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Abstract

The objective of this work is to recognize faces using video sequences both for training

and novel input, in a realistic, unconstrained setup in which lighting, pose and user mo-

tion pattern have a wide variability and face images are of low resolution. There are three

major areas of novelty: (i) illumination generalization is achieved by combining coarse

histogram correction with fine illumination manifold-based normalization; (ii) pose robust-

ness is achieved by decomposing each appearance manifold into semantic Gaussian pose

clusters, comparing the corresponding clusters and fusing the results using an RBF net-

work; (iii) a fully automatic recognition system based on the proposed method is described

and extensively evaluated on 600 head motion video sequences with extreme illumination,

pose and motion pattern variation. On this challenging data set our system consistently

demonstrated a very high recognition rate (95% on average), significantly outperforming

state-of-the-art methods from the literature.
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1 Introduction

For decades, the personal identification task had shown progress by employing

technological means likesecret knowledge, such as Personal Identification Num-

bers, and by usingpersonal possessions, such as Identity Cards and Radio Fre-

quency Identification chips. As opposed to these means which are generally easy

targets for fraud, biometric modalities like facial geometry, ear form and iris are

universal and consistent over time.

Automatic face recognition (AFR) has long been established as one of the most ac-

tive research areas in computer vision [1]. In spite of a large number of developed

algorithms, real-world performance of AFR has been, to say the least, disappoint-

ing. Even in very controlled imaging conditions, such as those used for passport

photographs, the error rate has been reported to be as high as 10% [2], while in less

controlled environments the performance degrades even further [3]. We believe that

the main reason for the apparent discrepancy between results reported in the liter-

ature and those observed in the real world is that the assumptions that most AFR

methods rest upon are hard to satisfy in practice (see Section 2).

In this paper, we are interested in recognition usingvideo sequences. This problem

is of enormous interest as video is readily available in many applications, while

the abundance of information contained within it can help resolve some of the in-

herent ambiguities of single-shot based recognition. In practice, video data can be

extracted from surveillance videos by tracking a face or by instructing a cooperative

user to move the head in front of a mounted camera.

We assume that both the training and novel data available to an AFR system is

organized in a database where a sequence of images for each individual contains
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some variability in pose, but is not obtained in scripted conditions or in controlled

illumination. The recognition problem can then be formulated as taking a sequence

of face images from an unknown individual and finding the best matching sequence

in the database of sequences labelled by the identity.

2 Related previous work

Good general reviews of recent AFR literature can be found in [1, 4, 5]. In this

section, we focus on AFR literature that deals specifically with recognition from

image sequences, and with invariance to pose and illumination.

2.1 Recognition from multiple-image input.

Compared to single-shot recognition, face recognition from image sequences is

a relatively new area of research. Some of the existing algorithms that deal with

multi-image input use temporal coherence within the sequence to enforce prior

knowledge on likely head movements [6, 7, 8]. In contrast to these, a number of

methods that do not use temporal information have been proposed. Recent ones in-

clude statistical [9, 10] and principal angle-based methods with underlying simple

linear [11], kernel-based [12] or Gaussian mixture-based [13] models. By their very

nature, these are inherently invariant to changes in head motion pattern. Other al-

gorithms implement the “still-to-video” scenario [14, 15], not taking full advantage

of sequences available for training.
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2.2 Recognition under varying illumination.

Illumination invariance for AFR, while perhaps the most significant challenge for

AFR [16] remains a virtually unexplored problem for recognition using video. Most

methods focus on other difficulties of video-based recognition, employing simple

preprocessing techniques to deal with changing lighting [17, 18]. Others rely on

availability of ample training data but achieve limited generalization [9, 19].

Two influential generative model-based approaches for illumination-invariant single-

shot recognition are the illumination cones [20, 21] and the 3D morphable model

[22, 23]. Both of these have significant shortcomings in practice. The former is not

readily extended to deal with video, assuming accurately registered face images,

illuminated from several well-posed directions for each pose, which is difficult to

achieve in practice (see Section 4 for data quality). Similar limitations apply to the

related method of Riklin-Raviv and Shashua [24]. On the other hand, the 3D mor-

phable model is easily extended to video-based recognition, but it requires a (in

our case prohibitively) high resolution [18], struggles with non-Lambertian effects

(such as specularities) and multiple light sources, and has convergence problems in

the presence of background clutter and partial occlusion (e.g. glasses, facial hair).

2.3 Recognition across pose.

Broadly speaking, there are three classes of algorithms aimed at achieving pose in-

variance. The first, a model-based approach, uses an explicit 2D or 3D model of the

face, and attempts to estimate the parameters of the model from the input [22, 25].

This is a view-independent representation. A second class of algorithms consists

of global, parametric models, such as the eigenspace method [26] that estimates a
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single parametric (typically linear) subspace from all the views for all the objects

(also see [27]). In AFR tests, such methods are usually outperformed by meth-

ods from the third class: view-based techniques e.g. the view-based eigenspaces

[28] (also [6, 7]), in which a separate subspace is constructed for each pose. These

algorithms usually require an intermediate step in which the pose of the face is de-

termined, and then recognition is carried out using the estimated view-dependent

model. A common limitation of these methods is that they require a fairly restric-

tive and labour-intensive training data acquisition protocol, in which a number of

fixed views are collected for each subject and appropriately labelled. This is not the

case with the method proposed in this paper.

