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Abstract

This paper presents a volumetric formulation for the multi-view stereo problem which is

amenable to a computationally tractable global optimisation using Graph-cuts. Our approach is

to seek the optimal partitioning of 3D space into two regionslabelled as ‘object’ and ‘empty’ under

a cost functional consisting of the following two terms: (1)A term that forces the boundary between

the two regions to pass through photo-consistent locationsand (2) a ballooning term that inflates

the ‘object’ region. To take account of the effect of occlusion on the first term we use an occlusion

robust photo-consistency metric based on Normalised CrossCorrelation, which does not assume

any geometric knowledge about the reconstructed object. The globally optimal 3D partitioning can

be obtained as the minimum cut solution of a weighted graph.

I. INTRODUCTION

This paper considers the problem of reconstructing the dense geometry of a 3D object from

a number of images in which the camera pose and intrinsic parameters have been previously

obtained. This is a classic computer vision problem that hasbeen extensively studied and

a number of solutions have been published. Work in the field can be categorised according

to the geometrical representation of the 3D object with the majority of papers falling under

one of the following two categories: (1) algorithms that recover depth-maps with respect to

an image plane and (2) volumetric methods that represent thevolume directly, without any

reference to an image plane.

In the first class of methods, a reference image is selected and a disparity or depth value

is assigned to each of its pixels using a combination of imagecorrelation and regularisation.

An excellent review for image based methods can be found in Scharstein and Szeliski [22].

These problems are often formulated as minimisations of Markov Random Field (MRF)

energy functions providing a clean and computationally-tractable formulation, for which good

approximate solutions exist using Graph-cuts [5], [14], [21] or Loopy Belief Propagation [27].

They can also be formulated as continuous PDE evolutions on the depth maps [26]. However,

a key limitation of these solutions is that they can only represent depth maps with a unique

disparity per pixel,i.e. depth is a function of image point. Capturing complete objects in

this manner requires further processing to merge multiple depth maps. This was recently

attempted in [10] but resulted in only partially reconstructed object surfaces, leaving holes

in areas of uncertainty. A second limitation is that the smoothness term imposed by theMRF

is defined on image disparities or depths and hence is viewpoint dependenti.e. if a different
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Fig. 1. Toy House.This is an example of a 3D model of a real object, obtained using the technique described

in this paper. In the top row are four images of a toy house while in the bottom row, renderings of the 3D model

from similar viewpoints are shown . The first three images were part of the input sequence used while the fourth

was not shown to the algorithm. The model of this small toy house (approximately 10cm in diameter) contains

accurately reconstructed sub-millimetre details such as the fence and the relief of the roof.

view is chosen as the reference image the results may be different.

The second class comprises of methods that use avolumetric representationof shape. For

a recent, very thorough review of related techniques see [23]. Under this framework multiple

viewpoints can be easily integrated and surface smoothnesscan be enforced independent of

viewpoint. This class consists of techniques using implicit representations such as voxel occu-

pancy grids [16], or level-sets of 3D scalar fields [7], [20],and explicit representations such as

polygonal meshes [8], [11]. While some of these methods are known to produce high quality

reconstructions their convergence properties in the presence of noise are not well understood.

Due to lack of regularisation, methods based on Space Carving [16] produce surfaces that

tend tobulge outin regions of low surface texture (see the discussion about shape priors in

[23]). In variational schemes such as level-sets and mesh based stereo, the optimal surface

is usually obtained via gradient descent optimisation. As aresult, these techniques typically

employ multi-resolution coarse-to-fine strategies to decrease the probability of getting trapped

in local minima (e.g. [7], [8], [11], [20]). Furthermore, explicit representations such as meshes

are known to suffer from topological and sampling problems [18].

The approach described in this paper combines the advantages of both classes described

above. We adopt an implicit volumetric representation based on voxel occupancy, but we

pose the reconstruction problem as finding the minimum cut ofa weighted graph. This

computation is exact and can be performed in polynomial time. The benefits of our approach
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are the following:

1) Objects of arbitrary topology can be fully represented and computed as a single surface

with no self-intersections.

2) The representation and geometric regularisation is image and viewpoint independent.

