In the case of

hand tracking, this corresponds to the fact that the

parameter values are bounded, the boundary values being

defined by the valid range of motion. Define a multi-

resolution partition of the region R as described in

Section 2.1 by dividing the region R at each tree-level l

into Nl partitions fSi;lgNl

i¼1,

[Nl

i¼1

Si;l ¼ R for l ¼ 1; . . . ; L: ð4Þ

A graphical depiction is shown in Fig. 1. The posterior
distribution is represented as piecewise constant over these
sets, the distribution at the leaf level being the representa-
tion at the highest resolution.

Define a discrete probability distribution pðx̂i;lt Þ over the
regions Si;l,

pðx̂i;lt jz1:tÞ ¼
Z

xt2Si;l
pðxtjz1:tÞ dxt: ð5Þ

In the first frame, the posterior is set to the likelihood
distribution. In the following frames, the discrete recursive
relations are obtained from the continuous case by
integrating over regions. Given the distribution over the
leaves of the tree, pðx̂i;Lt�1jz1:t�1Þ, at the previous time step
t� 1, the prediction equation now becomes a transition
between discrete regions Si;L and Sj;l in state space:

pðx̂j;lt jz1:t�1Þ ¼
XNL

i¼1

pðx̂j;lt jx̂
i;L
t�1Þ pðx̂

i;L
t�1jz1:t�1Þ: ð6Þ

Given the state transition distribution pðxtjxt�1Þ the transition
probabilities are approximated by region to region transition
probabilities, see Fig. 2a. In order to evaluate the distribution
pðx̂j;lt jz1:tÞ, the likelihood pðztjx̂j;lt Þ needs to be evaluated for a
region in parameter space. This is computed by evaluating
the likelihood function at a single point, taken to be the center
of the region cðSj;lÞ. This approximation assumes that the
likelihood function in the regionSj;l can be represented by the
value at the center location cðSj;lÞ, see Fig. 2b.

pðztjx̂j;lt Þ / ðztjcðSj;lÞÞ: ð7Þ

This is similar to the idea of using a cluster prototype to
represent similar shapes.

Having laid out Bayesian filtering over discrete states,
the question arises how to combine the theory with the
efficient tree-based algorithm previously described. The
idea is to approximate the posterior distribution by
evaluating the filter equations at each level of the tree. In
a breadth-first traversal, regions with low probability mass
are identified and not further investigated at the next level
of the tree. Regions with high posterior are explored further
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Fig. 1. Hierarchical partitioning of the state space. The state space is

partitioned using a multiresolution grid. The regions fSi;LgNL

i¼1 at the leaf

level define the finest partition, over which the filtering distributions are

approximated as piecewise constant. The number of regions is

exponential in the state dimension. However, if large regions of

parameter space have negligible probability mass, these can be

identified early, achieving reduction in computational complexity.

Fig. 2. Discretizing the filtering equations. (a) The transition distributions are approximated by transition probabilities between discrete regions in

state space, which can be modeled by a Markov transition matrix. (b) The likelihood function is evaluated at the center cðSj;lÞ of each region,

assuming that the function is locally smooth.



in the next level (Fig. 3). It is expected that the higher levels
of the tree will not yield accurate approximations to the
posterior, but are used to discard inadequate hypotheses,
for which the posterior of the set is below a threshold value.
In the experiments, the template hierarchy is built by
manually setting the resolution for each parameter dimen-
sion such that the appearance within each region is below a
threshold value. At each level of the tree, the maximum
p̂l;maxt and minimum p̂l;mint of the posterior values is
computed and the threshold is chosen as

�lt ¼ p̂
l;min
t þ c� ðp̂l;maxt � p̂l;mint Þ; ð8Þ

where c� ¼ 0:5 in our experiments. Alternatively, to fix the
computation time, only a constant number of modes could
be explored. By changing the threshold value, the trade-off
between accuracy and computational time can be regulated.
Note that the local maxima on one level do not necessarily
correspond to the global maxima of the posterior distribu-
tion. In particular, if � is set too high, the branch containing
the global maximum may be missed, leading to an incorrect
pose estimate in that frame.

