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Abstract This paper presents an incremental learning solu-
tion for Linear Discriminant Analysis (LDA) and its appli-
cations to object recognition problems. We apply the suf-
ficient spanning set approximation in three steps i.e. up-
date for the total scatter matrix, between-class scatter ma-
trix and the projected data matrix, which leads an online
solution which closely agrees with the batch solution in ac-
curacy while significantly reducing the computational com-
plexity. The algorithm yields an efficient solution to incre-
mental LDA even when the number of classes as well as
the set size is large. The incremental LDA method has been
also shown useful for semi-supervised online learning. La-
bel propagation is done by integrating the incremental LDA
into an EM framework. The method has been demonstrated
in the task of merging large datasets which were collected
during MPEG standardization for face image retrieval, face
authentication using the BANCA dataset, and object cate-
gorisation using the Caltech101 dataset.
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1 Introduction

Linear Discriminant Analysis (LDA) finds the linear pro-
jections of data that best separate two or more classes un-
der the assumption that the classes have equal covariance
Gaussian structures (Fukunaga 1990). LDA is an effec-
tive and widely employed technique for dimension reduc-
tion and feature extraction. LDA has been successfully ap-
plied to face recognition problems by combining it with:
raw intensity, filtered images, Gabor wavelet representa-
tions, or Local Binary Patterns, which is a popular his-
togram representation in many areas including pedestrian
detection (Wang et al. 2009), originally texture analysis
as well as face recognition (Chan et al. 2007). Usefulness
of dimension reduction methods such as Principal Com-
ponent Analysis (PCA) and LDA has been also proven in
object categorisation and action recognition problems e.g.
(Leibe and Schiele 2003; Kim et al. 2007; Winn et al. 2005;
Niebles et al. 2008). Various representations of object im-
ages, e.g. Bag of words (BoW) histograms and Scale In-
variant Feature Transform (SIFT) descriptors, have been fol-
lowed by a dimension reduction method. The obtained low-
dimensional vectors are then combined with classifiers or
generative models. PCA as a unsupervised learning method
has been a more often choice but supervised learning meth-
ods like LDA could be more useful when class information
is available as e.g. in Winn et al. (2005), Bouveyron et al.
(2004).
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Incremental (also called online) learning has become an
important topic in cognitive computer vision. Environments
are continually changing and, practically, the assumptions
are that a complete set of learning samples is not given in ad-
vance. An efficient update method is greatly needed to accu-
mulate the new information so that the system’s future accu-
racy is enhanced. The system needs to learn without explic-
itly accessing old data and the data model should be main-
tained compact when learning by new learning instances. It
is often beneficial to learn the LDA basis from large train-
ing sets, which may not be available initially. This motivates
techniques for incrementally updating the discriminant com-
ponents when more data becomes available. Compared to
online classifier (Support Vector Machine) learning, LDA
is a technique more about representation, further being able
to be combined with classifiers or any models as a meta-
algorithm.

A number of incremental versions of LDA have been sug-
gested, which can be applied to on-line learning tasks. Ye et
al. (2005) proposed an incremental version of LDA, which
includes a single new data point in each time step. A ma-
jor limitation is the computational complexity of the method
when the number of classes C is large, as the method in-
volves an eigendecomposition of C × C-sized scatter ma-
trices. The incremental LDA solution of Uray et al. (2007)
first performs incremental PCA then updates LDA bases.
The method similarly takes a single new data point as in-
put and suffers when C is large. Pang et al. (2005) intro-
duced a scheme for updating the between-class and within-
class scatter matrices. However, no incremental method is
used for the subsequent LDA steps, i.e. eigenanalysis of the
scatter matrices, which remains computationally expensive.
Gradient-based incremental learning of a modified LDA
was proposed by Hiraoka et al. (2000). Limitations of the
method are that it requires setting a learning rate. The learn-
ing complexity over a new data set is not analytically pro-
vided. To circumvent the difficulty of incrementally updat-
ing the product of scatter matrices in the LDA criterion,
Yan et al. (2004) used a modified criterion by computing
the difference of the between-class and within-class scat-
ter matrices and proposed an alternating solution with con-
vergence proof. However, this leads to regularization prob-
lems of the two scatter matrices. Lin et al. (2005) dealt with
online update of discriminative models for the purpose of
object tracking. Their task is binary classification, the dis-
criminative model and the update method are limited to the
two-class case. The prior-arts aforementioned can be parti-
tioned into two categories: methods directly updating dis-
criminant components as in Hiraoka et al. (2000), Yan et
al. (2004) and methods computing discriminant components
based on updated PCA components in Uray et al. (2007),
Lin et al. (2005), Ye et al. (2005). A closed-form solution to
directly update the discriminative components is hard to be

obtained. The methods in Hiraoka et al. (2000), Yan et al.
(2004) used a modified differentiable LDA criterion which
is not equivalent to that of the original LDA and resorted to
an iterative optimisation technique i.e. gradient-descent. In
the PCA-based methods (Uray et al. 2007; Lin et al. 2005;
Ye et al. 2005), no alternation is required but a single data
point is taken as input thus requiring too frequent updates.
The methods assume a small number of classes ignoring an
efficient update of the scatter matrix in the numerator of the
LDA criterion, i.e. the between-class scatter matrix.