3) Global optimisation is computationally tractable, using existing max-flow algorithms.

A. Background and previous work

The inspiration for the approach presented in this paper is the work of Boykov and

Kolmogorov [2] which establishes a theoretical link between maximum flow problems in

discrete graphs and minimal surfaces in an arbitrary Riemannian metric. In particular the

authors show how a continuous Riemannian metric can be approximated by a discrete

weighted graph so that the max-flow/min-cut solution for thegraph corresponds to a local

geodesic or minimal surface in the continuous case. The application described in that paper

is interactive 2D or 3D segmentation. A probabilistic formulation of interactive segmentation

with a more elaborate foreground/background model was given in Blakeet al [1].

In [29] we showed how the basic idea of [2] can be applied to thevolumetric, multi-

view stereo problem by computing a photo-consistency basedRiemannian metric in which

a minimal surface is computed. In that method two basic assumptions are made: Firstly, it

is assumed that the object surface lies between two parallelboundary surfaces. The outer

boundary is usually obtained from the visual hull while the inner boundary lies at a constant

distance inside the outer boundary. This effectively limits the depth of concavities that can

be represented in the reconstructed object. The second assumption is that the visibility of

each point on the object’s surface can be determined from thevisibility of the closest point

on the outer surface. Even though both of these assumptions are satisfied for a large class

of objects and acquisition set-ups, they restrict the applicability of the method considerably.

Nevertheless, by demonstrating promising results and highlighting the feasibility of solving

multi-view stereo using volumetric graph cuts, [29] inspired a number of techniques [4], [9],

[13], [17], [24], [25], [28] that built on our formulation and attempted to address some of its

shortcomings.

In Furukawaet al. [9] and Sinhaet al. [24] two different ways were proposed for in-

corporating the powerful silhouette cue into the graph-cutframework while Starcket al.

[25] and Tranet al. [28] showed how to enforce sparse feature matches as hard constraints.

Hornung and Kobbelt [13] improved the construction of the voxel grid and cast the method
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in a hierarchical framework that allows for a significant speedup at the expense of no longer

obtaining a global optimum. Finally, Boykov and Lempitsky [17] offer an alternative approach

for visibility reasoning, while in [4] this is expanded to incorporate the idea ofphoto-flux

as a data-driven ballooning force that helps reconstruct thin protrusions and concavities.

Additionally, [4] and [17] were the first papers to propose a global optimisation scheme for

volumetric multi-view stereo that did not require any initialisation (e.g. visual hull). However

the reconstructions shown were less detailed than those obtained with other state-of-the-art

techniques and no comparison or quantitative analysis was provided.

In this paper we improve the original formulation of the method of [29] by relaxing the

two assumptions described above. Hence, in the present formulation (a) the object surface

is not geometrically constrained to lie between an inner andan outer surface and (b) no

explicit reasoning about visibility is required. This is achieved through the use of a robust

shape-independent photo-consistency cost first used in [11]. The key idea behind that scheme

is that occluded pixels are treated as outliers in the matching process. Furthermore, the

formulation presented here achieves reconstruction results of far superior accuracy than [29],

as demonstrated by results from a scene where ground truth isavailable (Fig. 5 and Table I).

The rest of the paper is laid out as follows: Section II describes how multi-view stereo can

be formulated as a graph-cut optimisation. In section III wedescribe the photo-consistency

functional associated with any candidate surface while section IV explains how this functional

is approximated with a discrete flow graph. Section V presents our 3D reconstruction results

on real objects and section VI concludes with a discussion ofthe paper’s main contributions.

II. GRAPH-CUTS FOR VOLUMETRIC STEREO

In [2] and subsequently in [1] it was shown how graph-cuts canoptimally partition 2D or

3D space into ‘foreground’ and ‘background’ regions under any cost functional consisting

of the following two terms:

• Foreground/background cost: for every point in space there is a cost for it being

‘foreground’ or ‘background’.

• Discontinuity cost: for every point in space, there is a cost for it lying on the boundary

between the two partitions.