After each time step t, the posterior distribution is
represented by the piecewise constant distribution over the
regions at the leaf level. When a hand is in the scene, this
leads to a distribution where there is at least one strong
peak, whereas in background scenes, the values do not vary
as much. In this case, no dynamic information is used and
as in the initialization step, only the likelihood values are
computed at the first level. An overview of the algorithm is
given in Algorithm 1.

Algorithm 1 Tree-based filtering equations
Notation: parðjÞ denotes the parent of node j.

Initialization step at t ¼ 1, assuming uniform distribution
over the states initially.

At level l ¼ 1:

pðx̂j;11 jz1Þ ¼ pðz1jx̂j;11 Þ for j ¼ 1; . . . ; N1: ð9Þ

At level l > 1:

pðx̂j;l1 jz1Þ ¼
pðz1jx̂j;l1 Þ if pðx̂parðjÞ;l�1

1 jz1Þ > � l�1
t ;

pðx̂parðjÞ;l�1
1 jz1Þ otherwise:

(

ð10Þ

Normalize after computing the values at each level l such

that
PNl

j¼1 pðx̂
j;l
1 jz1Þ ¼ 1.

At time t > 1

At level l ¼ 1:

pðx̂j;1t jz1:tÞ ¼ pðztjx̂j;1t Þ pðx̂
j;1
t jz1:t�1Þ; ð11Þ

where

pðx̂j;1t jz1:t�1Þ ¼
XNL

i¼1

pðx̂j;1t jx̂
i;L
t�1Þ pðx̂

i;L
t�1jz1:t�1Þ: ð12Þ

At level l > 1:

pðx̂j;lt jz1:tÞ

¼
pðztjx̂j;lt Þ pðx̂

j;l
t jz1:t�1Þ if pðx̂parðjÞ;l�1

t jz1:tÞ > � l�1
t ;

pðx̂parðjÞ;l�1
t jz1:tÞ otherwise;

(
ð13Þ

where

pðx̂j;lt jz1:t�1Þ ¼
XNL

i¼1

pðx̂j;lt jx̂
i;L
t�1Þ pðx̂

i;L
t�1jz1:t�1Þ: ð14Þ

Normalize after computing the values at each level l such

that
PNl

j¼1 pðx̂
j;l
t jz1:tÞ ¼ 1.

2.3 Edge and Color Likelihoods

This section introduces the likelihood function which is

used within the algorithm. The likelihood pðzjxÞ relates

observations z in the image to the unknown state x. The

observations are based on the edge map zedge of the image,
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Fig. 3. Tree-based estimation of the posterior density. (a) Associated with the nodes at each level is a nonoverlapping set in the state space, defining

a partition of the state space. The posterior for each node is evaluated using the center of each set, depicted by a hand rotated by a specific angle.

Subtrees of nodes with low posterior are not further evaluated. (b) Corresponding posterior density (continuous) and the piecewise constant

approximation. The modes of the distribution are approximated with higher precision at each level.



as well as pixel color values zcol. These features have proved
useful for detecting and tracking hands in previous work
[26], [27], [46]. In the following sections, the joint likelihood
of z ¼ ðzedge; zcolÞT is approximated as

pðzjxÞ ¼ pðzedge; zcol j xÞ � pðzedge j xÞ pðzcol j xÞ; ð15Þ

thus treating the observations independently. The like-
lihood term for each of the observations is derived in the
following sections.

2.3.1 Edge Likelihood

The edge likelihood term pðzedgej xÞ is based on the chamfer
distance function [4], [7]. Given the set of template points
A ¼ faigNa

i¼1 and the set of Canny edge points B ¼ fbigNb

i¼1, a
quadratic chamfer distance function is given by the average
of the squared distances between each point of A and its
closest point in B:

dðA;BÞ ¼ 1

Na

X
a2A

min
b2B
jj a� b jj2: ð16Þ

The chamfer function can be computed efficiently for many
model templates by using a distance transform (DT) of the
edge image. This transformation takes the set of feature
points B as input and assigns each location the distance to
its nearest feature, i.e., the DT value at location u contains
the value minb2B jj u� b jj. The chamfer function for a
single template can be computed by correlating its points
with the DT image. To increase robustness toward partial
occlusion the DT image is thresholded by an upper bound �
on the distance to the edge, typically � ¼ 20. Edge
orientation is included by decomposing both template and
edge image into a number of separate orientation channels
according to gradient orientation. The distance is computed
separately for each channel, thereby increasing the dis-
criminatory power of the likelihood function, especially in
cases when there are many background edge points present
in the image [31]. The used cost term is thus

deðA;BÞ ¼
1

Na

XN�

i¼1

X
a2Ai

min min
b2Bi
jja� bjj2; �

� �
; ð17Þ

where Ai and Bi are the feature points in orientation
channel i, and N� ¼ 6, in our experiments. A shape
template is treated as the center of a mixture distribution,
each component being a metric exponential distribution [43].
Given the shape template P and the observed edge image
zedge, the likelihood function is defined as

pðzedge j xÞ ¼ 1

Z
exp �� deðAðxÞ;BðzedgeÞÞ
� �

; ð18Þ

where AðxÞ denotes that the set of template points A is
generated by projecting the model using the state vector x,
and B is the set of edge points obtained from the edge image
zedge. Another option is to define the likelihood function
based on the PDF projection theorem [41], which incorporates
information about the distribution of background edges as
well and is perhaps better justified by theory.

2.3.2 Color Likelihood

The color likelihood function pðzcoljxÞ is based on a skin color
distribution ps and a background color distribution pbg,

respectively. Given a state vector x, corresponding to a
particular hand pose, the pixels in the image are partitioned
into a set of locations within the hand silhouette fk : k 2
SðxÞg and outside this region fk : k 2 �SðxÞg. If pixel-wise
independence is assumed, the likelihood function for the
whole image can be factored as

pðzcoljxÞ ¼
Y

k2SðxÞ
ps IðkÞð Þ

Y
k2 �SðxÞ

pbg IðkÞð Þ; ð19Þ

where IðkÞ is the color vector at location k in the image.
When taking the logarithm, this term is converted into a
sum. The evaluation can now be performed efficiently by
computing a sum table (or integral image), Bsum, which has
the same size as the image and contains the cumulative
sums along the x-direction:

Bsumðx; yÞ ¼
Xx
i¼1

log psðIði; yÞÞ � log pbgðIði; yÞÞ
� �

; ð20Þ

where in this equation the image I is indexed by its x and
y-coordinates. This array only needs to be computed once
and is then used to compute sums over areas by adding and
subtracting values at points on the silhouette contour. Thus,
the computation time is proportional to the contour length.
In the experiments skin color is modeled with a Gaussian
distribution in ðr; gÞ-space, for background pixels, a uniform
distribution is assumed. Note that if a distribution of
background appearance can be obtained, this should be
used, e.g., if there is a static scene.

For an illustrative example using single-frame detection,
which shows how combining edge and skin color informa-
tion facilitates detection when one of the features becomes
unreliable, see Fig. 4. Color is very useful when edge
information is unreliable due to many background edges,
low intensity contrast, or fast hand motion. On the other
hand, edge information allows accurate matching when the
hand is in front of skin colored background.

In a second experiment on a sequence of 640 frames, the
hand pose was kept fixed as an open hand parallel to the
image plane with 4 DOF motion; translation in x, y, and
z-direction, as well as rotation around the z-axis. The task is
made challenging by introducing a cluttered background
with skin-colored objects. The hand motion is fast, and
during the sequence the hand is partially and fully
occluded, as well as out of the camera view. A set of
500 templates is generated, corresponding to 100 discrete
orientations and five different scales, to search for the best
match over the image. The translation space is sampled at a
six-pixel resolution. No dynamics are used in this sequence
as the hand leaves and reenters the camera view several
times. Fig. 5 shows typical results for a number of frames as
well as the 2D position error measured against manually
labeled ground truth. The RMS error over the complete
sequence for the frames in which the hand was detected,
was 3.7 pixels. For comparison, a single hypothesis version
of the Kalman filter [39] was run on this sequence using a
four dimensional state space and a first order dynamic
model. The unscented Kalman filter (UKF) is a nonlinear
extension of the Kalman filter [25]. The UKF uses an
approximation of the underlying distributions using a set of
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sample points which are propagated through the original

Kalman filter equations. The observation model used are

local skin color edges, as in [27], i.e., points of transition

between areas of high and low skin color likelihood. The

UKF tracker was initialized manually in the first frame and

tracked the hand for only 20 frames before lock was lost.