3 Recognition from Face Motion Manifolds

A video sequence of a moving face carries information about its 3D shape and

texture. In terms of recognition, this information can be used either explicitly, by

recovering parameters of a generative model (e.g. as in [22]), or implicitly by mod-

elling face appearance and trying to achieve invariance to extrinsic causes of its

variation (e.g. as in [17]). In this paper we employ the latter approach, as more

suited for low-resolution input data [18] (see Section 4 for typical data quality).

Concepts in this paper heavily rely on the notion offace manifolds. Under the

standard rasterized representation of an image, images of a given size can be viewed

as points in a Euclideanimage spaceRD, its dimensionalityD being equal to the

number of pixels. However, the surface and texture of a face is mostly smooth

making its appearance constrained and confining it to an embedded face manifold

of dimensiond ¿ D [9, 29], as conceptually illustrated in Figure 1.
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(b)

(a)

Fig. 1.Shown is a face appearance manifold, conceptually depicted as 2-dimensional, em-
bedded in a 3-dimensional principal component space. In this paper we explicitly sepa-
rate motion-affected appearance changes which give rise to (a,b)face motion manifolds
(FMMs), shown as 1-dimensional in red, and illumination-affected appearance changes
which in turn defineface illumination manifolds, shown in grey as connecting two FMMs.

In the proposed method, face manifold [9, 29] are modelled using at most three

Gaussian pose clusters describing small face motion around different head poses.

Given two such manifolds, first (i) the pose clusters are determined, then (ii) those

corresponding in pose are compared and finally, (iii) the results of pairwise cluster

comparisons are combined to give a unified measure of similarity of the manifolds

themselves. Each of the steps, aimed at achieving robustness to a specific set of

nuisance parameters, is described in detail next.

3.1 Face registration

It can be observed that the corresponding variations due to head motion, i.e. pose

changes, are highly nonlinear, see Figure 2 (a,b). A part of the difficulty of recog-

nition from appearance manifolds is then contained in the problem of what is an
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(a) Input video sequence
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Fig. 2. A typical input video sequence of random head motion performed by the user (a)
and the corresponding face motion manifold (b). Shown is the projection of affine-registered
data (see Section 3.1) to the first three linear principal components. Note that while highly
nonlinear, the manifold is continuous and smooth. Different poses are marked in different
styles (red stars, blue dots and green squares). Examples of faces from the three clusters
can be seen in (b) (also affine-registered and cropped).

appropriate way of representing them, in a way suitable for the analysis of the ef-

fects of varying illumination or pose.

In the proposed method, face motion manifolds are represented in piece-wise lin-

ear manner by a set of semantic Gaussianpose clusters, see Figure 2 (b,c). Seeing

that each cluster describes a locally linear mode of variation, this approach to mod-

elling manifolds becomes increasingly difficult as their intrinsic dimensionality is

increased. Therefore, it is advantageous to normalize the raw, input frames as much

as possible so as to minimize this dimensionality. In this first step of our method,
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this is done byregisteringfaces i.e. by warping them to have a set of salient facial

features aligned (for related approaches see [17, 30]).

We compute warps that align each face with a canonical frame using four point

correspondences: the locations of pupils (2) and nostrils (2). These are detected us-

ing a two-stage feature detector of Fukui and Yamaguchi [31]1 . Briefly, in the first

stage, shape matching is used to rapidly remove a large number of locations in the

input image that do not contain features of interest. Out of the remaining, ‘promis-

ing’ features, true locations are chosen using the appearance-based, distance from

feature space criterion. We found that the described method reliably detected pupils

and nostrils across a wide variation in illumination conditions and pose.

From the four point correspondences between the locations of the facial features

and their canonical locations (we chose canonical locations to be the mean values

of true feature locations) we compute optimal affine warps on a per-frame basis.

Since four correspondences over-determine the affine transformation parameters (8

equations with 6 unknown parameters), we estimate them in the minimumL2 error

sense. Finally, the resulting images are cropped, so as to remove background clutter,

and resized to the uniform scale of30× 30 pixels. An example of a face registered

and cropped in the described manner is shown in Figure 3 (also see Figure 2 (c)).

3.2 Pose-invariant recognition

Achieving invariance to varying pose is one of the most challenging aspects of

face recognition and yet a prerequisite condition for most practical applications.

This problem is complicated further by variations in illumination conditions, which

1 We thank the authors for kindly providing us with the original code of their algorithm.
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(a) Original (b) Detections (c) Cropped (d) Registered

Fig. 3.Feature-based face localization and registration: (a) Original input frame (resolu-
tion 320× 240 pixels), (b) superimposed detections of the two pupils and nostrils (as white
circles), (c) cropped face regions with background clutter removed, and (d) the final affine
registered and cropped image of the face (resolution30× 30 pixels).

inevitably occur due to movement of the user relative to the light sources.

We propose to handle changing pose in two, complementary stages: (i) in the first

stage an appearance manifold isdecomposedto Gaussian pose clusters, effectively

reducing the problem to recognition under a small variation in pose parameters; (ii)

in the second stage, fixed-pose recognition results arefusedusing a neural network,

trained offline. The former stage is addressed next, while the latter is the topic of

Section 3.4.1.