Inspiration for incremental LDA can be drawn from work
on incremental PCA. Numerous algorithms have been de-
veloped to update eigenbases as more data samples arrive.
However, most methods assume zero mean in updating the
eigenbases except Hall et al. (2000), Skocaj and Leonardis
(2003) where the update of the mean is handled correctly. In
the methods (Hall et al. 2000; Skocaj and Leonardis 2003),
the size of the matrix to be eigendecomposed is reduced
by using the sufficient spanning set (a reduced set of ba-
sis vectors spanning the space of most data variation). As
the computation of the eigenproblem is cubic in the size of
the respective scatter matrix, this update scheme is highly
efficient. See Sect. 2.

It is also worth noting the existence of efficient algo-
rithms for kernel PCA and LDA (Chin and Suter 2006;
Tao et al. 2004). While studying the incremental learning
of such non-linear models is worthwhile, when consider-
ing recognition from large data sets, the computational cost
of feature extraction of new samples is as demanding as
updating the models (Kamei et al. 2002; Kim et al. 2005;
Manjunath et al. 2002). Also note that the LDA method in
Tao et al. (2004) assumes a small number of classes for the
update.

This paper proposes a three-step solution for incremental
LDA, which is accurate as well as efficient in both time and
memory. Based on an earlier version (Kim et al. 2007), this
work includes a more thorough analysis of time and space
complexity, discussions and new experiments. Matlab code
and data sets used in the experiments have been made pub-
licly available.1 In the proposed method, an LDA criterion
which is equivalent to the Fisher criterion, namely maximiz-
ing the ratio of the between-class and the total scatter matrix,
is used to better keep the discriminative information during
the update. First the principal components of the two scat-
ter matrices are efficiently updated and then the discrimi-
nant components are computed from these two sets of prin-
cipal components. The concept of sufficient spanning sets
is applied in each step, making the eigenproblems compu-
tationally efficient. The algorithm is also memory efficient
as it only needs to store the two sets of principal compo-
nents. The proposed algorithm does not require the itera-
tions in Hiraoka et al. (2000), Yan et al. (2004). The benefit

1http://mi.eng.cam.ac.uk/~tkk22.
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of the proposed algorithm over the methods (Lin et al. 2005;
Ye et al. 2005; Uray et al. 2007) lies in its ability to effi-
ciently handle large data sets with many classes. This is par-
ticularly important when the number of classes increases in
an online setting and thus a large number of object classes
have to be merged. It also handles a set of new data points
(as well as a single data point), thus not requiring frequent
updates. The result obtained with the proposed incremental
algorithm closely agrees with the batch LDA solution. Note
that previous studies have shown a gap in performance be-
tween incremental and batch LDA solutions (Tao et al. 2004;
Ye et al. 2005). We also propose an incremental LDA
method with label propagation. The proposed method in-
corporated into an EM-framework enables online learning
without the class labels of new train data being known. The
usefulness of the proposed solution is shown for object cate-
gorisation as well as face recognition tasks by various image
representations.

The paper is structured as follows: Sect. 2 briefly reviews
the incremental PCA method of Hall et al. (2000), which is
a base element of our method. Section 3 presents the new
incremental LDA algorithm. In Sect. 4 we show how it can
be applied to semi-supervised incremental learning by the
EM-based label propagation. We show the experimental re-
sults for the task of merging face databases for face image
retrieval, face authentication and general object categorisa-
tion in Sect. 5.

2 Incremental PCA

For a set of M data vectors, x ∈ R
N , the covariance matrix

is

C = 1/M�all x(x − μ)(x − μ)T (1)

where μ is the data mean. PCA decomposes the co-
variance matrix s.t. C � P�PT where P,� are the ma-
trices containing the first eigenvectors and eigenvalues.
Given two sets of data represented by eigenspace models
{μi ,Mi,Pi ,�i}i=1,2, the algorithm of Hall et al. (2000) ef-
ficiently computes the eigenspace model of the combined
data {μ3,M3,P3.�3}. The combined mean is obtained as
μ3 = (M1μ1 + M2μ2)/M3 and the combined covariance
matrix is

C3 = M1

M3
C1 + M2

M3
C2

+ M1M2

M2
3

(μ1 − μ2)(μ1 − μ2)
T , (2)

where {Ci}i=1,2 are the covariance matrices of the first two
sets and M3 = M1 + M2. The eigenvector matrix P3 can be
represented as