The main reasons for this are that the color edge features

alone are not robust enough and that the dynamic model is

not able to handle fast and abrupt motion. Different models

(constant velocity and constant acceleration models) were

also tested, but once the target was lost, the tracker was

unable to recover.

2.4 Modeling Hand Dynamics

The global motion of the hand is modeled using a zero

order Gaussian model, making only weak prior assump-

tions about motion continuity. Other models, such as a

second order model learned from data [6] or a mixed-state

tracker [22] have also been used for modeling global hand

motion. However, as shown in the previous experiment,

choosing a particular motion model can be restrictive.
Articulated motion is naturally constrained, since each

joint can only move within certain limits and the motion of

different joints is correlated [45]. Thus, the articulation

parameters are expected to lie within a compact region in the

21-dimensional angle space. The dynamics for this articu-

lated motion are modeled as a first order process, which are

learned from training data obtained from three subjects with

a data glove. Since discrete regions in state space are

considered, the process can be described by a Markov

transition matrix MLL 2 ½0; 1�NL�NL , which contains the

transition probabilities between the regions fSj;LgNL

j¼1 at the

leaf-level. In order to evaluate the transitions at different tree

levels, a transition matrix MLl 2 ½0; 1�NL�Nl for each level l of

the tree is required, where each matrix contains the values:

MLl
i;j ¼ pðx̂

j;l
t jx̂

i;L
t�1Þ; i ¼ 1; . . . ; NL; j ¼ 1; . . . ; Nl: ð21Þ
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Fig. 5. Detecting an open hand. This figure shows successful detection using edge and color features of an open hand showing the best match
superimposed, if the likelihood function is above a constant threshold. The sequence is challenging because the background contains skin-colored
objects and motion is fast, leading to motion blur and missed edges. The method handles partial occlusion and lighting changes to some degree, can
initialize and deal with unsteady camera motion. The graph shows an error plot for the detection algorithm and a Kalman filter (UKF) tracker. The
hand position error was measured against manually labeled ground truth. The shaded areas indicate intervals in which the hand is either fully
occluded or out of camera view. The detection algorithm successfully finds the hand in the whole sequence, whereas the UKF tracker using skin-
color edges is only able to track the hand for a few frames. The reasons for the loss of track is that the hand motion is fast between two frames and
that skin-color edges cannot be reliably found in this input sequence.

Fig. 4. Detection with integrated edge and color features. (Top row) Hand in front of cluttered background, (bottom row) hand in front of face;

situations in which one of the cues is not discriminative (edges in row 1, color in row 2), but by using them in combination, the hand is correctly

detected in both cases (last column).



In practice, these matrices are sparse and the nonzero
values are stored in a look-up table.

3 EXPERIMENTAL RESULTS

The following experiments show the effectiveness of the
technique by detecting and tracking a hand in scenes using

input from a single camera (image size 320� 240).

3.1 Tracking Rigid Body Motion

In the following experiments, the hierarchical filter is used

to track rigid hand motion in cluttered scenes using a single

camera.
The results show the ability to tolerate self-occlusion

during out-of-image-plane rotations. The 3D rotations are
limited to a hemisphere and for each sequence, a three-level
tree is built, which has the following resolutions at the leaf
level: 15 degrees in two 3D rotations, 10 degrees in image
rotation and 5 different scales, resulting in a total of 13�
13� 19� 5 ¼ 16; 055 templates. The resolution of the
translation parameters is 20 pixels at the first level, 5 pixels
on the second level, and 2 pixels at the leaf level. The
translation is done by shifting the templates in the
2D image. Note that for each of the sequences, a different

