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Abstract—Psychophysical studies [9], [17] show that we can recognize objects using fragments of outline contour alone. This paper

proposes a new automatic visual recognition system based only on local contour features, capable of localizing objects in space and

scale. The system first builds a class-specific codebook of local fragments of contour using a novel formulation of chamfer matching.

These local fragments allow recognition that is robust to within-class variation, pose changes, and articulation. Boosting combines

these fragments into a cascaded sliding-window classifier, and mean shift is used to select strong responses as a final set of detection.

We show how learning can be performed iteratively on both training and test sets to bootstrap an improved classifier. We compare with

other methods based on contour and local descriptors in our detailed evaluation over 17 challenging categories and obtain highly

competitive results. The results confirm that contour is indeed a powerful cue for multiscale and multiclass visual object recognition.

Index Terms—Edge and feature detection, feature representation, size and shape, object recognition, computer vision, machine

learning.

Ç

1 INTRODUCTION

CONSIDER the images in Fig. 1 and try to identify the objects
present. The object identities are hopefully readily

apparent. This simple demonstration confirms the intuition
that fragments of contour can be used to successfully
recognize objects in images, and detailed psychophysical
studies such as [9], [17] bear this out. With this inspiration, we
set out to build an automatic object recognition system that
uses only the cue of contour. The most significant contribu-
tion of this work is the demonstration that such a system can
accurately recognize objects from challenging and varied
object categories at multiple scales.

Our system aims to learn from a small set of training
images, a class-specific model for classification and detection
in unseen test images. The task of classification is to determine
the presence or absence of objects of a particular class
(category) within an image, answering the question “does
this image contain at least one X?”, while detection aims to
localize any such objects in space and scale, answering “how
manyXs are in this image and where are they?”. Systems that
can answer these questions are rapidly becoming central to
applications such as image search, robotics, vehicle safety
systems, and image editing to name but a few.

We define contour as the outline (silhouette) together
with the internal edges of the object. Contour has several
advantages over other cues: It is largely invariant to lighting

conditions (even silhouetting) and variations in object color
and texture, it can efficiently represent image structures
with large spatial extents, and it varies smoothly with object
pose change (up to genus changes). It can be matched
accurately along the object boundary, where image patches
and local descriptor vectors tend to match unreliably due to
interaction with the varying background. Note that for the
didactic purposes of this work, we are deliberately ignoring
other useful visual cues such as color and texture.

The evident power of contour as a recognition cue is
somewhat mitigated by practical realities. Contour must be
matched against some form of edge map, but reliable edge
detection and figure-ground segmentation are still areas of
active research [11], [18], [38], [44]. Indeed, the problems of
edge detection, object detection, and segmentation are
intimately bound together: an accurate segmentation mask
is useful for recognition, whereas an object localization
gives an excellent initialization for bottom-up segmentation.

The most significant challenges, therefore, are noisy edge
maps and background clutter. Whole object contours are
fairly robust to this clutter but have poor generalization
qualities and for deformable objects therefore require many
exemplars that are often arranged hierarchically [28].
Improved models, where whole object templates are divided
into parts, have recently become prominent in computer
vision, for example, [22], [23], [53]. Parts are individually less
discriminative, but in ensemble prove robust to clutter and
occlusion, and are able to generalize across both rigid and
articulated object classes. In this paper, we present a system
that learns parts based on contour fragments that in combina-
tion robustly match both the object outline and repeatable
internal edges. Some existing systems, for example, [23], are
computationally limited to a small number of parts, but our
technique efficiently copes with larger numbers of the order
of 100. The resulting overcomplete model has built-in
redundancy with tolerance to within-class variation, differ-
ent imaging conditions such as lighting, occlusion, clutter,
and small pose changes.
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The spatial layout of parts is clearly informative, although
the degree to which it is modeled varies enormously. The
remarkably successful bag-of-words model [15], [47], [48]
throws away all spatial information and exploits only the
repeatable co-occurrence of features to recognize objects or
scenes. Alternatively, for a small number of parts, a full joint
spatial layout distribution can be learned [23]. Our approach
will take a middle ground between these two extremes.

Our preliminary work [46] proved that automatic object
recognition was indeed achievable using only contour
information. This paper strengthens and extends that thesis
with the following contributions:

1. a codebook of scale-normalized contour exemplars,
learned automatically from the training images
without requiring figure-ground segmentations,

2. efficient recognition at multiple scales,
3. a new multiscale oriented chamfer distance for

matching contour fragments, and
4. a bootstrapping technique that augments the sparse

set of training examples used to learn the classifier.

The evaluation of classification and detection performance
is extended to 17 categories. We introduce a new challen-
ging multiscale horse data set and compare performance
with methods based on contours [25], [43] and local
descriptors [54].

After the related work immediately below, we begin by
defining our object model in Section 2 and then our contour
fragments in Section 3. Section 4 presents the object
detector, and Section 5 describes the method for learning
the parameters thereof. We present our evaluation in
Section 6 and conclude the paper with Section 7.

1.1 Related Work

We focus this review on techniques that also use contour for
recognition. Marr’s Primal Sketch [37] already considered
contour a powerful cue. Contour was first used for
particular objects, matched as complete rigid templates
[30], but later for articulated objects, for example, people in
[20], [29], [51], and hands in [49]. Leibe et al. [35] used
chamfer matched pedestrian outlines in a verification stage.
These techniques match whole contours and therefore
depend on a large set of templates to represent all joint
object configurations. The Generalized Hough Transform
[5] is an alternative matching scheme to chamfer or
Hausdorff matching. Carmichael and Hebert recognized
wiry objects based on edges in [13].