P3 = �R = h([P1,P2,μ1 − μ2])R, (3)

where � is the orthonormal matrix spanning the combined
covariance matrix i.e. the sufficient spanning set, R is a ro-
tation matrix, and h is an orthonormalization function (e.g.
QR decomposition) followed by removal of zero vectors.
Using this representation, the eigenproblem is converted
into a smaller eigenproblem as

C3 � P3�3PT
3 ⇒ �T C3� � R�3RT . (4)

By computing the eigendecomposition on the r.h.s. �3 and
R are obtained as the respective eigenvalue and eigenvec-
tor matrices. The eigenvector matrix to seek is given as
P3 = �R. Note the eigenanalysis on the r.h.s. only takes
O((d1 + d2 + 1)3) computations (d1, d2 are the number
of the eigenvectors stored in P1 and P2), whereas the
eigenanalysis in a batch mode on the l.h.s. of (4)) re-
quires O(min(N,M3)

3).

3 Incremental LDA

As noted by Fukunaga (1990), there are equivalent variants
of Fisher’s criterion to find the projection matrix U to maxi-
mize class separability of the data set:

arg max
U

|UT SBU|
|UT SW U| = arg max

U

|UT ST U|
|UT SW U|

= arg max
U

|UT SBU|
|UT ST U| , (5)

where

SB =
C∑

i=1

ni(mi − μ)(mi − μ)T (6)

is the between-class scatter matrix,

SW =
C∑

i=1

∑

x∈Ci

(x − mi )(x − mi )
T (7)

is the within-class scatter matrix,

ST =
∑

all x

(x − μ)(x − μ)T = SB + SW (8)

the total scatter matrix, C the total number of classes, ni the
sample number of class i, mi the mean of class i, and μ the
global mean. The LDA projection matrix U can be obtained
as the eigenvector matrix of S−1

W SB and one might think of
directly merging the two projection matrices U1,U2 sim-
ilarly to P1,P2 in the previous section. This, however, is
not right since the matrix S−1

W SB of the combined data is
not given as sum of the same of the first two sets (see be-
low for more discussions). The algorithm in this paper uses
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the third criterion in (5) and separately updates the princi-
pal components as the minimal sufficient spanning sets of
SB and ST . The scatter matrix approximation with a small
number of principal components (corresponding to signifi-
cant eigenvalues) allows an efficient update of the discrim-
inant components. The ST matrix rather than SW is used to
better keep discriminatory data during the update. E.g. if we
only kept track of the significant principal components of
SB and SW , any discriminatory information contained in the
null space of SW would be lost (note that any component
in the null space maximizes the LDA criterion). However,
as ST = SB + SW and both SB and SW are positive semi-
definite, it follows that

uT ST u = 0 ⇒ uT SW u = 0 ∧ uT SBu = 0, (9)

which means vectors in the null space of ST are also in the
null space of SB , and the eigenvectors of SB that have zero
eigenvalues do not contribute to classification. Theoretically,
such components at the present time can still reappear to
be contributive by have nonzero eigenvalues during updates,
but from the experiments showing the very close accuracy
of our method to that of the batch LDA, it seems that the
components of the least significant eigenvalues of ST have
an ignorable chance to be important in the LDA update.

The three main steps of the proposed incremental LDA
are:

1. Given two sets of data, each represented by an eigen-
space model, the principal components of the total scatter
matrix ST of the union set is computed by merging the
eigenspace models.

2. Similarly the principal components of the combined
between-class scatter matrix SB is updated by merging
the respective two eigenspace models.

3. The final step is to compute the discriminant components
U using the updated principal components of the previ-
ous steps.

The steps of the algorithm are explained in details in
Sects. 3.2, 3.3, 3.4.

3.1 Discussion

We conclude this section by giving more insight into the suf-
ficient spanning set concept. Generally, given a data matrix
A of R

N×M where N,M are the dimension and number of
input data vectors, the sufficient spanning set � can be de-
fined as any set of vectors s.t.

B = �T A, A′ = �B = ��T A � A. (10)

That is, the reconstruction A′ of the data matrix by the suf-
ficient spanning set should approximate the original data
matrix. Let A � P�PT where P,� are the eigenvector and

Fig. 1 Concept of sufficient spanning sets of the total scatter matrix
(similarly the between-class scatter matrix) (left) and the projected
matrix (right). The union set of the principal components P1,P2 or
Q1,Q2 of the two data sets and the mean difference vector μ1 −μ2 can
span the respective total or between-class scatter data space (left). The
projection and orthogonalization of the original components Q31,Q32
yields the principal components of the projected data up to rotation
(right). See the corresponding sections for detailed explanations

eigenvalue matrix corresponding to most energy. Then, PR
where R is an arbitrary rotation matrix can be a sufficient
spanning set:

A′ = ��T A � P�PT � A (11)

as RRT = PT P = I.
When combining two sets of data as in Sect. 2, the union

of the two matrices of principal components and the mean
difference vector in (3) can span all data points of the com-
bined set. The case in the three dimensional space is visual-
ized on the left of Fig. 1. The principal components of the
combined set are then found by rotating this sufficient span-
ning set according to data variance. Note that the efficient
sufficient spanning set can only be obtained in the case of
merging covariance matrices or scatter matrices (not prod-
ucts of scatter matrices) as the matrix of the union set to
eigendecompose is represented as the sum of the matrices
of the two sets explicitly as (2). The matrix (S−1

W SB)3 can
not be similarly decomposed into {(S−1

W SB)i}i=1,2 and thus
a small-sized sufficient spanning set can not be obtained.