tree is constructed, using the corresponding hand config-

uration. Fig. 6 shows the tracking results on an input

sequence of a pointing hand during translation and

rotation. The top row shows the input frames with the

projected model contours superimposed. The bottom row

shows the corresponding pose of the 3D model. During the

rotation, there is self-occlusion as the index finger moves in

front of the palm. For each frame, the maximum a posteriori

(MAP) solution is shown. Fig. 7 shows frames from the

sequence of an open hand performing out of image plane

rotation. This sequence contains 160 frames and shows a

hand first rotating approximately 180 degrees and returning

to its initial pose (Fig. 7, two top rows). This is followed by a

90 degree rotation (Fig. 7, two bottom rows), and returning

to its initial position. This motion is difficult to track as there

is little information available when the palm surface is

normal to the image plane.
Fig. 8 shows example frames from a sequence of 509 frames

of a pointing hand. The tracker handles fast motion and is able

to recover after the hand has left the camera view and reenters

the scene. The computation takes approximately two seconds

per frame on a 1GHz Pentium IV, corresponding to a speed-

up of two orders of magnitude over exhaustive detection.
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Fig. 6. Tracking a pointing hand. The images are shown with (top row) projected contours superimposed and (bottom row) corresponding 3D model,

which are estimated using the tree-based filter. The hand is translating and rotating.

Fig. 7. Tracking out-of-image-plane rotation. In this sequence, the hand undergoes rotation and translation. The frames showing the hand with self-

occlusion do not provide much data, and template matching becomes unreliable. By including prior information, these situations can be resolved.

The projected contours are superimposed on the images, and the corresponding 3D model is shown below each frame.



Note that in all cases, the hand model was automatically
initialized in the first frame of the sequence.

Fig. 9 shows error plots for the three sequences. The error
is the localization error measured against manually labeled
ground truth locations of the tip of the thumb and one
finger. It can be observed that the presence of peaks, which
are due to local minima in the likelihood function, do not
cause tracking to fail. The mean RMS error for the three
sequences above is 6.7, 6.6, and 7.9 pixels, respectively.

3.2 Initialization

Two illustrative experiments demonstrate the algorithm
during the initialization phase. In the first frame of each
sequence, the posterior term pðx̂j;11 jz1Þ for each region is
proportional to the likelihood value pðz1jx̂j;11 Þ for the first
observation z1. A tree with four levels and 8,748 templates
of a pointing hand at the leaf level was generated,
corresponding to a search over 972 discrete angles and
nine scales, and a search over translation space at single
pixel resolution. As before, the motion is restricted to a
hemisphere. The search process at different levels of the tree
is illustrated in Fig. 10. The templates at the higher levels
correspond to larger regions of parameter space, and are

thus less discriminative. The image regions of the face and
the second hand, for which there is no template, have
relatively low cost as they contain skin color pixels and
edges. As the search proceeds, these regions are progres-
sively eliminated, resulting in only few final matches.
Fig. 11 gives a more detailed view by showing examples of
templates at different tree levels which are above (accepted)
and below (rejected) the threshold values �l0; l ¼ 1; . . . ; L; in
(8). It can be seen that the templates which are above the
threshold at the first level do not present very accurate
matches; however, a large number of templates can be
rejected at this stage. At lower tree levels, the accuracy of
the match increases.

3.3 Constructing a Tree for Articulated Motion

As mentioned above, finger joint angles are highly
correlated. Even though the model has 21 DOF for finger
articulation, it has been observed that less parameters are
usually sufficient to model articulated hand motion. Using a
data glove, 15 sets of joint angles (sizes of data sets: 3,000 to
264,000) were captured from three different subjects
carrying out random hand gestures, trying to cover the
possible range of finger motion. It was found in all cases
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Fig. 8. Fast motion and recovery. This figure shows frames from a sequence tracking 6 DOF. (Top row) The hand is tracked during fast motion and

(bottom row) the tracker is able to successfully recover after the hand has left the camera view.

Fig. 9. Error performance. This figure shows the error performance in terms of finger tip localization measured against manually labeled ground truth.