3.2.1 Defining pose clusters

Inspection of manifolds of registered faces in random motion around the fronto-

parallel face shows that they are dominated by the first nonlinear principal com-

ponent. This principal component corresponds to lateral head rotation, i.e. changes

in the face yaw, see Figure 2 (a,b). The reason for this lies in the greater smooth-

ness of the the face surface in the vertical than in the horizontal direction– pitch

changes (“nodding”) are largely compensated for by using the affine registration
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described in Section 3.1. This is not the case with significant yaw changes, when

self-occlusion occurs.

Therefore, the centres of Gaussian clusters used to linearize an appearance mani-

fold correspond to different yaw angle values. In this work we describe manifolds

using three Gaussian clusters, corresponding to the frontal face orientation, face

left and face right, see Figure 2 (a–c). The choice of the number of clusters was

determined by fitting a Gaussian Mixture Model to a small number of training

sequences, manually selected to ensure that each contains the full range of head

motion modelled, and examining the optimal number of components as determined

using the Minimum Description Length criterion. This procedure is very much like

in [9, 32].

3.2.2 Finding pose clusters

As the extent of lateral rotation, as well as the number of frames corresponding

to each cluster, can vary between video sequences, a generic clustering algorithm,

such as the k-means algorithm, is unsuitable for finding the three Gaussians.

With prior knowledge of the semantics of clusters, we decide on a single face image

membership on a frame-by-frame basis. We show that this can be done in a very

simple and rapid manner from already detected locations of the four characteristic

facial features: the pupils and nostrils, see Section 3.1.

The proposed method relies on motion parallax based on inherent properties of the

shape of faces. Consider the anatomy of a human head shown in profile view in

Figure 4 (a). It can be seen that the pupils are further away than the nostrils from

the vertical axis defined by the neck. Hence, assuming no head roll takes place, as
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the head rotates laterally, nostrils travel a longer projected path in the image. Using

this observation, we define the quantityη as follows:

η = xc
e − xc

n (1)

wherexc
e andxc

n are the mid-points between, respectively, the eyes and the nostrils:

xc
e =

xe1 + xe2

2
xc

n =
xn1 + xn2

2
. (2)

It can now be understood thatη approximates the discrepancy between distances

travelled by the mid-points between the eyes and nostrils, measured from the frontal

face orientation. Finally, we normalizeη by dividing it by the distance between the

eyes, to obtain̂η, a scale-invariant parallax measure:

η̂ =
η

‖xe1 − xe2‖ =
xc

e − xc
n

‖xe1 − xe2‖ (3)

Learning the parallax model. In our method, discrete poses used for linearizing

appearance manifolds are automatically learnt from a small training corpus of video

sequences of faces in random motion. To learn the model, we took 20 sequences of

100 frames each, acquired at 10fps, and computed the value ofη̂ for each registered

face. We then applied the k-means clustering algorithm [33] on the obtained set of

parallax measure values and fitted a 1D Gaussian to each, see Figure 4 (b).

To apply the learnt model, a frame in our method is classified to the maximal like-

lihood pose. In other words, when a novel face is to be classified to one of the

three pose clusters (i.e. head poses), we evaluate pose likelihood given each of the

learnt distributions and classify it to the one giving the highest probability of the

observation. Figure 5 shows the proportions of faces belonging to each pose cluster.
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Fig. 4. (a) A schematic illustration of the motion parallax used for coarse pose clustering
of input faces (the diagram is based on a figure taken from [34]). (b) The distributions of
the scale-normalized parallax measureη̂ defined in(3) for the three pose clusters on the
offline training data set. Good separation is demonstrated.
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Fig. 5.Histograms of the number of correctly registered faces using four point correspon-
dences between detected facial features (pupils and nostrils) for each of the three discrete
poses and in total for each sequence.
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3.3 Illumination-invariant recognition

Illumination variation of face patterns is extremely complex due to varying sur-

face reflectance properties, face shape, and type and distance of lighting sources.

Hence, in such a general setup, this is a difficult problem to approach in a purely

discriminative fashion.

Our method for compensating for illumination changes is based on the observa-

tion that on a coarse level most of the variation can be described by thedominant

light direction e.g. ‘strong light from the left’. Such variations are addressed much

more easily. We will also demonstrate that it is the case thatonce normalizedat

this, coarse level, the learning of residual illumination changes is significantly sim-

plified as well. This motivates the two-stage, per-pose illumination normalization

employed in the proposed method:

(1) Coarse level:Region-based gamma intensity correction (GIC), followed by

(2) Fine level: Illumination subspace normalization.

The algorithm is summarized in Figure 6 while its details are explained in the sec-

tions that follow.

3.3.1 Gamma intensity correction

Gamma Intensity Correction (GIC) is a well-known image intensity histogram

transformation technique that is used to compensate for global brightness changes

[35]. It transforms pixel values (normalized to lie in the range[0.0, 1.0]) by expo-

nentiation so as to best match acanonically illuminated image. This form of the

operator is motivated by non-linear exposure-image intensity response of the pho-
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Input : pose clustersC1 = {x(1)
i }, C2 = {x(2)

i },
face regions maskr,

mean face (for pose)m,

pose illumination subspace basis matrixBI .