Alternative approaches use fragments of contour. Nelson
and Selinger’s influential work [40] grouped contour frag-
ments in a multilevel system for recognizing simple
3D objects. Fergus et al. [24] augmented the constellation

model with contour fragment features, but only exploited
fairly clean planar curves with at least two points of inflection.
In [31], contour fragments were arranged in Layered Pictorial
Structures and used for detection of articulated objects; good
results were obtained although tracked video sequences, or
manually labeled parts were required for learning. Boren-
stein et al. [10] used image and contour fragments for
segmentation, though it did not address recognition.

Other methods use local descriptors of contour. Rigid
objects were addressed effectively in [39]. Shape contexts [7]
describe sampled edge points in a log-polar histogram. The
geometric blur descriptor was used in [8] to match deform-
able objects between pairs of images. More recently, Ferrari
and Schmid [25] combined groups of adjacent segments of
contour [26] into invariant descriptors, and sliding windows
of localized histograms enabled object detection.

Most similar to our work is that by Opelt et al. [42], [43].
Their “boundary fragment model” (BFM) shares much with
our earlier work [46]: It uses many fragments of contour
arranged in a star constellation learned by boosting and
matched with a chamfer distance. Our new work incorpo-
rates its advantages of scale invariance, robust detection
using mean shift, and reduced supervision (bounding boxes
rather than segmentations), but there are important differ-
ences. We employ a new chamfer distance that treats
orientation in a continuous manner and show in Section 6.3.1
how this leads to improved recognition accuracy. Contour
fragments are matched in local windows relative to the object
centroid, rather than across the whole image. The BFM

combines several fragments in each weak learner, while our
fragments proved sufficiently discriminative individually,
reducing training expense. Training from a sparse set of
image locations (Fig. 7) results in further efficiency. We model
scale as an extra dimension in the mean shift mode detection,
rather than combining object detections from individual
scales post hoc. Subsequent work [43] showed how to share
contour fragments between classes, similar to that in [50]. We
compare against these techniques in Section 6.3.9.

2 OBJECT MODEL

As motivated in the introduction, we use a parts-based object
model, shown in Fig. 2. We employ a star constellation in
which the parts are arranged spatially about a single fiducial
point, the object centroid. Each training image contains a
number of objects, each of which is labeled with a bounding
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Fig. 1. Object recognition using contour fragments. Our innate
biological vision system is able to interpret spatially arranged local
fragments of contour to recognize the objects present. In this work, we
show that an automatic computer vision system can also successfully
exploit the cue of contour for object recognition.

Fig. 2. Object model. Contour fragments �T (black outlines) are
arranged about the object centroid (green cross) within the bounding
box b (green). Blue arrows show the expected offsets �xf from the
centroid, and red circles the spatial uncertainty �. For clarity, only four
parts are drawn; in practice, about 100 parts are used.



box b ¼ ðbtl;bbrÞ that implicitly defines this centroid x ¼
1
2 ðbtl þ bbrÞ and also the object scale s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaðbÞ

p
. The object

model is defined at scale s ¼ 1 and parts derived from objects
in images are scale-normalized to this canonical scale. Each
scale-normalized part F ¼ ð �T; �xf ; �Þ is a contour fragment �T
with expected offset �xf from the centroid and spatial
uncertainty �.

3 CONTOUR FRAGMENTS

This section defines our novel formulation of chamfer
matching, before showing how a class-specific codebook of
contour fragments is learned.

3.1 Chamfer Matching

The chamfer distance function, originally proposed in [6],
measures the similarity of two contours. It is a smooth
measure with considerable tolerance to noise and misalign-
ment in position, scale, and rotation and, hence, very suitable
for matching our locally rigid contour fragments to noisy
edge maps. It has already proven capable of and efficient at
recognizing whole object outlines (for example, [28], [35],
[49]), and here, we extend it for use in a multiscale parts-based
categorical recognition model.

In its most basic form, chamfer distance takes two sets of
edgels (edge points), a template T and an edge map E, and
evaluates the asymmetric distance for 2D relative transla-
tion x as

d
ðT;EÞ
cham ðxÞ ¼

1

jT j
X
xt2T

min
xe2E
kðxt þ xÞ � xek2; ð1Þ

where jT j denotes the number of edgels in template T , and
k � k2 the l2 norm. The chamfer distance thus gives the mean
distance of edgels in T to their closest edgels inE. For clarity,
we will omit the superscript ðT;EÞ below where possible.

The distance is efficiently computed via the distance
transform (DT) which gives the distances of the closest points
in E

DTEðxÞ ¼ min
xe2E
kx� xek2; ð2Þ

and, hence, the min operation in (1) becomes a simple look up

dchamðxÞ ¼
1

jT j
X
xt2T

DTEðxt þ xÞ: ð3Þ

We also compute the argument distance transform (ADT),
which gives the locations of the closest points in E

ADTEðxÞ ¼ arg min
xe2E
kx� xek2: ð4Þ

The exact euclidean DT and ADT can be computed simulta-
neously in linear time [21].