3.2 Updating the Total Scatter Matrix

The total scatter matrix is approximated with a set of orthog-
onal vectors that span the subspace occupied by the data and
represent it with sufficient accuracy. The eigenspace merg-
ing algorithm of Hall et al. (2000), which merged covari-
ance matrices, is slightly modified in order to incrementally
compute the principal components of the total scatter ma-
trix: Given two sets of data represented by eigenspace mod-
els

{μi ,Mi,Pi ,�i}i=1,2, (12)

where μi is the mean, Mi the number of samples, Pi the ma-
trix of eigenvectors and �i the eigenvalue matrix of the i-th
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data set, the combined eigenspace model {μ3,M3,P3,�3}
is computed. Generally only a subset of dT,i eigenvectors
have significant eigenvalues and thus only these are stored
in �i and the corresponding eigenvectors in Pi .

We wish to compute the eigenvectors and eigenvalues
of the new eigenspace model that satisfy ST ,3 � P3�3PT

3 .

Since

ST ,3 = ST ,1 + ST ,2

+ M1M2/M3 · (μ1 − μ2)(μ1 − μ2)
T , (13)

where {ST ,i}i=1,2 are the total scatter matrices of the first
two sets, the eigenvector matrix P3 can be represented by a
sufficient spanning set � and a rotation matrix R as

P3 = �R = h([P1,P2,μ1 − μ2])R, (14)

where h is an orthonormalization function followed by re-
moval of zero vectors. See Fig. 1. Using the sufficient span-
ning set, a smaller eigenproblem is obtained as

ST ,3 = P3�3PT
3 ⇒ �T ST ,3� = R�3RT . (15)

By computing the eigendecomposition on the r.h.s. one ob-
tains �3 and R as the respective eigenvalue and eigenvec-
tor matrices. After removing nonsignificant components in
R according to the eigenvalues in �3, the minimal suffi-
cient spanning set is obtained as P3 = �R. Note the ma-
trix �T ST ,3� has the size dT,1 + dT,2 + 1 and the size of
the approximated combined total scatter matrix is dT,3 ≤
dT,1 + dT,2 + 1, where dT,1, dT ,2 are the number of the
eigenvectors in P1 and P2 respectively. Thus the eigen-
analysis here only takes O((dT,1 + dT,2 + 1)3) computa-
tions, whereas the eigenanalysis in batch mode (on the l.h.s.
of (15)) requires O(min(N,M3)

3), where N is the dimen-
sion of the input data. When a small new set is merged into
an existing data set, for which we have already computed
the eigenspace model, solving the eigenproblem for merg-
ing takes the major computational load of the entire update
process.2 See Sect. 3.5 for the total time and space complex-
ity.

3.3 Updating the Between-class Scatter Matrix

The between-class scatter matrix is incrementally updated
as the other ingredient for computing the discriminant com-
ponents. In the update of the total scatter matrix, a set of new

2When N � M , the batch mode complexity can effectively be O(M3)

as follows: ST = YYT , where Y = [. . . ,xi − μ, . . .]. SVD of Y s.t.
Y = U�VT yields the eigenspace model of ST by U and ��T as the
eigenvector and eigenvalue matrix respectively. YT Y = V�T �VT as
UT U = I. That is, by SVD of the low-dimensional matrix YT Y, the
eigenvector matrix is efficiently obtained as YV�−1 and the eigen-
value matrix as �T �. This greatly reduces the complexity when ob-
taining the eigenspace model of a small new data set in batch mode
prior to combining.

vectors are added to a set of existing vectors. The between-
class scatter matrix, however, is the scatter matrix of the
class mean vectors, see (17). Not only is a set of new class
means added, but the existing class means also change when
new samples belong to existing classes. Interestingly, the
proposed update can be interpreted as simultaneous incre-
mental (adding new data points) and decremental (removing
existing data points) learning.