Output : pose cluster̂C1 normalized toC2.

(1) Coarse normalization: Per-frame region-based GIC

∀i. x(1)
i = regionGIC(r,m,x

(1)
i ),

(2) Coarse normalization: Per-frame region-based GIC

∀i. x(2)
i = regionGIC(r,m,x

(2)
i )

(3) Fine normalization: Per-frame illumination subspace compensation

∀i. x̂(1)
i = BIa

∗
i + x

(1)
i

wherea∗i = arg minai
DMAH

[
BIai + x

(1)
i − 〈C2〉; C2

]

(4) Normalized cluster: The result is clusterC1 normalized toC2

Ĉ1 = {x̂(1)
i }

Fig. 6. Illumination compensation overview: Coarse appearance changes due to illumina-
tion variation are normalized using region-based gamma intensity correction, while the
residual variation is modelled using a linear, pose-specific illumination subspace, learnt
offline. Local manifold shape is employed as a constraint in the second, ‘fine’ stage of
normalization in the form of the Mahalanobis distance for the computation of the optimal
additive illumination subspace component.

tographic film that it approximates well over a wide range of exposure. Formally,

given an imageI and a canonically illuminated imageIC , the gamma intensity

corrected imageI∗ is defined as follows:

I∗(x, y) = I(x, y)γ∗ , (4)
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whereγ∗ is the optimal gamma value and is computed using

γ∗ = arg min
γ
‖I γ − IC‖ = (5)

arg min
γ

∑
x,y

[I(x, y)γ − IC(x, y)]2 . (6)

This is a nonlinear optimization problem in 1D. In our implementation of the pro-

posed method it is solved using the Golden Section search with parabolic interpo-

lation, see [36] for details.

Region-based gamma intensity correction. Gamma intensity correction can be

used across a wide range of types of input to correct forglobalbrightness changes.

However, in the case of objects with a highly variable surface normal, such as faces,

it is unable to correct for the effects of side lighting. This is recognized as one of

the most difficult problems in AFR [16].

Region-based GIC proposes to overcome this problem by dividing the image (and

hence implicitly the imaged object/face as well) into regions corresponding to sur-

faces with a near-constant surface normal. Regular gamma intensity correction is

then applied to each region separately, see Figure 7.

An undesirable result of this method is that it tends to produce artificial inten-

sity discontinuities at region boundaries [37]. This occurs due to discontinuities

in the computed gamma values between neighbouring regions. We propose to first

Gaussian-blur the obtained gamma value map imageΓ∗:

Γ∗S = Γ∗ ∗Gσ=2, (7)
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(a) Mean ‘left’ face (b) Original (c) GIC output (d) Smooth output
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(f) Smooth GIC map

Fig. 7.Coarse illumination normalization: Canonical illumination image and the regions
used in region-based GIC (a), original unprocessed face image (b), region-based GIC cor-
rected image without smoothing (c), region-based GIC corrected image with smoothing
(d), original gamma value map (e) and smoothed gamma value map (f). Notice artefacts at
region boundaries in the gamma corrected image (c). The output of the proposed smooth
region-based GIC in (d) does not have the same problem. Finally, note that the coarse
effects of the strong side lighting in (b) have been greatly removed.

(a) (b)

Fig. 8. (a) Seamless output of the proposed smooth region-based GIC. Boundary artefacts
are removed without blurring of the image. Contrast this with the output of the original
region-based GIC, after Gaussian smoothing of the output (b). Image quality is significantly
reduced, with boundary edges still clearly visible.
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before applying it to an input image to give the final, region-based gamma corrected

outputI∗S:

∀x, y. I∗S(x, y) = I(x, y)Γ∗S(x,y) (8)

This method almost entirely remedies the problem with boundary artefacts, as illus-

trated in Figure 7. Note that because smoothing is performed on the gamma map,

not the processed image, the artefacts are removed without any loss of discrimina-

tive, high frequency detail, see Figure 8.

3.3.2 Pose-specific illumination subspace normalization

After region-based GIC is applied to all images, it is assumed that the lighting vari-

ation for each of the pose clusters can be modelled using a linear,pose-specific illu-

mination subspace. Given a reference and a novel cluster corresponding to the same

pose, each frame of the novel cluster is normalized for the illumination change. This

is done by adding a vector from the pose illumination subspace to the frame so that

its distance from the reference cluster’s centre is minimized.

Learning the model. We define a pose-specific illumination subspace to be a

linear manifold that explainsintra-personalappearance variations due to illumina-

tion changes across a narrow range of poses. In other words, this is the principal

subspace of the within-class scatter.

Formalizing the definition above, given thatxk
i,j is thek-th of Nf (i, j) frames of
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personi under the illuminationj (out ofNl(i)), the within-class scatter matrix is:

SB =
Np∑

i=1

Nl(i)∑

j=1

Nf (i,j)∑

k=1

(xk
i,j − x̄i)(x

k
i,j − x̄i)

T , (9)

whereNp is the total number of training individuals andx̄i is the mean face of the

person in the range of considered poses:

x̄i =

∑Nl(i)
j=1

∑Nf (i,j)
k=1 xk

i,j∑
j Nf (i, j)

. (10)

The pose-specific illumination subspace basisBI is then computed by eigendecom-

position ofSB as the principal subspace explaining 90% of data energy variation.