It is standard practice to truncate the DT to a value �

DT�
EðxÞ ¼ minðDTEðxÞ; �Þ: ð5Þ

so that missing edgels due to noisy edge detection do not
have too severe of an effect. Additionally, it allows
normalization to a standard range [0, 1]

dcham;� ðxÞ ¼
1

� jT j
X
xt2T

DT�
Eðxt þ xÞ: ð6Þ

3.1.1 Edge Orientation

Additional robustness is obtained by exploiting edge
orientation information. This cue alleviates problems caused
by clutter edgels that are unlikely to align in both orientation
and position. One popular extension to basic chamfer
matching is to divide the edge map and template into discrete
orientation channels and sum the individual chamfer scores
[49]. However, it is not clear how many channels to use, nor
how to avoid artifacts at the channel boundaries.

Building on from that in [41], we instead augment the
robust chamfer distance (6) with a continuous and explicit
cost for orientation mismatch, given by the mean difference
in orientation between edgels in template T and the nearest
edgels in edge map E

dorientðxÞ ¼
2

�jT j
X
xt2T
j�ðxtÞ � �ðADTEðxt þ xÞÞj: ð7Þ

The function �ðxÞ gives the orientation of edgel x modulo �,
and j�ðx1Þ � �ðx2Þj gives the smallest circular difference
between �ðx1Þ and �ðx2Þ. Edgels are taken modulo �
because, for edgels on the outline of an object, the sign of
the edgel gradient is not a reliable signal as it depends on
the intensity of the background. The normalization by �

2
ensures that dorientðxÞ 2 ½0; 1�.

Our improved matching scheme, called oriented chamfer
matching (OCM), uses a simple linear interpolation between
the distance and orientation terms

d�ðxÞ ¼ ð1� �Þ � dcham;� ðxÞ þ � � dorientðxÞ ð8Þ

with orientation specificity parameter �. As we shall see
below, � is learned for each contour fragment separately,
giving improved discrimination power compared with a
shared, constant �. The terms in (8) are illustrated in Fig. 3.
Note that OCM is considerably more storage efficient than
using discrete orientation channels. In Section 6.3.1, we
show that the continuous use of orientation information in
OCM gives considerably improved performance compared
with 8-channel chamfer matching and Hausdorff matching
[30] (essentially (1) with the summation replaced by a
maximization).

3.1.2 Matching at Multiple Scales

We extend OCM to multiple scales by simply rescaling the
templates T . Treating T as now a set of scale-normalized
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Fig. 3. OCM. For edgel x1 in template T , the contribution to the OCM

distance is determined by the distance d from x1 to the nearest edgel x2

in edge map E, and the difference between the edgel gradients at these

points, j�ðx1Þ � �ðx2Þj.



edgels, to perform OCM at scale s between T and the
original unscaled edge map E, we use the scaled edgel set
sT ¼ fsxt s:t: xt 2 Tg and calculate

d
ðT;EÞ
� ðx; sÞ ¼ dðsT ;EÞ� ðxÞ ð9Þ

rounding scaled edgel positions to the nearest integer.

3.1.3 Approximate Chamfer Matching

For efficiency, one does not need to perform the complete
sums over template edgels in (6) and (7). Each sum
represents an empirical average, and so, one can sum over
only a fraction of the edgels, adjusting the normalization
accordingly. This provides a good approximation to the
true chamfer distance function in considerably reduced
time. In practice, even matching only 20 percent of edgels
gave no decrease in detection performance, as demon-
strated in Section 6.3.3.

3.2 Building a Codebook of Contour Fragments

We need now a “codebook,” a set of representative contour
fragments, and there is a choice in their class-specificity. One
could use completely generic fragments such as lines,
corners, and T-junctions and hope that, in combination, they
can be made discriminative [25]. Instead, we create a class-
specific codebook so that, for instance, the class horse results
in, among others, “head,” “back,” and “forelegs” fragments,
as illustrated in Fig. 6. Even individually, these fragments can
be indicative of object presence in an image and, in
combination, will prove very powerful for object detection.

The outline of our codebook learning algorithm is as
follows. We start with a large initial set of fragments,
randomly chosen from edge maps. These are then clustered
based on appearance. Finally, each cluster is subdivided to
find fragments that agree in centroid position. The resulting
subclusters form the codebook.

The initial set of fragments is generated thus. A rectangle
r ¼ ðrtl; rbrÞ enclosed within bounding box b of a random
object is chosen, uniformly at random. We define vector xf ¼
1
s rcen � xð Þ as the scale-normalized vector from the object
centroid x to the rectangle center rcen ¼ 1

2 ðrtl þ rbrÞ. Let Er ¼
fxrg denote the set of absolute image positions of edgels
within rectangle r. The template T used in OCM is then

T ¼ 1

s
ðxr � rcenÞ s:t: xr 2 Er

� �
: ð10Þ

To remove overly generic fragments such as small straight
lines, fragments with edgel density jErj

areaðrÞ below a threshold
�1 are immediately discarded. Fragments with edgel
density above a threshold �2 are also discarded, since these
are likely to contain many background clutter edgels and,
even if not, will be expensive to match. Edgel sets Er are
computed as Er ¼ fx 2 C s:t: x 2 r and krrIkx > tg. This
equation uses the image gradient krrIk at the set of edge
points C, given by the Canny nonmaximal suppression
algorithm. Rather than fix an arbitrary threshold t, we
choose a random t for each fragment (uniformly, within the
central 50 percent of the range ½minx krrIkx;maxx krrIkx�) so
that at least some initial fragments are relatively clutter-free.
As we shall see shortly, the clustering step then picks out
these cleaner fragments to use as exemplars.