The principal components of the combined between-class
scatter matrix can be efficiently computed from the two sets
of between-class data, represented by

{μi ,Mi,Qi ,�i , nij ,αij |j = 1, . . . ,Ci}i=1,2, (16)

where μi is the mean vector of the data set i, Mi is the to-
tal number of samples in each set, Qi are the eigenvector
matrices, �i are the eigenvalue matrices of SB,i , nij the
number of samples in class j of set i, and Ci the number
of classes in set i. The αij are the coefficient vectors of the
j -th class mean vector mij of set i with respect to the sub-
space spanned by Qi , i.e. mij � μi + Qiαij . The task is
to compute the eigenmodel {μ3,M3,Q3,�3, n3j ,α3j |j =
1, . . . ,C3} for the combined between-class scatter matrix.
To obtain the sufficient spanning set for efficient eigen-
computation, the combined between-class scatter matrix is
represented by the sum of the between-class scatter matrices
of the first two data sets, similar to (13). The between-class
scatter matrix SB,i can be written as

SB,i =
Ci∑

j=1

nij (mij − μi )(mij − μi )
T (17)

=
Ci∑

j=1

nij mij mT
ij − Miμiμ

T
i . (18)

The combined between-class scatter matrix can further be
written w.r.t. the original between-class scatter matrices and
an auxiliary matrix A as

SB,3 = SB,1 + SB,2 + A

+ M1M2/M3 · (μ1 − μ2)(μ1 − μ2)
T , (19)

where

A =
∑

k∈s

−n1kn2k

n1k + n2k

(m2k − m1k)(m2k − m1k)
T . (20)

The set s = {k|k = 1, . . . , c} contains the indices of the com-
mon classes in the two sets. The matrix A needs to be com-
puted only when the two sets have common classes, other-
wise it is simply set to zero. If we assume that each between-
class scatter matrix is represented by the first few eigenvec-
tors such that SB,1 � Q1�1QT

1 , SB,2 � Q2�2QT
2 , the suf-
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ficient spanning set for the combined between-class scatter
matrix can be similarly set as

� = h([Q1,Q2,μ1 − μ2]), (21)

where the function h is the orthonormalization function used
in Sect. 3.2. Note that the matrix A is negative semi-definite
and does not add dimensions to � . Thus, the sufficient span-
ning set can be a union set of the two eigen-components
and the mean difference vector. The negative semi-definite
matrix A can conceptually be seen as the scatter matrix of
the components to be removed from the combined data.
When ignoring the scale factors, the decremental elements
are m2i −m1i . This decreases the data variance along the di-
rection of m2i −m1i but the respective dimension should not
be removed from the sufficient spanning set. The resulting
variance reduction along this direction is taken into account
when removing eigencomponents of nonsignificant eigen-
values in the subsequent eigenanalysis.

Let dB,i and N be the size of Qi and the dimension
of input vectors, respectively. Whereas the eigenanalysis of
the combined between-class scatter in batch mode3 requires
O(min(N,C3)

3), the proposed incremental scheme requires
only O((dB,1 + dB,2 + 1)3) computation for solving

SB,3 = �R�3RT �T ⇒ �T SB,3� = R�3RT , (22)

where R is a rotation matrix. Note that dB,1 + dB,2 + 1
is the size of �T SB,3� . Finally, the eigenvectors of the
combined between-class scatter matrix, which are memo-
rized for the next update, are obtained by Q3 = �R af-
ter the components having zero eigenvalues in R are re-
moved, i.e. dB,3 ≤ dB,1 + dB,2 + 1. All remaining parame-
ters of the updated model are obtained as follows: μ3 is
the global mean updated in Sect. 3.2, M3 = M1 + M2,
n3j = n1j + n2j ,α3j = QT

3 (m3j − μ3), where m3j =
(n1j m1j + n2j m2j )/n3j .

3.4 Updating Discriminant Components

After updating the principal components of the total scat-
ter matrix and the between-class scatter matrix, the dis-
criminative components are found using the updated total
data {μ3,M3,P3,�3} and the updated between-class data
{μ3,M3,Q3,�3, n3j ,α3j |j = 1, . . . ,C3} using the new

sufficient spanning set. Let Z = P3�
−1/2
3 , then ZT ST ,3Z = I.

As the denominator of the LDA criterion is the identity
matrix in the projected space, the optimization problem
is to find the components that maximize ZT SB,3Z s.t.

3 The batch solution of the between-class scatter matrix can be com-
puted using the low-dimensional matrix similarly to the total scat-
ter matrix when N � C. Note SB,i = YYT , Y = [. . . ,√nij (mij −
μi ), . . .].

WT ZT SB,3ZW = � and the final LDA components are ob-
tained by U = ZW. This eigenproblem of the projected data
can be solved using the sufficient spanning set defined by

� = h([ZT Q3]). (23)

See the right of Fig. 1. The original components are pro-
jected and orthogonalised to construct the sufficient span-
ning set. The principal components of the projected data can
be found by rotating the sufficient spanning set. By this suf-
ficient spanning set, the eigenvalue problem changes into a
smaller dimensional eigenvalue problem by

ZT SB,3Z = �R�RT �T

⇒ �T ZT SB,3Z� = R�RT . (24)

The final discriminant component is given as

ZW = Z�R. (25)

This eigenproblem takes O(d3) time, where d is the num-
ber of components of �, which is equivalent to dB,3, the size
of Q3. Note that in LDA, dT,3, the size of P3 is usually larger
than dB,3 and therefore the use of the sufficient spanning
set further reduces the time complexity of the eigenanaly-
sis: O(d3

T ,3) → O(d3
B,3). The pseudocode of the complete

incremental LDA algorithm is given in Table 1.