For offline learning of illumination subspaces we used 10s video sequences of 20

individuals, each in 5 illumination conditions, acquired at 10fps. The first few basis

vectors learnt in the described manner are shown as images in Figure 9.

Employing the model. Let C1 = {x(1)
1 , . . . ,x

(1)
N1
} andC2 = {x(2)

1 , . . . ,x
(2)
N2
} be

two corresponding pose clusters of different appearance manifolds, previously pre-

processed using the region-based gamma correction algorithm described in Sec-

tion 3.3.1. ClusterC1 is then illumination-normalized with respect toC2 (we will

therefore refer toC2 as thereference cluster), under the null assumption that the

identities of the two people they represent are the same. The normalization is per-

formed on a frame-by-frame basis, by adding a vectorBIa
∗
i from the estimated

pose-specific illumination subspace:

∀i. x̂(1)
i = BIa

∗
i + x

(1)
i (11)

19



(a) Frontal

(b) Left

0 50 100 150 200
0

5

10

15

Eigenvalue index

E
ne

rg
y 

(%
)

Frontal head pose
Left head pose

(c) Eigenvalues

Fig. 9. Shown as images are the first 5 bases of pose-specific illumination subspaces for
the (a) frontal and (b) left head orientations. The distribution of energy for pose-specific
illumination variation across principal directions is shown in (c).

where we definea∗i as:

a∗i = arg min
ai
‖BIai + x

(1)
i − 〈C2〉‖, (12)

and‖ . . . ‖ is a vector norm and〈C2〉 the mean face of clusterC2. We then define

clusterC1 normalized toC2 to beĈ1 = {x̂(1)
i }. This form is directly motivated by

the definition of a pose-specific subspace.
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To understand the next step, which is the choice of the vector norm in (12), it

is important to notice in the definition of the pose-specific illumination subspace,

that the basisBI explains not only appearance variations caused by illumination:

reflectance properties of faces used in training (e.g. their albedos), as well as sub-

jects’ pose changes also affect it. This is especially the case as we do not make the

common assumption that surfaces of faces are Lambertian, or that light sources are

point lights at infinity.

The significance of this observation is that the subspace of a dimensionality suffi-

ciently high to explain the modelled phenomenon (illumination changes) will, un-

desirably, also be able to explain ‘distracting’ phenomena, such as differing identity.

The problem is therefore that ofconstrainingthe region of interest in the subspace

to that which is most likely to be due to illumination changes for a particular in-

dividual. For this purpose we propose to exploit the local structure of appearance

manifolds, which are smooth. We do this by employing the Mahalanobis distance

(using the probability density corresponding to the reference cluster) when comput-

ing the illumination subspace correction for each novel frame using (12). Formally:

a∗i = arg min
ai

(
BIai + x

(1)
i − 〈C2〉

)T
B2Λ

−1
2 BT

2

(
BIai + x

(1)
i − 〈C2〉

)
, (13)

whereB2 andΛ2 are, respectively, reference cluster’s orthonormal basis and the

diagonalized covariance matrix. We found that the use of the Mahalanobis distance,

as opposed to the usual Euclidean distance, achieved better explanation of novel

images when the person’s identity was the same, and worse when it was different,

achieving better inter-to-intra class separation.

This quadratic minimization problem is solved by differentiation and the minimum
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is achieved for:

a∗i =
(
BT

I B2Λ
−1
2 BT

2 BI

)−1
BT

I B2Λ
−1
2 BT

2 (〈C2〉 − x) (14)

Examples of registered and cropped face images before and after illumination nor-

malization can be seen in Figure 10 (a).

Practical considerations. The computation of the optimal valuea∗ using (14)

involves inversion and Principal Component Analysis (PCA) on matrices of size

D × D, whereD is the number of pixels in a face image (in our case equal to

900, see Section 3.1). Both of these operations put high demands on computer

resources. To reduce the computational overhead, we exploit the assumption that

the data modelled is of much lower dimensionality thanD.

Formalizing the model of low-dimensional face manifolds, we assume that an im-

agey of subjecti’s face is drawn from the probability densityp(i)
F (y) within the

face space, and embedded in the image space by means of a mapping function

f (i) : Rd → RD. The resulting point in theD-dimensional space is further per-

turbed by noise drawn from a noise distributionpn (note that the noise operates in

the image space) to form the observed imagex. Therefore the distribution of the

observed face images of the subjecti is given by the integral:

p(i)(x) =
∫

p
(i)
F (y)pn(fi(y)− x)dy (15)

This model is then used in two stages:

(1) Pose-specific PCA dimensionality reduction,

(2) Exact computation of the linear principal subspace and rapid estimation of the
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complementary subspace of a pose cluster.

Specifically, we first perform a linear projection of all images in a specific pose

cluster to apose-specific face subspacethat explains 95% of data variation in a

specific pose. This achieves data dimensionality reduction from 900 to 250.