Finally, to ensure that the initial set of contour fragments
covers the possible appearances of an object, a small random

transformation is applied to each fragment.1 Several differ-
ently perturbed but otherwise similar fragments are likely to
result, given the large number of fragments extracted.

3.2.1 Fragment Clustering

Fig. 4 shows example fragments extracted at random.
Although many fragments are quite noisy, some fragments
are uncluttered, due to particular clean training images and
the use of random edge thresholds. A clustering step is
therefore employed with the intuition that these uncluttered
fragments should lie at the cluster centers.

To this end, all pairs Ti and Tj of fragments in the initial
set are compared in a symmetric fashion as follows:

di;j ¼ dðsjTi;sjTjÞ� ð0Þ þ dðsiTj;siTiÞ� ð0Þ ð11Þ

scaling the fragments (first, both to sj, then both to si) and
comparing at zero relative offset. Clustering is performed
on distances di;j using the k-medoids algorithm, the analog
of k-means for nonmetric spaces. For the experiments in this
paper, a constant � ¼ 0:4 was used for clustering, chosen to
maximize the difference between histograms of distances
di;j for within-cluster and between-cluster fragment pairs.

Example fragment clusters are shown in Fig. 5. Clusters
contain relatively uncluttered contour fragments of similar
appearance. However, this purely appearance-based cluster-
ing does not take the vectors xf from the object centroid into
account. We desire each fragment to give a unique estimate of
the object centroid, and so, split each cluster into subclusters
that agree on xf . Each fragment casts a vote for the object
centroid and modes in the voting space are found using mean
shift mode estimation [14]. Each mode defines a subcluster,
containing all fragments within a certain radius. To ensure
high-quality subclusters, only those with a sufficient number
of fragments are kept (for our experiments, five fragments
were required). Mode detection is iterated for unassigned
fragments until no new subclusters are generated.
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1. The following transformations are chosen uniformly at random: a
scaling log s 2 ½� log sr; log sr� and rotation � 2 ½��r; �r� about the fragment
center is applied to the edgels, and the vector xf is translated (by x 2
½�xr; xr� and y 2 ½�xr; xr�) and rotated (by � 2 ½��r; �r�) about the object
centroid. As we showed in [46], these transformations are crucial to ensure
good performance, due to the limited training data and the use of rigid
templates.

Fig. 4. Initial set of contour fragments. Examples of contour
fragments extracted at random from the edge maps of horse images.
The þs represent the fragment origins, that is, vectors ð0; 0ÞT in (10).
Many fragments are noisy, and so, we apply a clustering step to find the
cleaner fragments.



Contour fragments within each subcluster now agree
both in appearance (11) and location xf relative to the
object centroid, shown in Fig. 6. From noisy edge maps,
our algorithm has selected uncluttered and class specific
fragments, since random background fragments are
highly unlikely to agree in position as well as appearance.
Within each subcluster, the central fragment �T with
the lowest average distance to the other fragments is used
as an exemplar, together with the mean �xf and radial
variance � of the centroid votes xf (cf. Fig. 2). We show
below how boosting selects particular subclusters to use as
the parts F ¼ ð �T; �xf ; �Þ in the model.

The clustering step is somewhat similar to that used in [33],
except that we cluster contour fragments rather than image
patches, and each resulting subcluster has only one particular
location relative to the centroid. Also observe that we have
taken a rather unconstrained approach to choosing contour
fragments. Research from psychology [17] analyzed theories
of how to split outline contours into fragments for optimal
recognition by humans, for example, at points of extremal
curvature. It would be interesting for future work to
investigate such ideas applied in a computer-based system.

4 OBJECT DETECTION

In this section, we describe how contour exemplars are
combined in a boosted sliding window classifier. Parts are
matched to an edge map using OCM with priors on their
spatial layout. The classifier is evaluated across the scale
space of the image, and mean shift produces a final set of
confidence-valued object detections. The only image in-
formation used by the detector is the edge map E,
computed using the Canny edge detector [12].

For an object centroid hypothesis with location x and
scale s, partF is expected to match the edge mapE at position
x̂ ¼ xþ s�xf , with spatial uncertainty s�. The chamfer dis-
tance is weighted with a cost that increases away from the
expected position, and minimizing this weighted distance
gives a degree of spatial flexibility, allowing parts to “snap”
into place. The location of the minimum is given by

x? ¼ arg min
x0

d
ð �T;EÞ
� ðx0; sÞ þ ws�ðkx0 � x̂k2Þ

� �
; ð12Þ

where w�ðxÞ is the radially symmetric spatial weighting
function2 for which we use the quadratic

w�ðxÞ ¼
x2

�2 if jxj � �
1 otherwise:

�
ð13Þ

The part response v at centroid hypothesis ðx; sÞ is defined as
the chamfer distance at the best match x?

v½F;��ðx; sÞ ¼ dð
�T;EÞ
� ðx?; sÞ ð14Þ

and this is used in the classifier, described next.

4.1 Detecting Objects

Sliding window classification [4], [25], [52] is a simple and
effective technique for object detection. A probability
P ðobjðx;sÞÞ of object presence at location ðx; sÞ is calculated
across scale space using a boosted classifier that combines
multiple part responses v (14). These probabilities are far
from independent: For example, the presence of two distinct
neighboring detections is highly unlikely. Hence, a mode
detection step selects local maxima as the final set of
detections.