3.5 Time and Space Complexity

So far we have mainly considered the computational com-
plexity of solving the eigenproblem for merging two data

Table 1 Pseudocode of incremental LDA

Algorithm 1. Incremental LDA (ILDA)

Input: The total and between-class eigenmodels of an existing data
set, {P1, . . .}, {Q1, . . .} and a set of new data vectors

Output: Updated LDA components U

1. Compute {P2, . . .}, {Q2, . . .} from the new data set in batch mode
(see footnotes 2, 3).

2. Update the total scatter matrix for {P3, . . .}:
Compute ST ,3 by (13) and {ST ,i}i=1,2 � Pi�iPT

i .

Set � by (14) and compute the principal components R of
�T ST ,3�. P3 = �R.

3. Update the between-class scatter for {Q3, . . .}:
Obtain SB,3 from (19), {SB,i}i=1,2 � Qi�iQT

i and mij � μi +
Qiαij .

Set � by (21) and eigendecompose �T SB,3� for the eigenvector
matrix R. Q3 = �R.

4. Update the discriminant components:

Compute Z = P3�
−1/2
3 and � = h([ZT Q3]).

Eigendecompose �T ZT Q3�3QT
3 Z� for the eigenvector matrix R.

U = Z�R.
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Table 2 Comparison of time and space complexity: The savings of
incremental LDA are significant as usually M3 � dT,3 ≥ dB,3. N is the
data dimension and M3,C3 are total number of data points and classes,
respectively, dT,i , dB,i are the dimensions of the total and between-
class scatter subspaces

Batch LDA Inc LDA

Time O(NM2
3 + min(N,M3)

3) O(d3
T ,1 + d3

B,1 + NdT,3dB,3)

Space O(NM3 + NC3) O(NdT,3 + NdB,3)

sets represented as the eigenspace models. This section pro-
vides a more detailed analysis of the total update complexity.
Batch LDA has a space complexity of O(NM3 + NC3) and
a time complexity of O(NM2

3 + min(N,M3)
3).

In the proposed incremental LDA, for the update of the
principal components of the total scatter matrix, we only
need to keep track of the data associated with {μ3,M3,

P3,�3} taking O(NdT,3) space. The total process can be
partitioned into the merging and solving the eigenproblem
of the new data set. Note that the computation cost of the
orthonormalization in (14) and the necessary matrix prod-
ucts in (15) can be efficiently reduced by exploiting the or-
thogonality of the eigenvectors (Hall et al. 2000). This cost
is bounded by O(NdT,1dT,2) and the eigendecomposition
takes O(d3

T ,3). The eigenanalysis of the new data set is com-

puted in O(NM2
2 + min(N,M2)

3).
Similarly only {μ3,M3,Q3,�3, n3j ,α3j |j = 1, . . . ,C3}

is required to be stored for the update of the between-
class scatter matrix, taking O(NdB,3). The computational
complexity of this update is O(NdB,1dB,2 + d3

B,3), and

O(NC2
2 + min(N,C2)

3) for the merging and the eigen-
analysis of the new set respectively.

The final LDA components are computed only from the
two sets of data above in time O(NdT,3dB,3).

Table 2 provides a comparison of the batch and the pro-
posed incremental LDA in total time complexity and space
complexity, when the additional set is relatively small com-
pared to the existing set, i.e. M2 � M1.

The computational saving of the incremental solution
compared to the batch version is large as normally M3 �
dT,3 ≥ dB,3. Both time and space complexity of the pro-
posed incremental LDA are independent of the size of the
total sample set and the total number of classes. The impor-
tant observation from the experiments (see Table 3) is that
the dimensions dT,3 and dB,3 do not increase significantly
when new data is successively added.

4 Semi-supervised Incremental Learning by Label
Propagation

Unlike incremental learning of generative models (Hall et al.
2000; Skocaj and Leonardis 2003), discriminative models

such as LDA, require the class labels of additional samples
for the model update. The proposed incremental LDA can
be incorporated into a semi-supervised learning algorithm so
that the LDA update can be computed efficiently without the
class labels of the additional data set being known. For an
overview of semi-supervised learning, including an explana-
tion of the role of unlabeled data, see Zhu (2006). Although
graph-based methods have been widely adopted for semi-
supervised learning (Zhu 2006), a classic mixture model
has long been recognized as a natural approach to model-
ing unlabeled data. The mixture model makes predictions
for arbitrary new test points and typically has a relatively
small number of parameters. Additionally, mixture models
are compatible with the proposed incremental LDA method
under the assumption that classes are Gaussian-distributed
(Fukunaga 1990). Here, standard EM-type learning is em-
ployed to generate the probabilistic labels of the new sam-
ples. Running EM in the updated LDA subspaces allows for
accurate estimation of the class labels. We iterate the E-step
and M-step with all data vectors projected into the LDA sub-
spaces (similar to Wu and Huang 2000), which are incre-
mentally updated in an intermediate step. The class posterior
probabilities of the new samples are set to the probabilistic
labels.