Mathematically, the cost functional described above can beseen as the sum of a weighted

surface areaof the boundary surface and a weightedvolumeof the ‘foreground’ region as
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follows:

E[S] =

∫∫

S

ρ(x)dA +

∫∫∫

V (S)

σ(x)dV (1)

whereS is the boundary between ‘foreground’ and ‘background’,V (S) denotes the ‘fore-

ground’ volume enclosed byS andρ andσ are two scalar density fields.

The application described in [2] was the problem of 2D/3D segmentation. In that domain

ρ(x) is defined as a function of the image intensity gradient andσ(x) as a function of the

image intensity itself or local image statistics. In this paper we show how multi-view stereo

can also be described under the same framework with the ‘foreground’ and ‘background’

partitions of 3D space corresponding to the reconstructed object and the surrounding empty

space respectively.

Our model balances two competing terms: The first one minimises a surface integral of

photo-consistency while the second one maximises volume. The following two subsections

describe the two terms of our multi-view stereo cost functional in more detail.

A. Foreground/background cost

A challenge specific to the multi-view stereo problem, is that there is no straightforward

way to define the foreground/background modelσ(x). This is because in this problem our

primary source of geometric information is thecorrespondence cuewhich is based on the

following observation: A 3D point locatedon the object surface projects to image regions

of similar appearance in all images where it is not occluded. Using thiscue one can label

3D points as beingon or off the object surface but cannot directly distinguish between

points insideor outsideit. In contrast, thesilhouette cueis based on the requirement that all

points inside the object volume must project inside the silhouettes of theobject that can be

extracted from the images. Hence the silhouette cue can provide some foreground/background

information by giving a very high likelihood of beingoutsidethe object to 3D points that

project outside the silhouettes. In [4] a data driven, foreground/background model based on

the concept ofphoto-fluxhas been introduced. To compute photo-flux, surface orientation

must be either estimated (in the case of global optimisation) or thecurrentsurface orientation

is used (in the case of gradient-descent surface evolution).

In this work we adopt a very simple, data-independent model whereσ(x) is defined as a

negative constantλ that produces an inflationary (ballooning) tendency. The motivation for

this type of term in the active contour domain is given in [6],but intuitively, it can be thought
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of as a shape prior that favours objects that fill the boundingvolume in the absence of any

other information. If the value ofλ is too large then the solution tends to over-inflate, filling

the entire bounding volume while ifλ is too small then the solution collapses into an empty

surface. For values ofλ in between these two cases the algorithm converges to the desired

surface. In practice it is quite easy to find a value ofλ which will work by performing a few

trial runs. As there is a large range of suitableλ values, all of which give nearly identical

results, no detailed search for the optimalλ value is necessary.

Additionally we can encode any silhouette information thatmay be available by setting

σ(x) to be infinitely large whenx is outside the visual hull. Furthermore if we can also

assume, as in [29], that the concavities of the object are of amaximum depthD from the

visual hull then we can setσ(x) to be infinitely small whenx is inside the visual hull at a

distance, at leastD from it. In many cases such as the experiments of Figure 1 and 4where

the objects have relatively simple topology, a bounding boxguaranteed to contain the object

is sufficient to obtain a good reconstruction. To encode thisknowledge we just need to set

σ(x) to be infinitely large whenx is outside that bounding box.

B. Discontinuity cost

The second challenge of multi-view stereo is that the surface area densityρ, which

corresponds to the discontinuity cost, is a function of the photo-consistency of the point

in space, which in turn depends on which cameras are visible from that point. Consequently

in multi-view stereo the discontinuity cost has the formρ(x, S) since the surfaceS itself

determines camera visibility. The graph-cut formulation of [2] cannot easily be adapted to

cope with this type of cost functional. In [13], [29] the problem is solved by assuming the

existence of an approximate surfaceSapprox, provided by the visual hull or otherwise, which

provides visibility information. However, as self-occlusions not captured by the approximate

surface will be ignored, the accuracy of the results may suffer. Also, such approximate object

surface may not be readily available. Our approach is to use aphoto-consistency metric that

accounts for occlusions using robust Normalised Cross-Correlation (NCC) voting without any

dependence on approximate object geometry. The surface cost functional that we optimise is