Referring back to (15), to additionally speed up the process, we estimate the intrin-

sic dimensionality of face manifolds (defined as explaining 95% of within-cluster

data variability) and assume that all other variation is due to isotropic Gaussian

noisepn. Hence, we can write the basis of the PCA subspace corresponding to

the reference cluster as consisting of principal and complementary subspaces [38]

represented by orthonormal basis matrices, respectivelyVP andVC :

B2 = [VPVC ] (16)

whereVP ∈ R250×6 andVC ∈ R250×244. The principal subspace and the associ-

ated eigenvectorsv1, . . . ,v6 are rapidly computed, e.g. using [39]. The isotropic

noise covariance and the complementary subspace basis are then estimated in the

following manner:

λn = ω
6∑

i=1

λi VC = null (VP ) (17)

where the nullspace of the principal subspace is computed using QR-decomposition

[36], while the value ofω is estimated from a small training corpus; we obtained

ω ≈ 2.2e−4. The diagonalized covariance matrix is then simply:

Λ2 = diag(λ1, . . . , λ6,

244︷ ︸︸ ︷
λn, . . . , λn) (18)
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(a) Illumination normalization
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Fig. 10. In (a) are respectively, top to bottom, shown the original registered and cropped
face images from an input video sequence, the same faces after the proposed illumination
normalization and a sample from thereferencevideo sequence. The effects of strong side
lighting have been greatly removed, while at the same time a high level of detail is retained.
The corresponding data from the two sequences, before and after illumination compensa-
tion are shown under (b) and (c). Shown are their projections to the first two principal
components. Notice that initially the clusters were completely non-overlapping. Illumina-
tion normalization has adjusted the location of the centre of the blue cluster, but has also
affected its spread. After normalization, while overlapping, the two sets of patterns are still
distributed quite differently.

3.4 Comparing normalized pose clusters

Having illumination normalized one face cluster to match another, we want to com-

pute a similarity measure between them, adistance, expressing our degree of belief

that they belong to the same person.
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At this point it is instructive to examine the effects of the described method for

illumination normalization on the face patterns. Two clusters before and after one

has been normalized, are shown in Figure 10 (b,c). An interesting artefact can be

observed: the spread of the normalized cluster is significantly reduced. This is eas-

ily understood by referring back to (11)-(12) and noticing that the normalization is

performed frame-by-frame, trying to make each normalized face as close as possi-

ble to the reference cluster’s mean, i.e. asingle point. For this reason, dissimilarity

measures between probability densities common in the literature, such as the Bhat-

tacharyya distance, the Kullback-Leibler divergence [9, 10] or the Resistor-Average

distance [40, 41], are not suitable choices. Instead, we propose to use the simple

Euclidean distance between normalized cluster centres:

D(C1, C2) =

∑N1
i=1 x̂

(1)
i

N1

−
∑N2

j=1 x
(2)
j

N2

. (19)

3.4.1 Inter-manifold distance

The last stage in the proposed method is the computation of an inter-manifold dis-

tance, or an inter-manifold dissimilarity measure, based on the distances between

corresponding pose clusters. There are two main challenges in this problem: (i) de-

pending on the poses assumed by the subjects, one or more clusters, and hence the

corresponding distances, may be void; (ii) different poses are not equally important,

or discriminative, in terms of face recognition [42].

Writing d for the vector containing the three pose cluster distances, we want to clas-

sify a novel appearance manifold to the gallery class giving the highest probability
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of corresponding to it in identity,P (s|d). Then, using Bayes’ theorem:

P (s|d) =
p(d|s)P (s)

p(d)
=

p(d|s)P (s)

p(d|s)P (s) + p(d|¬s)P (¬s)
(20)

=
1

1 + p(d|¬s)P (¬s)/p(d|s)P (s)
(21)

Assuming that the ratio of same-identity to differing-identities priorsP (¬s)/P (s)

is constant across individuals, it is clear that classifying to the class with the highest

P (s|d) is equivalent to classifying to the class with the highestlikelihood ratio:

µ(d) =
p(d|s)

p(d|¬s)
(22)

Learning pose likelihood ratios. Writing d = [D1, D2, D3]
T , we assume statis-

tical independence between pose cluster distances:

p(d|s) =
3∏

i=1

p(Di|s) p(d|¬s) =
3∏

i=1

p(Di|¬s) (23)

We propose to learn likelihood ratiosµ(Di) = p(d|s)/p(d|¬s) offline, from a small

data corpus labelled by the identity, in two stages. First, (i) we obtain a Parzen

window estimate of intra- and inter- personal pose distances by comparing all pairs

of training appearance manifolds; then (ii) we refine the estimates using a Radial

Basis Functions (RBF) artificial neural network trained for each pose.

A Parzen window-based [33] estimate ofµ(D) for the frontal head orientation, ob-

tained by directly comparing appearance manifolds as described in Sections 3.1-3.4

is shown in Figure 11 (a). In the proposed method, this, and the similar likelihood

ratio estimates for the other two head poses are not used directly for recognition as
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they suffer from an important limitation: the estimates are ill-defined in domain re-

gions sparsely populated with training data. Specifically, an artefact caused by this

problem can be observed by noting that the likelihood ratios are not monotonically

decreasing. What this means is thatmore distantpose clusters can result in a higher

chance of classifying two sequences as originating from thesame individual.