4.1 Incremental LDA with EM

The proposed EM algorithm employs a generative model
with the most recent LDA projection U by

P(UT x|�) =
C∑

k=1

P(UT x|Ck;�k)P (Ck|�k), (26)

where class Ck, k = 1, . . . ,C is parameterized by �k, k =
1, . . . ,C, and x is a sample of the initial labeled set L and
the new unlabeled set U . The E-step and M-step are iterated
to estimate the MAP model over the projected samples UT x
of the labeled and unlabeled sets. The proposed incremen-
tal LDA is performed every few iterations on the data sets
{xj , yj |xj ∈ L} and {xj , y

′
jk|xj ∈ U , k = 1, . . . ,C}, where

yj is the class label and y′
jk is the probabilistic class label

given as the class posterior probability

y′
jk = P(Ck|UT xj ). (27)

We set

m2i =
∑

j xj y
′
ji∑

j y′
ji

, n2i =
M2∑

j=1

y′
ji , (28)

for the update of the between-class scatter matrix. All other
steps for incremental LDA are identical to the description in
Sect. 3 as they are independent of class label information.
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4.2 Discussion

Using a common covariance matrix for all class models
�k, k = 1, . . . ,C rather than C covariance matrices is more
consistent with the assumption of LDA (Fukunaga 1990)
and can additionally save space and computation time dur-
ing the M-step. The common covariance matrix can be
conveniently updated by UT (ST ,3 − SB,3)U/M3, where
ST ,3,SB,3 are the combined total and between-class scat-
ter matrices, which are kept track of in the incremental LDA
as the associated first few eigenvector and eigenvalue matri-
ces. The other parameters of �k are also obtained from the
output of the incremental LDA algorithm.

So far it is assumed that the new data points are in one
of the existing classes, but this is not necessarily the case.
Samples with new class labels can be screened out so that
the LDA update is not biased to those samples by

y′
jk = P(Ck|UT xj ) · P({Ck}k=1,...,C |UT xj ), (29)

where P({Ck}k=1,...,C |UT xj ) denotes a probability of a hy-
per class. We can set this probability as being close to zero
for samples with new class labels.

The projection to the LDA subspace helps the data vec-
tors be class-wise Gaussian distributed, but it is yet limited
to the linear transformation. Any non-linear models or spec-
tral analysis (Cheng et al. 2009) may be further considered
in future.

5 Experimental Results

All experiments were performed on a 3 GHz Pentium 4 PC
with 1GB RAM. The Matlab code for the proposed incre-
mental LDA method and the data set used are publicly avail-
able.4

5.1 Face Image Retrieval

The algorithm is applied to the task of face image retrieval
from a large database.

5.1.1 Database and Protocol

In the experiments we followed the protocols of evaluat-
ing face descriptors for MPEG-7 standardization (Kim et
al. 2005). Many MPEG-7 proposals, including the winning
method, have adopted LDA features as their descriptors
(Kamei et al. 2002; Kim et al. 2005). A descriptor vector
is extracted without knowledge of the test subject’s identity,
i.e. its statistical basis should be generated from images of

4See footnote 1.

subjects other than those in the test set. Each image in the
test database is used as a query image to retrieve other im-
ages of the same subject. As it is necessary to learn the LDA
basis from a very large training set, which may not be avail-
able initially, the proposed algorithm can be used to suc-
cessively update the LDA basis as more train data becomes
available. An experimental face database was obtained con-
sisting of the version 1 MPEG data set (635 persons, 5 im-
ages per person), the Altkom database (80 persons, 15 im-
ages per person), the XM2VTS database (295 persons, 5 im-
ages per person), and the BANCA database (52 persons, 10
images per person). The version 1 MPEG data set itself con-
sists of several public face sets (e.g. AR, ORL). All 6370 im-
ages in the database were normalized to 46×56 pixels using
manually labeled eye positions. See Fig. 2. The images for
the experiments were strictly divided into training and test
sets. All basis vectors were extracted from the training set.
All test images were used as query images to retrieve other
images of the corresponding persons (called ground truth
images) in the test data set. As a measure of retrieval perfor-
mance, we used the average normalized modified retrieval
rate (ANMRR) (Manjunath et al. 2002). The ANMRR is 0
when images of the same person (ground truth labeled) are
ranked on top, and it is 1 when all images are ranked outside
the first m images (m = 2NG, where NG is the number of
ground truth images in the test data set).