One must choose a set X of centroid scale-space location
hypotheses, sampled frequently enough to allow detection
of all objects present. We use a fixed number of test scales,
equally spaced logarithmically to cover the range of scales
in the training data. Space is sampled over a regular grid
with spacing s�grid for constant �grid (optimized by holdout
validation). Increasing the spacing with scale is possible
since the search window in (12) is proportionally enlarged.
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Fig. 6. Clustering on appearance and centroid location. Example
subclusters that have low mutual chamfer distances (11) and agree on
centroid location. From top to bottom: “front legs,” “back,” “neck,” and
“head.” (a) Example members of the subcluster. (b) Exemplar contour
fragments (centers of the subclusters). (c) Votes (Xs) from the centroid
ðþÞ, with their mean �xfðþÞ and radial uncertainty � (red circle). Note that
we obtain uncluttered, class-specific exemplars, with an accurate
estimate of location and uncertainty relative to the object centroid.

Fig. 5. Clustering on appearance only. Four example clusters that
have low mutual chamfer distances (11), with (left) the cluster exemplar
and (right) the votes (small Xs) of all members for vector xf from the
object centroid ðþÞ. Observe (top left) a “legs” cluster has resulted in two
modes (front and hind) in the voting space. On the bottom row, we see
that (left) a very class specific “head” cluster has highly consistent votes,
whereas (right) a background cluster has uniformly scattered votes. To
produce a unique centroid vote and remove background fragments, a
subclustering step is performed.

2. The hard cutoff at � limits the search range and thus improves
efficiency. In practice, increasing the cutoff radius did not appear to
improve performance.



4.1.1 Classifier

We employ a boosted classifier to compute probabilities
P ðobjðx;sÞÞ. This combines part responses v (14) for parts
F1; . . . ; FM as

Hðx; sÞ ¼
XM
m¼1

am½v½Fm;�m�ðx; sÞ > �m� þ bm; ð15Þ

where ½�� is the zero-one indicator, and ð�; a; b; �Þ are learned
parameters (see ahead to Section 5). Each term in the sum
corresponds to a part in the model and is a decision stump
which assigns a weak confidence value according to the
comparison of part response v½Fm;�m� to threshold �m. The
weak decision stump confidences are summed to produce a
strong confidence H, which is then interpreted as a
probability using the logistic transformation [27]

P ðobjðx;sÞÞ ¼ 1þ expð�Hðx; sÞÞ½ ��1: ð16Þ

4.1.2 Mode Detection

We employ the powerful technique of mean shift mode
estimation [14] on the hypothesized locations ðx; sÞ 2 X ,
weighted by their scaled posterior probabilities s2P ðobjðx;sÞÞ,
similarly to that in [34]. Multiplying by s2 compensates for the
proportionally less dense hypotheses at larger scales. The
algorithm models the nonparametric distribution over the
hypothesis space with the kernel density estimator

P ðx; sÞ /
X

ðxi;siÞ2X
s2
i P ðobjðxi ;siÞÞ

K
xx � xx

i

hx
;
xy � xy

i

hy
;
log s� log si

hs

� �
;

ð17Þ

where Gaussian kernel K uses bandwidths hx, hy, and hs for
the x, y, and scale dimensions, respectively (the scale
dimension is linearized by taking logarithms). Mean shift
efficiently locates modes (local maxima) of the distribution
that are used as the final set of detections. The density estimate
at each mode is used as a confidence value for the detection.

5 LEARNING

We describe in this section how the classifierH (15) is learned
using the Gentle AdaBoost algorithm [27]. This takes as input
a set of training examples i, each consisting of feature vector f i
paired with target value zi ¼ �1 and iteratively builds the
classifier.

For our purposes, training example i represents location
ðxi; siÞ in one of the training images. The target value zi
specifies the presence ðzi ¼ þ1Þ or absence ðzi ¼ �1Þ of the
object class. The feature vector f i contains the responses
v½F;��ðxi; siÞ (14) for all codebook entries F , and all OCM

orientation specificities � from a fixed set �. A given
dimension d in the feature vector therefore encodes a
pair ðF; �Þ. The decision stump parameters a, b, and � are
learned, as described in [50].

We are free to choose the number, locations, and target
values of the training examples. One could densely sample
each training image, computing feature vectors for examples
at every point on a grid in scale space. This is however
unnecessarily inefficient because the minimization in (12)
means that neighboring locations often have near identical
feature vectors.

Instead, we use the sparse pattern of examples shown in
Fig. 7. For a training object at location ðx; sÞ, positive examples
are taken at the 3� 3� 3 scaled grid locations x0 ¼
xþ ðzxs

0	1; zys
0	1ÞT for scales s0 ¼ s
zs

1 , where ðzx; zy; zsÞ 2
f�1; 0;þ1g3. The grid is spaced by 	1 (scale-normalized) and
scaled by 
1. The positive examples ensure a strong
classification response near the true centroid, wide enough
that the sliding window classifier need not be evaluated at
every pixel. To ensure the response is localized, negative
examples are taken at positions x0 ¼ xþ ðzxs

0	2; zys
0	2ÞT for

scales s0 ¼ s
zs

2 with a larger spacing 	2 > 	1 and scaling

2 > 
1, and the same ðzx; zy; zsÞ but now excluding (0, 0, 0).
This particular pattern results in a total of 53 examples for
each object, which is vastly less than the total number of scale-
space locations in the image. For training images not
containing an object, we create all negative examples in the
same pattern, at a number of random scale-space locations.