To overcome the problem of insufficient training data, we train a two-layer RBF-

based neural network for each of the discrete poses used in approximating face

motion manifolds, see Figure 11 (c). In its basic form, this means that the estimate

µ̂(Di) is given by the following expression:

µ̂(Di) =
∑

j

αjG(Di; µj, σj), (24)

where:

G(Di; µj, σj) =
1

σ
√

2π
exp−(Di − µj)

2

2σ2
. (25)

In the proposed method, this is modified so as to enforce prior knowledge on the

functional form ofµ(Di) in the form of its monotonicity:

µ̂∗(Di) = max
δ>Di





∑

j

αjG(Di; µj, σj), µ̂(δ)



 (26)

Finally, to ensure that the networks are trained using reliable data (in the context of

training sample density in the training domain), we use only local peaks of Parzen

window-based estimates. Results using a network with six second-layer neurons,

each with the spread ofσj = 60, see (26), are summarized in Figures 11 and 12.
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Fig. 11.Likelihood ratio corresponding to the frontal head pose obtained from the training
corpus using Parzen windows (a) and the RBF network-based likelihood ratio (b). The
corresponding RBF network architecture is shown in (c). Note that the initial estimate (a)
is not monotonically decreasing, while (b) is.
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Fig. 12.Joint RBF network-based likelihood ratio for the frontal and left head orientations.
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Fig. 13.Detected faces:Histograms of (a) the number of detected faces across sequences in
the entire database FaceDB60 (10 sequences for each of the 60 individuals in the database)
and (b) the detected face sizes (assumed square).

4 Experimental evaluation

Methods in this paper were evaluated on a database of video sequences kindly

provided to us by Toshiba Corporation (from here on referred to asFaceDB60).

This database contains 60 individuals of varying age, mostly male and Japanese,

and 10 sequences per person. Each sequence corresponds to a different illumination

setting, acquired for 10s at 10fps and320× 240 pixel resolution (face size≈ 60 to

120 pixels), see Figure 13. Typical variations in pose and expression within a single

sequence are illustrated in Figure 14, while Figure 15 shows different illumination

conditions both within and across different sequences2 .

2 Also seehttp://mi.eng.cam.ac.uk/ ∼oa214/ for more information on this
database and examples of video sequences.
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Fig. 14. Input data: Frames from a typical input video sequence used for evaluation of
methods in this paper. Notice the presence of cast shadows and overall extreme imaging
conditions: pose, illumination and even occlusion, in the form of facial wear (glasses) and
hands. The size of the face area is also greatly variable.

Illumination 01:

Illumination 02:

Illumination 03:

Illumination 04:

Illumination 05:

Illumination 06:

Illumination 07:

Illumination 08:

Illumination 09:

Illumination 10:

Fig. 15.Registered and automatically cropped faces (30×30 pixels) from typical sequences
used for the comparison of recognition methods in this paper. All frames are of the same
person, in frontal pose, each row corresponding to one of 10 different illumination condi-
tions used for the evaluation. Cast shadows and specularities are common. Notice extreme
illumination changes both between andwithin sequences.
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To establish baseline performance, we compared our recognition algorithm to:

• Mutual Subspace Method(MSM) of Fukui and Yamaguchi [11], used in a state-

of-the-art commercial system FacePassr [43],

• KL divergence-based algorithmof Shakhnarovich et al. (KLD) [10],

• Majority voteacross all pairs of frames usingEigenfacesof Turk and Pentland

[44].

In the KL divergence-based method we used principal subspaces that explain 85%

of data variation energy. In MSM we set the dimensionality of linear subspaces to

9 and used the first 3 principal angles for recognition, as suggested by the authors

in [11]. For the Eigenfaces method, the 22-dimensional eigenspace used explained

90% of total training data energy.

Offline training, i.e. learning of the pose-specific illumination subspaces and likeli-

hood ratios, was performed using 20 randomly chosen individuals in 5 illumination

settings, for a total of 100 sequences. These were used for neither gallery data nor

test input for the evaluation reported in this section.

Recognition performance of the proposed system was assessed by training it with

the remaining 40 individuals in a single illumination setting, and using the rest of

the data as test input. In all tests, both training data for each person in the gallery,

as well as test data, consisted of only a single sequence.

4.1 Results

The performance of the proposed method is summarized in Table 1. We tabulated

the recognition rates achieved across different combinations of illuminations used
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Table 1
Recognition performance (%) of the proposed method using different illuminations for
training and test input. Excellent results are demonstrated with little dependence of the
recognition rate on the data acquisition conditions.

IL. 1 IL. 2 IL. 3 IL. 4 IL. 5 mean std

IL. 1 100 90 95 95 90 94 4.2

IL. 2 95 95 95 95 90 94 2.2

IL. 3 95 95 100 95 100 97 2.7

IL. 4 95 90 100 100 95 96 4.2

IL. 5 100 80 100 95 100 95 8.7

mean 97 90 98 96 95 95.2 4.5

for training and test input, so as to illustrate its degree of sensitivity to the particular

choice of data acquisition conditions. An average rate of 95.2% was achieved, with

a mean standard deviation of only 4.7%. Therefore, we conclude that the proposed

method is successful in recognition across illumination, pose and motion pattern

variation, with high robustness to the exact imaging setup used to provide a set of

gallery videos.