E[S] =

∫∫

S

ρ(x)dA − λ

∫∫∫

V (S)

dV. (2)

The next section will describe the photo-consistency metric ρ(x) in more detail.
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III. PHOTO-CONSISTENCY METRIC

The input to our method is a sequence of imagesI1, ..., IN calibrated for camera pose and

intrinsic parameters. The photo-consistency of a potential scene pointx can be evaluated by

comparing its projections in the images where it is visible.We propose the use of a robust

photo-consistency metric similar to the one described in [11] that does not need any visibility

computation. This choice is motivated by the excellent results obtained by this type of photo-

consistency metric in the recent comparison of 3D modellingtechniques carried out by [23].

The basic idea is that all potential causes of mismatches like occlusion, image noise, lack of

texture or highlights are uniformly treated as outliers in the matching process. Matching is

then seen as a process of robust model fitting to data containing outliers. Specifically, for a

given 3D pointx, its photo-consistency valueρ(x) is computed by asking every imagei to

give a vote for that location. Specifically, we define

ρ(x) = exp{−µ

N
∑

i=1

VOTEi(x)}. (3)

whereµ is very stable rate-of-decay parameter which in all our experiments was set to0.05.

The value ofVOTEi(x) is computed as follows:

• Compute the corresponding optic ray

oi(d) = x + (ci − x)d (4)

that goes through the camera’s optic centreci and the 3D pointx,

• As a function of the depth along the optic rayd, project the 3D pointoi(d) into theM

closest camerasN (i) and computeM correlation scoresSj(d) between imageIj∈N (i) and

the reference imageIi. Each scoreSj(d) is obtained using normalised cross correlation

between two square windows centred on the projections ofoi(d) into Ii andIj∈N (i). For

the experiments presented here we used11 × 11 pixel windows.

• combine theM correlation scoresSj(d) into a single scoreC(d), and give a vote to the

3D locationx, i.e., oi(0), only if C(0) is the global maximum ofC as follows:

VOTEi =







C(0) if C(0) ≥ C(d) ∀d

0 otherwise
. (5)

One of the simplest ways of combining theM correlation scores for every depthd is to

simply average them,i.e.,

C(d) =
∑

j∈N (i)

Sj(d). (6)
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Fig. 2. Robust voting vs averaging.Our algorithm robustly estimates the depth of a pixel in an input image

(left) by computing NCC scores between a patch centred on that pixel and patches along points on corresponding

epipolar lines in theM closest images, two of which are shown in the middle column. In this wayM correlation

curves are obtained (in our exampleM = 6). These curves are plotted here in red across depth along theoptic

ray. Curves corresponding to un-occluded viewpoints (suchas the top-middle image) share a local optimum in

the same location which corresponds to the correct surface depth. Curves from occluded viewpoints (such as the

bottom-middle image) do not have an optimum in that locationand hence a simple averaging of the curves (dashed

line) does not work. By computing a sliding Parzen filter on the local maxima of the correlation curves (here we

have used a Gaussian kernel) the correct depth can be recovered at the point of maximum response.

However, averaging does not allow the robust handling of occlusions, highlights or lack of

texture. In order to obtain a better scoreC(d), we make an important observation: because of

different types of noise in the image, the global maximum of asingle correlation curve does

not always correspond to the correct depth. However, if the surface is seen by the camera

without occlusion or sensor saturation, the correlation score does show a local maximum

near the correct depth, though it may not be the global one. Inorder to take into account this

observation, we build a newC by detecting all the local maximadk of Sj , i.e., ∂Sj

∂d
(dk) =

0,
∂2Sj

∂d2 (dk) > 0, and using a Parzen window [19] with a kernelW as follows:

Cw(d) =
∑

j∈N (i)

∑

k

Sj(dk)W (d − dk). (7)

The Parzen window technique provides an effective way of taking into account the actual

scores of the local maximaand reinforcing those local maxima that are close to each other.

It provides very good robustness against occlusion and image noise, which in practice makes

it the core of a photo-consistency measure that does not needexplicit visibility computation.