(a) Pointing hand sequence of Fig. 6, (b) rotating hand sequence of Fig. 7, (c) pointing hand sequence of Fig. 8, where the hand is out of the view in

frames 319-352, and (d) opening and closing hand sequence of Fig. 15.



that 95 percent of the variance was captured by the first

eight principal components, in 10 of the data sets within the

first seven, which largely confirms the results reported in

[45] on a larger data set. The variation along the first four

principal components is illustrated in Fig. 12. Two methods

to obtain the discrete sets fSi;lgNl

i¼1; l ¼ 1; . . . ; L, have been

implemented:

. Clustering in parameter space. Since the joint angle
data lies within a compact region in state space, the
data points can simply be clustered using a
hierarchical k-means algorithm with the distance
measure dðx1;x2Þ ¼ jjðx1� x2Þ mod �jj2.

A partition of the state space is given by the

Voronoi diagram defined by these nodes, see

Fig. 13a.
. Partitioning the eigenspace. The joint angle data is

projected onto the first k principal components
(k < 21), and the partitioning is done in the
transformed parameter space. The centers of these
regions are then used as nodes on one level. Only

partitions, which contain data points need to be
considered, see Fig. 13b. Multiple resolutions are
obtained by subdividing each partition.

Both techniques are used to build a tree for tracking finger
articulation. In the first sequence, the subject alternates
between four different gestures (see Fig. 14). For learning
the transition distributions, a data set of size 7,200 was
captured while performing the four gestures a number of
times in random order. In this experiment, the tree is built
by hierarchical k-means clustering of the whole training set.
The tree has a depth of three, where the first level contains
300 templates together with a partitioning of the translation
space at a 20� 20 pixel resolution. The second and third
level each contain 7,200 templates (i.e., the whole data set)
and a translation search at 5� 5 and 2� 2 pixel resolution,
respectively. The transition matrices MLl are obtained by
histogramming the data [18], [43]. The tracking results for
the tree constructed by clustering are shown in Fig. 14. No
global parameters other than translation parallel to the
image plane was estimated in this experiment. As before,
initialization is handled automatically.
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Fig. 10. Automatic initialization. From Top Left: Input image, next: Images with detection results superimposed. Each square represents an image

location which contains at least one node with a likelihood estimate above the threshold value. The intensity indicates the number of matches, high

intensity indicated larger number of matches. Ambiguity is introduced by the face and the second hand. Regions are progressively eliminated, the

best match is shown on the bottom right.

Fig. 11. Search results at different levels of the tree. This figure shows templates above and below the threshold values �lt at levels 1 to 3 of the tree,

ranked according to their likelihood values. As the search is refined at each level, the difference between accepted and rejected templates

decreases.



Fig. 15 shows the results of tracking global hand motion
together with finger articulation. In this case, the opening
and closing of the hand is captured by the first two
eigenvectors, thus only two articulation parameters are
estimated. For this sequence, the range of global hand
motion is restricted to a smaller region, but it still has
6 DOF. In total, 35,000 templates are used at the leaf level.
The resolution of the translation parameters is 20 pixels at
the first level, 5 pixels on the second level, and 2 pixels at
the leaf level. The out-of-image-plane rotation and the
finger articulation are tracked successfully in this sequence.
The RMS error for this sequence, measured as localization
error against labeled ground truth, is shown in Fig. 9d. The
mean RMS error is 9.3 pixels, this larger error compared to
the other sequences is mainly attributable to the discretiza-
tion error introduced by using only two parameters to
model articulated motion. The execution time for this

sequence is about three seconds per frame on a 2.4 GHz
P4 computer.

The purpose of the tree structure is efficiency, thus it is
interesting to examine ways of constructing an optimal tree
in terms of runtime. One approach to analyzing the
performance of the method for the detection case is to
interpret the template hierarchy as a tree of classifiers [3],
[40]. A classifier Ci;l at each node decides whether or not the
current observation is within the region below that node.
The aim is to design classifiers with high detection rates
with modest false positive rates, minimizing the computa-
tional cost at the following levels. The expected runtime for
a tree below the node i at level l is given, similar to [3], by
the recursion

E½T ðCi;lÞ�¼TcðCi;lÞ þ E½posðCi;lÞ�
X

j2succðiÞ
E½T ðCj;lþ1Þ�; ð22Þ
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Fig. 12. Variation along principal components. This figures shows the variation in hand pose when moving away from the mean pose into the

direction of the (a) first, (b) second, (c) third, and (d) fourth principal component. The input data set contained 50,000 joint angle vectors, obtained

from a data glove. The subject was moving the fingers in a random way while trying to cover the possible range of motion.