This conclusion is further corroborated by Figure 16 (a), which shows cumula-

tive distributions of inter- and intra-personal manifold distances (see Section 3.4.1)

and Figure 16 (b) which plots the Receiver-Operator Characteristic of the proposed

algorithm. Good class separation can be seen in both, illustrating the suitability of

our method for verification (one-against-one matching) applications: less than 0.5%

false positive rate is attained for 91.2% true positive rate. Additionally, it is impor-

tant to note that good separation is maintained across a wide range of distances, as

can be seen in Figure 16 (a) from low gradients of inter- and intra- class distribu-

tions (e.g. on the interval between1.0 and15.0). This is significant as it implies

that the interclass threshold choice is not very numerically sensitive: by choosing a
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Fig. 16.Cumulative distributions of intra-personal (dashed line) and inter-personal (solid
line) distances (a). Good separability is demonstrated. The corresponding ROC curve can
be seen in (b) – less than 0.5% of false positive rate is attained for 91% true positive rate.
The corresponding distance threshold choice is numerically well-conditioned, as witnessed
by close-to-zero derivatives of the plots in (a) at the corresponding point.

threshold in the middle of this range, we can expect the recognition performance to

generalize well to different data sets.

4.1.1 Pose clusters

One of the main premises that this work rests on is the idea that illumination

and pose robustness in recognition can be achieved by decomposing an appear-

ance manifold into a set of pose ranges (see Section 3.2.1) which are, after being

processed independently, probabilistically combined (see Section 3.4.1). We in-

vestigated the discriminating power of each of the three pose clusters used in the

proposed context by performing recognition using the inter-cluster distance defined

in Section 3.4. Table 2 show a summary of the results. High recognition rates were

achieved even using only a single pose cluster. Furthermore, the proposed method

for integrating cluster distance into a single inter-manifold distance can be seen to

improve the average performance of the most discriminative pose. In the described
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Table 2
A comparison of identification statistics for recognition using each of the pose-specific
cluster distances separately and the proposed method for combining them using an RBF-
based neural network. In addition to the expected performance improvement when using
all over only some poses, it is interesting to note different contributions of side and frontal
pose clusters, the former being more discriminative in the context of the proposed method.

Measure Manifold distance Front clusters distance Side clusters distance

mean 95 90 93

std 4.7 5.7 3.6

recognition framework, side poses contributed more discriminative information to

the distance than the frontal pose (in spite of a lower average number of side faces

per sequence, see Figure 5 in Section 3.1), as witnessed by both a higher average

recognition accuracy and lower standard deviation of recognition. It is interesting

to observe that this is in agreement with the finding that appearance in a roughly

semi-profile head pose is inherently most discriminative for AFR [42].

4.1.2 Other algorithms

The result of the comparison with the other evaluated methods is shown in Table 3.

The proposed algorithm outperformed others by a significant margin. Majority vote

using Eigenfaces and the KL divergence algorithm performed with statistically in-

significant difference, while MSM showed least robustness to the extreme changes

in illumination conditions. It is interesting to note that all three algorithms achieved

perfect recognition when training and test sequences were acquired in same illumi-

nation conditions. Considering the simplicity and computational efficiency of these

methods, investigation of their behaviour when used on preprocessed data (e.g.

high-pass filtered images [17, 45] or self-quotient images [46]) appears to be a

promising research direction.
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Table 3
Average recognition rates (%) of the compared methods across different illumination con-
ditions used for training and test. The performance of the proposed method is by far the
best, both in terms of the average recognition rate and its variance.

Measure Proposed method Majority vote, Eigenfaces KLD MSM

mean 95 43 39 24

std 4.7 31.9 32.5 38.9

4.1.3 Failure modes

Finally, we investigated the main failure modes of our algorithm. An inspection

of failed recognitions suggests that the largest difficulty was caused by significant

user motion to and from the camera. During the data acquisition, for some of the

illumination conditions the dominant light sources were relatively close to the user

(from ≈ 0.5m). This invalidated the implicit assumption that illumination condi-

tions were unchanging within a single video sequence i.e. that the main cause of

appearance changes in images was head rotation. Some examples of very differ-

ently illuminated faces within a single sequence can be seen in Figure 15.

Another limitation of the method was observed in cases when only few faces were

clustered to a particular pose, either because of facial feature detection failure or

because the user did not spend enough time in a certain range of head poses. The

noisy estimate of the corresponding cluster density in (16) propagated the estima-

tion error to illumination normalized images and finally to the overall manifold

distance, reducing separation between classes.
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5 Summary and conclusions

In this paper we introduced a novel algorithm for face recognition from video,

robust to changes in illumination, pose and the motion pattern of the user. This

was achieved by combining person-specific face motion appearance manifolds with

generic pose-specific illumination manifolds, which were assumed to be linear. In-

tegrated into a fully automatic practical system, the method has demonstrated a

high degree of robustness in realistic and uncontrolled data acquisition conditions

– specifically to changes in illumination, pose and the motion pattern of the user.

We described an extensive empirical evaluation and a comparison with state-of-the-

art algorithms in the literature. On average the system correctly recognized in 95%

of the cases, exhibiting little sensitivity to the imagining conditions used for data

acquisition and consistently outperforming other methods.

We intend to investigate several improvements to the method. Firstly, by employing

a more sophisticated reflectance model, we hope to implicitly model nonlinearities

in the pose-specific illumination subspaces. Another possible improvement we are

considering is the use of quasi illumination-invariant image filters for precise pose

matching between faces from two manifolds.
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