Figure 2 demonstrates the benefits of the Parzen filtering technique as opposed to simple

averaging of correlation scores. For the example of figure 2 aGaussian kernel has been

used. In practice we discretise the 3D volume into voxels andwe count the number of local
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Fig. 3. Surface geometry and flow graph construction.On the left: a 2D slice of space showing the bounding

volume and the optimal surface inside it that is obtained by computing the minimum cut of a weighted graph. Note

that complicated topologies such as holes or disjoint volumes can be represented by our model and recovered after

optimisation. On the right: the correspondence of voxels with nodes in the graph. Each voxel is connected to its

neighbours as well as to the source.

maxima that fall inside a voxel. This corresponds to using a rectangular kernel with width

equal to the size of the voxel grid.

IV. GRAPH STRUCTURE

To obtain a discrete solution to Equation (2) 3D space is quantised into voxels of size

h×h×h. The graph nodes consist of all voxels whose centres are within a certain bounding

box that is guaranteed to contain the object. For the resultspresented in this paper these

nodes were connected with a regular 6-neighbourhood grid. Bigger neighbourhood systems

can be used which provide a better approximation to the continuous functional (2), at the

expense of using more memory to store the graph. Now assume two voxels centred atxi and

xj are neighbours. Then the weight of the edge joining the two corresponding nodes on the

graph will be [2]

wij =
4πh2

3
ρ

(

xi + xj

2

)

(8)

whereρ(x) is the matching cost function defined in Equation (3). In addition to these weights

between neighbouring voxels there is also the ballooning force edge connecting every voxel

to the source node with a constant weight ofwb = λh3. Finally, the outer voxels that are part

of the bounding box (or the voxels outside the visual hull if that is available) are connected

with the sink with edges of infinite weight. The configurationof the graph is shown in figure

3 (right).

It is worth pointing out that the graph structure described above can be thought of as a

simple binaryMRF. Variables correspond to voxels and can be labelled as beinginside or

outsidethe scene. The unitary clique potential is just0 if the voxel is outside andwb if it is
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inside the scene while the pairwise potential between two neighbour voxelsi andj is equal to

wij if the voxels have opposite labels and0 otherwise. As a binary MRF with asub-modular

energy function [15] it can be solved exactly in polynomial time using Graph-cuts.

V. RESULTS

In this section we present some 3D reconstruction results obtained by our technique. The

system used for all the models shown was a Linux-based Intel Pentium IV with 2GB RAM

and running at 3.0 GHz. The spatial resolution for the voxel grids was3003 voxels for the

toy house sequence (Figure 1),2003 voxels for the Hygeia sequence (Figure 4) and2563 v

voxels for the Temple sequence (Figure 5). The ballooning parameterλ was set to values

between0.1 and1.0. Computation time is strongly dominated by the photo-consistency cost

calculation which takes between30 minutes and1.5 hours depending on number of images

and their resolution. Generally the computational complexity of this part of the algorithm

grows linearly with the total number of pixels in the sequence. The computation time required

by the graph-cut computation for a3003 grid is approximately45 minutes. We used the graph-

cut algorithm proposed in [3] and in particular the implementation available at the authors’

website.

The first experiment was performed on a plaster bust of the Greek goddess Hygeia (36

images) photographed with a 5M pixel digital camera. The object was mounted on a turntable

and camera pose was obtained automatically using the object’s silhouettes [12]. Note however

that these silhouettes were not used for any other computation such as visual hull construction.

The reconstruction results are shown in figure 4.

Our second experiment (Figure 5) used images of a replica of the Castor and Pollux

(Dioscuri) temple in Agrigento, Sicily with a resolution of640 × 480 pixels. Four of these

images are shown in the first row of Figure 5. This sequence wasused as part of a multi-view

stereo evaluation effort which was presented in [23]. Camera motion is known and ground

truth is available through the use of a laser scanner device (see [23] for details). Three

different subsets of the sequence each with a different number of images are provided: the

full set of 312 images (Full), a medium sized sequence with 47images (Ring) and a sparse

sequence with only 16 images (SparseRing). As the object is photographed against a black

background, silhouettes can be computed by simple thresholding. The visual hull obtained

from those silhouettes is shown in the second row of Figure 5.We have encoded this in

our foreground/background term as described in section II-A. Figure 5 shows the results of
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Fig. 4. Reconstruction results.Reconstruction of plaster bust of Greek goddess Hygeia. Theinput sequence

consists of 36 images. Four of these are shown in the first row while the second row shows similar views of the

reconstructed model.