Feature vectors are precomputed for all examples,
usually taking less than an hour on a modern machine.
Boosting itself is then very quick, taking typically less than a
minute to converge, since the weak learners are individu-
ally quite powerful. A cascade [52] is also learned, which
resulted in a five-fold reduction in the average number of
response calculations at test time.

5.1 Retraining on Training Data

It is unclear how to place the sparse negative training
examples optimally throughout the training images, and
hence, they are initially placed at random. However, once a
detector is learned from these examples, a retraining step is
used to bootstrap the set of training examples [56]. We
evaluate the detector on the training images and record any
false positives or negatives (see ahead to Section 6.1). The
classifier is then retrained on the original example set,
augmented with new negative examples at the locations of
false positives [16] and duplicate positive examples to
correct the false negatives. We demonstrate in Section 6.3.2
that this procedure allows more parts to be learned without
overfitting.

5.2 Retraining on Test Data

The same idea can be put to work on the test data, if one assigns
a degree of trust to the output of the classifier. One can take a
fixed proportion � (for example, � ¼ 10 percent) of detections
with strongest confidence and assume that these are correct,
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Fig. 7. Training examples. (a) A pattern of positive ð�Þ and negative
ð	Þ examples are arranged about the true object centroid (the central,
larger �). The positive and negative examples are spaced on grids of
size 	1 and 	2, respectively, scaled by the ground-truth object scale s.
The boosting algorithm trains from the feature vectors of part responses
(14) computed at these examples. (b) For images with no objects
present, all negative copies of the same pattern are placed at a number
of random scale-space locations. For clarity, only one scale zs ¼ 0 is
shown (see text).



positive detections, and of the same proportion with the
detections with the weakest confidence and assume that there
are no objects present at those locations. The boosted classifier
is retrained with the new positive and negative training
examples, further augmenting the training set.

6 EVALUATION

We present a thorough evaluation of the classification and
detection performance of our technique on several challen-
ging data sets, investigating different aspects of our system
individually and comparing against other state-of-the-art
methods. The standard experimental procedure is detailed
in Section 6.1, the description of the data sets in Section 6.2,
and the results in Section 6.3.

6.1 Procedure

The image data sets are split into training and test sets. Each
model is learned from the training set with only ground-
truth bounding boxes provided. At test time, the bounding
boxes are used only for evaluating accuracy.

Mode detection results in a set of centroid hypotheses and
confidences of object presence at these points. We assign a
scaled bounding box centered on each detection with aspect-
ratio proportional to that of the average training bounding
box. For a detection to be marked as correct, its inferred
bounding box binf must agree with the ground-truth bound-
ing box bgt based on an overlap criterion as

areaðbinf\bgtÞ
areaðbinf[bgtÞ > 0:5

(from that in [2]). Each bgt can match to only one binf , and so,
spurious detections of the same object count as false positives.
For image classification, we use the confidence of the single
most confident detection within each image.

The receiver operating characteristic (ROC) curve is used
to measure classification accuracy. This plots the trade-off
between false positives and false negatives as a global
confidence threshold is varied. The equal error rate (EER)
gives an easily interpretable accuracy measure, whereas the
area under the curve (AUC) takes the whole curve into
account and so gives a better measure for comparison
purposes.

For detection, we use two closely related measures. First,
the recall-precision (RP) curve plots the trade-off between
recall and precision as one varies the global threshold. For
comparison with previous work, we quote the EER measure
on the RP curve, but for new results, we report the more
representative AUC measure. The second measure plots
recall against the average number of false positives per
image (RFPPI) as the detection threshold is varied [25]. The
RFPPI curve seems more natural than RP for human
interpretation since it is monotonic and stabilizes as more
negative images are tested (the RP curve can only
deteriorate). However, it gives no overall quantitative score,
and so, the legends in Figs. 8 and 11 contain RP AUC
figures even though the graphs show RFPPI.

6.2 Data Sets

6.2.1 Weizmann Horses [10]

This is a challenging set of side-on horse images, containing
different breeds, colors, and textures, with varied articula-
tions, lighting conditions, and scales. Although nominally
viewed side-on, considerable out-of-plane rotation is
evident. We paired this with the difficult Caltech 101
background set [3], [19]. Although these images have

different textural characteristics, they contain many clutter
edges that pose a hard challenge to our contour-only
detector. Images were downsampled to a maximum
dimension of 320 pixels where necessary. The resulting
objects have a scale range of roughly 2:5� from the
smallest to the largest. The first 50 horse and background
images were used for training, the next 50 for holdout
validation, and the final 228 as the test set. We also compare
against our earlier work [46] using a single-scale horse
database. The data sets are available in [1].

6.2.2 Graz 17

We compare against [43] on their 17 class database (listed in
Table 2). As closely as possible, we use the same training and
test sets. Images are downsampled to a maximum dimension
of 320 pixels. For some classes, the resulting scale range is
more than 5� . We test each class individually and paired
with an equal number of background test images.

6.3 Results

6.3.1 Matching Measures

First, we compare the performance of the object detector
using several different matching measures: our proposed
OCM with learned � and with constant � 2 f0; 0:5; 1g,
standard 8-channel chamfer matching, and Hausdorff
matching. The experiment was performed against 100 images
in the Weizmann test set using 100 parts without retraining
(other parameter settings are specified below).