Fig. 13. Partitioning the state space. This figure illustrates two methods of partitioning the state space: (a) by clustering the data points in the original

space, and (b) by first projecting the data points onto the first k principal components and then using a regular grid to define a partition in the

transformed space.



where TcðCÞ is the runtime of classifier C, posðCÞ is the

detection rate of classifierC, and succðiÞ are the successors of

node i. Minimizing this function requires simultaneous

optimization of the tree structure as well as the threshold

values.
The view of the nodes as classifiers also raises the

question whether chamfer or silhouette template matching

are optimal for classification [40]. It has been shown that

classifiers trained with large sets of real image data perform

better; however, there is a trade-off between computation

time and classification performance as shown in Fig. 16.

When used in a classification hierarchy, the detection rate of

a classifier needs to be very high, so as not to miss any true

positives. The false positive rate for each single pose

classifier at a fixed detection rate of 0.99, is given in the

last column of Fig. 16. Chamfer and Hausdorff matching,

while having a larger false positive rate, are about 10-

14 times faster to evaluate than marginalized templates [40]
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Fig. 14. Tracking articulated hand motion. In this sequence, a number of different finger motions are tracked. The images are shown with (top)

projected contours superimposed and (bottom) corresponding 3D avatar models. The nodes in the tree are found by hierarchical clustering of

training data in the parameter space. Dynamics are encoded as transition probabilities between the clusters.

Fig. 15. Tracking a hand opening and closing with rigid body motion. This sequence is challenging because the hand undergoes translation and

rotation while opening and closing the fingers. Six DOF for rigid body motion plus 2 DOF for finger flexion and extension are tracked successfully.



and about 40 times faster than the trained linear classifier
[14]. In addition, they only require the contour points to be
stored in memory.

4 CONCLUSIONS AND FUTURE WORK

In this paper, a framework was developed for tracking
articulated hand motion from a video. The ability of the
proposed hierarchical filter to recover 3D motion, even
under self-occlusion, was demonstrated. The combination
of hierarchical detection and Bayesian filtering has a
number of benefits, in particular it specifically addresses
the problems of initialization and recovery. The results in
this paper were obtained using sequential online proces-
sing, motivated by applications in the HCI domain.
However, the leaf nodes can be viewed as defining a
discrete state model, thus it is straightforward to process the
sequence using a batch algorithm as in hidden Markov
models to optimize over the whole sequence [8], [24]. It
should be noted that in contrast to particle filters [12], [21],
[17] the tree-based filter is a deterministic filter, which was
motivated by a number of problem-specific reasons. First of
all, the facts that hand motion can be fast and that the hand
can enter and leave the camera view in HCI applications
call for a method that provides automatic initialization. The
second important consideration is the fact that the time
required for projecting the model is approximately three
orders of magnitude higher than evaluating the likelihood
function. This makes the sampling step in a particle filter
costly and the offline generation of templates attractive. The
ideas of tree-based filtering and particle filtering can also be
combined by using the posterior distribution estimated
with the tree-based filter as an importance distribution for a
particle filter in a way similar to [30]. The range of allowed
hand motion is currently limited by the number of
templates that need to be stored. This currently poses a
main obstacle for extending this method to a full range
hand tracker. There is a trade-off between generating
templates online and storing them offline for fast access,
i.e., memory usage versus speed. The proposed method is
to be used when speed is at a premium and memory is not.
With better hardware acceleration, model projection will be
faster, while at the same time, memory will also increase.
One can expect, for example, that current systems using a
PC cluster to store large data bases of templates [35] will
become much more compact. In fact, storing one million
shape templates requires about 2 gigabytes, and keeping
them in memory is a viable option on current PCs.
Additionally, faster online generation of templates as well
as learning a relevant set of representative templates will
allow a reduction of the memory requirement.
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