our reconstruction for the Full subsequence (fourth row) compared to the results obtained

using the original formulation of Volumetric Graph-cuts [29] (third row). The improvement

in geometric accuracy is especially evident in the rear viewof the temple where, due to self-

occlusions the visibility assumptions of [29] were severely violated. Our present formulation

makes no such visibility approximations and hence is able tofully extract the geometry

information contained in the images.

Figure 6 provides a qualitative demonstration of the difference in discriminative power

between the photo-consistency metric of [29] (left) and ourcurrent method (right). The

figure shows slices of the two photo-consistency fields corresponding to the upper part of

the temple above the columns. It demonstrates a significant reduction in photo-consistency

noise brought about by the robust voting scheme of section III.

A quantitative analysis of our results and comparison with state-of-the-art techniques across

all three subsequences is presented in Table I. The accuracymetric shown is the distanced

(in millimetres) that brings 90% of the reconstructed surface within d from some point on

the ground truth surface. The completeness figure measures the percentage of points in the

ground truth model that are within 1.25mm of the reconstructed model. Under both metrics

our method currently ranks among the top performers. In the SparseRing sequence with only

16 images our method performs best in terms of both accuracy and completeness.

The final example, shown in Figure 1 is from a high-resolutionsequence of 140 images

(3456 × 2304 pixels) of a toy house of about 10cm diameter. Camera calibration has been
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Fig. 5. Castor and Pollux (Dioscuri) temple sequence.First row: Four of the input images. Second row: Visual

hull obtained from silhouettes. Third row: Results obtained with the original Volumetric Graph-cuts formulation

of [29]. Fourth row: Results obtained with the method presented here. The occlusion robust photo-consistency

metric greatly enhances the detail of the reconstruction.

Fig. 6. Noise reduction in photo-consistency.Left: a slice of the photo-consistency volume taken through

the entablature of the temple. Centre: the metric of [29] contains falsely photo-consistent regions (e.g. near the

corners). Right: the occlusion robust metric proposed heresignificantly suppresses noise and the correct surface

can be accurately localised.
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Accuracy / Completeness

Full (312 images) Ring (47 images) SparseRing(16 images)

Hernandez [11] 0.36mm / 99.7% 0.52mm / 99.5% 0.75mm / 95.3%

Goesele [10] 0.42mm / 98.0% 0.61mm / 86.2% 0.87mm / 56.6%

Hornung [13] 0.58mm / 98.7% – –

Pons [20] – 0.60mm / 99.5% 0.90mm / 95.4%

Furukawa [9] 0.65mm / 98.7% 0.58mm / 98.5% 0.82mm / 94.3%

Vogiatzis [29] 1.07mm / 90.7% 0.76mm / 96.2% 2.77mm / 79.4%

Present method 0.50mm / 98.4% 0.64mm / 99.2% 0.69mm / 96.9%

TABLE I

COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART TECHNIQUES AGAINST GROUND TRUTH DATA(FROM [23]).

obtained automatically using silhouettes [12]. As in the first experiment however, we did not

include these silhouettes in our foreground/background term. The mesh obtained from the

3003 voxel grid contains accurately reconstructed sub-millimetre details.

VI. D ISCUSSION

This paper introduces the use of graph-cut optimisation to the volumetric multi-view

stereo problem. We begin by defining an occlusion-robust photo-consistency metric which is

then approximated by a discrete flow graph. This metric uses arobust voting scheme that

treats pixels from occluded cameras as outliers. We then show how graph-cut optimisation

can exactly compute theminimal surface that encloses the largest possible volume, where

surface areais just a surface integral in this photo-consistency field. The experimental results

presented, demonstrate the benefits of combining a volumetric surface representation with a

powerful discrete optimisation algorithm such as Graph-cuts.
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