Fig. 8 superimposes the RFPPI curves for each matching
measure, and the legend reports the corresponding RP AUC
statistics. Observe that with no orientation information
(� ¼ 0, identical to 1-channel, non-OCM), performance is
very poor. The Hausdorff distance also fails to work well,
since it too does not use orientation information. The
8-channel chamfer matching performs fairly well, but by
modeling orientation continuously, our OCM (for � > 0)
performs as well or better, even if � is kept constant. The
RFPPI curve for � ¼ 1 appears almost as good as the learned
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Fig. 8. Detection performance of different contour matching
measures. Recall is plotted as a function of the number of false positives
per image averaged over the Weizmann test subset. The best
performance is obtained by our OCM technique with learned � parameter,
although fixed � ¼ 1 also performs well.



� curve, although the AUC numbers confirm that learning �

per part is noticeably better. However, the extra expense of

learning per-part � values may mitigate its quantitative

advantages in some applications.

6.3.2 Retraining

As described in Sections 5.1 and 5.2, one can bootstrap the

detector by retraining. For this experiment on the Weizmann

validation set, we recorded the RP AUC against the number of

parts: 1) without retraining, 2) retraining only on the training

data (“retrained training” in Figs. 9 and 11), and 3) retraining

both on the training and test data (“retrained test”). The

confidence parameter was set to � ¼ 10 percent.
We can draw several conclusions from the results in Fig. 9.

Adding more parts helps performance on the test data up to a

point, but eventually, the detector starts to overfit to the

training data and generalization decreases. By providing

more training examples by retraining on the training data, we

can use more parts without overfitting. Retraining on the test

data maintains the additional accuracy and gives a further

improvement on the full test set, as described below. With

only 40 parts, retraining on the test data decreases perfor-

mance, since the strongest and weakest detections are not

sufficiently reliable. Note that retraining does entail signifi-

cant extra effort for a relatively modest performance gain.

6.3.3 Approximate Chamfer Matching

All results in our evaluation make use of the approximation in

Section 3.1.3, whereby only a subset of fragment edgels are

used for chamfer matching. We used only every fifth edgel

(scan-line order) in each fragment, which gave a commensu-

rate speed improvement. We compared detection perfor-

mance with and without the approximation on the

Weizmann validation set using 100 features. With the

approximation, 0.9547 RP AUC was achieved, whereas

without the approximation (matching every edgel), only

0.9417 was obtained. We conclude that the approximation can

improve speed without degrading detection performance.

The slight improvement in performance may even be

significant, since the variance of the training part responses

is increased slightly, which may prevent overfitting.

6.3.4 Multiscale Weizmann Horses

We now evaluate on the full Weizmann data set, showing
example detections in Fig. 10 and quantitative results in
Fig. 11.

We draw several conclusions. First, we have shown that
retraining on both the training and test sets not only helps
generalization but also considerably improves performance.
Turning to that in Fig. 10, we observe that the detector works
very well on the challenging horse images, despite wide
within-class variation, considerable background clutter and
even silhouetting. Missed detections (false negatives) tend to
occur when there is significant pose change or out-of-plane
rotation beyond the range for which we would expect our
side-on detector to work. Training explicitly for these poses or
rotations, perhaps sharing features between views [50],
would allow detection of these objects. False positives occur
when the pattern of clutter edgels is sufficiently similar to our
model, as for example, the case (third column, last row) of the
man standing at the front of the horse, where in terms of image
edges the man’s legs look sufficiently similar to a horse’s front
legs. An investigation in [45] shows how cues based on texture
and color can be combined with contour fragments to remove
such false positives and improve overall performance.

Our C# implementation on a 2.2 GHz machine takes
approximately 2 hours to train and 10 seconds per image to
test. For these and all experiments, unless stated otherwise,
the following parameters were used. The DT truncation was
� ¼ 30, and fragments were randomly chosen with the
following transformation parameters: scaling sr ¼ 1:2, rota-
tion about the fragment center �r ¼ �

8 , (scale-normalized)
translation xr ¼ 0:05, and rotation about the centroid �r ¼ �

16 .
To learn the dictionary, 10,000 raw fragments, with edgel
density bounded as ð�1; �2Þ ¼ ð1%; 5%Þ, were clustered to
produce 500 exemplars. To learn the classifier, examples were
taken with grid spacings ð	1; 	2Þ ¼ ð0:03; 0:25Þ and scalings
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Fig. 9. Effect of retraining. Detection performance is graphed as a
function of number of parts (rounds of boosting). The initial detector
starts to overfit as the number of parts is increased above 100.
Retraining prevents this overfitting allowing an overall performance
improvement at the expense of more parts.

Fig. 10. Example detections for the Weizmann test set. Bounding
boxes around objects indicate detections: green represents correct
detections, red false positives, and yellow, the ground truth for false
negatives. The final column visualizes the contour fragments for the
neighboring detections. Note accurate scale-space localization in the
presence of variable object appearance, background clutter, silhouet-
ting, articulation, and pose changes.



ð
1; 
2Þ ¼ ð1:1; 1:4Þ. Three patterns of negative examples were
used for background images, and � was allowed values in
� ¼ f0; 0:2; . . . ; 1g. Evaluation used a grid spacing of �grid ¼
0:07 scaled by each of six test scales overM ¼ 100 rounds. The
top and bottom � ¼ 10 percent of detections were used for
retraining on the test set.

6.3.5 Training from Segmented Data

To investigate the ability of the codebook learning algo-
rithm to extract clean exemplars from unsegmented images,
we repeated the detection experiment on the Weizmann
data set, with the codebook now learned from segmented
training data. We obtained 0.8637 RP AUC, slightly worse
than the performance on unsegmented images (0.8903). This
slight drop in performance is not particularly surprising
given that no interior edges are present, but it does confirm
the power of the codebook learning algorithm.

6.3.6 Learned Edge Detection

The Canny edge detector [12] has thus far proved a capable
basis for our features. However, recent developments such as
the Berkeley edge detector [38] and boosted edge learning
(BEL) [18] take a more modern approach to edge detection,
whereby a model of edges is learned from training data. We
compared performance between the three edge detectors on
the Weizmann test set, without using retraining. Two BEL
models [18] were trained: one using natural image bound-
aries, the second using segmented horse images. The results
are summarized in Table 1.

The Berkeley detector performs considerably better than
Canny, especially for detection. Although the BEL trained
on natural images gave no improvement, the BEL trained
on segmented horse images performs the best of all
detectors. Note that current implementations of both
Berkeley and BEL are very much slower than Canny, and
so, these advances may not yet be useful in certain

applications. This experiment has shown that a modern
learned edge detector complements our object detection
system; future work remains to extend this evaluation to the
other data sets in this paper.

6.3.7 SVM Classification Benchmark

To compare contour fragments against interest-point-based
features and to determine the challenge that the Weizmann
horse data set poses, we evaluated a benchmark using an
SVM built on a bag-of-words representation [54]. In our
experiment, SIFT [36] were extracted and clustered into a
number of “words.” Histograms of word counts for each
image were computed, and a radial basis function SVM was
trained to discriminate between class and background
images. SVM parameters were optimized using cross
validation, as were the numbers of clusters.

The ROC curve for the SVM benchmark is shown in
Fig. 11a. We observe considerably worse performance than
our contour-based classifiers achieve. This suggests that the
varied textures of the objects in this data set cannot be
characterized well by local descriptors. Our contour-based
detector is however able to exploit the characteristic outline of
the objects.
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TABLE 1
Performance Using Different Edge Detectors

Fig. 11. Performance on the Weizmann test set. (a) ROC curves showing classification performance with the curve for the SVM benchmark

included (Section 6.3.7). (b) RFPPI curves showing detection performance. Note how both stages of retraining improve both classification and

detection performance.



6.3.8 Single-Scale Weizmann Horses

Using the single-scale Weizmann horse data set, we compare

against that in [46], where 92.1 percent RP EER was achieved

(using some segmented data). Experiments in [25] improved

accuracy to 94.2 percent RP EER using contour-based

features and to 95.7 percent by combining contour features

with local descriptors. Our method using no segmented

training data and only contour features obtained 95.68 per-

cent RP EER and 0.9496 RP AUC. This is as good as that in [25]

but without needing the additional feature type.

6.3.9 Graz 17

We conclude our evaluation by evaluating on the Graz 17

class data set. In Table 2, we compare our results with that

in [43] (which subsumes the results in [42]) and, in Fig. 12,

show example detections. Parameter values were un-

changed from the previous multiscale Weizmann experi-

ments, although the number of parts and number of scales

were optimized against the training data.

There are several conclusions to draw. First, for most

classes, we perform comparably with that in [43], and for the

larger (admittedly slightly more straightforward) data sets,

we show a significant improvement with almost perfect

performance on motorbikes. Classification proves easier than

detection in most cases, since strong but poorly localized

detections contribute positively to classification but nega-

tively to detection. Performance is worse for a few classes,

such as cars (2
3 rear) and cars (front), and poor for both

techniques for bikes (front) and people. There are few training

images for these classes, and objects exhibit considerably

more out-of-plane rotation. Also, the small number of test

images means that even one missed detection has a very large

effect on the RP EER (up to 100
N percent for N test images).

Much more significant therefore is our sustained improve-

ment for classes with more test images.

7 CONCLUSIONS AND FUTURE WORK

Our thorough evaluation has demonstrated that contour can

be used to successfully recognize objects from a wide variety

of object classes at multiple scales. Our new approximate

OCM outperformed existing contour matching methods and

enabled us to build a class-specific codebook of uncluttered

contour fragments from noisy training data. We observed

that retraining on both the training and test data can improve

generalization and test performance. Finally, we showed how

modern learned edge detection gave an improvement over

the traditional Canny edge detector.

7.1 Future Work

We are interested in developing a more principled method to

combine the classification probabilities from multiple sliding

windows. We plan also to investigate further our codebook of

contour fragments. The clustering algorithm is slightly

inefficient, and perhaps agglomerative clustering would be

faster. The codebook might also be used in a bag-of-words

model. Our investigation of modern edge detection algo-

rithms is also preliminary and more work is desirable here.
An eventual goal of object detection is both localization

and segmentation of the object from the background.

Preliminary segmentation results using our inferred object

bounding rectangles as initialization to GrabCut [44] show

promise. Individually segmented fragments could serve as

a segmentation prior, similarly to [32]. An alternative

method proposed in [55] is to learn to segment directly

from the image. Eventually, edge detection, segmentation,

and recognition should be combined at a fundamental level.
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TABLE 2
Classification and Detection Performance on the Graz 17 Data Set with Comparison to [43]
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