The training set was further partitioned into an initial
training set and several new sets which are added succes-
sively for re-training. We performed three experiments us-
ing the combined set of MPEG and XM2VTS database, the
Altkom and BANCA database. For the MPEG and XM2VTS
database, the total number of classes (persons) is 930 and
each class has 5 images. The data set was divided into 465
persons for training and 465 persons for testing. The train-
ing set initially consists of 93 persons (5 images per per-
son) and is augmented 10 times by 37 persons (5 images
per person) each time. The new train sets, thus, contain the
images of new classes. We also performed the experiments
for the Altkom and BANCA database separately where ad-
ditional sets contain new images of existing classes in the
initial training set. For the Altkom database, the total data
set was divided into 40 persons for training and 40 persons
for testing. The BANCA database was similarly equally di-
vided into 26 persons for training and 26 persons for testing.
See Sect. 5.1.3 for the detailed settings on the Altkom and
BANCA datasets.

We report the retrieval performance (ANMRR) and the
computation time during updates. In the incremental LDA
method, initially, the eigenspace models of the total and
between-class scatter matrices of the first train set are built
in batch mode and the LDA projection is computed using the
eigenspace models. Whenever a new train set is added, the
eigenspace models of the new train set are obtained in batch
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Fig. 2 Face image data set:
(a) The version 1 MPEG
dataset. (b) XM2VTS dataset.
(c) Altkom dataset. (d) BANCA
dataset

Fig. 3 Database merging experiments for the MPEG + XM2VTS data
set: The solution of incremental LDA (with the true class labels of new
data) closely agrees to the batch solution while requiring much lower
computation time. (a) Retrieval inaccuracy (ANMRR). (b) Computa-

tional cost. (c) The update time for the methods in Ye et al. (2005),
Uray et al. (2007) significantly increases when the number of classes
is large

mode, merged with those of the previous, then the LDA pro-
jection is computed using the merged eigenspace models.
Therefore, the initial computation time is dependent on the
size of the first train set and the computation time of subse-
quent updates is determined by the additional set size, which
is fixed, and the subspace dimensions, which are varying ac-
cordingly to data variance, during updates. The subspace di-
mensions are automatically chosen accordingly to the vari-
ance of the merged data in each update.

5.1.2 Results on MPEG + XM2VTS by Adding New
Classes

The accuracy of the incremental solution is seen in Fig. 3(a).
Incremental LDA yielded nearly the same accuracy as batch
LDA. The computational costs of the batch and the incre-
mental version are compared in Fig. 3(b). Whereas the com-
putational cost of the batch version increases significantly as
data is successively added, the cost of the incremental solu-
tion remains low (almost constant).

The incremental solution yields essentially the same ac-
curacy as batch LDA, provided enough components are

stored of the total and between-class scatter matrices. This
is an accuracy vs. speed trade-off: using less components is
beneficial in terms of computational cost. See Fig. 4 for the
performance of the proposed method with different number
of components. Using more components gave better accu-
racy but increased the computational time. The computation
time of the method except the blue line remains low and
approximately constant during the update after the first two
steps (the additional set size is fixed and the merged data
variance dose not largely change). In the incremental learn-
ing, we chose the subspace dimensions, dT,3, dB,3, to rep-
resent most data energy from the eigenvalue plots.5 Table 3
shows the number of components selected during the exper-
iment using the MPEG + XM2VTS data set. Even if the total
number of images or classes increases, the number of com-
ponents does not increase significantly (actually it remains
almost constant). This means that finding new directions of

5Note that accuracy of LDA is dependent on the subspace dimension
of the total scatter matrix and the number of discriminant components.
They were set to be the same for batch LDA and incremental LDA.
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Fig. 4 Performance of
incremental LDA for the
different subspace dimensions:
Identification rate (left) and
computation time (right) on the
MPEG + XM2VTS experiment.
Each line is indexed by
mean/stddev. of dT,3 and
mean/stddev. of dB,3

Table 3 Efficient LDA update: Despite the large increase in the number of images and classes, the number
of required principal components, dT,3 and dB,3, remains small during the update process implying that
computation time remains low

LDA update M3 [# images] C3 [# classes] dT,3 [dim(St,3)] dB,3 [dim(Sb,3)]

1[first]–10[final] 465–2315 93–463 158–147 85–85

the components was sufficient to reflect the variation of the
increasing data, not adding new dimensions.

Pang et al. (2005) have addressed only the efficient up-
date of scatter matrices for LDA leaving the crucial step,
subspace analysis, be the same as batch computation. For all
our experiments, the scatter matrices are efficiently updated
by (13) and (19) in both batch and incremental solutions.
Therefore, the batch LDA in the experiment is very close
to Pang et al.’s method, which costs much more time than
the proposed incremental LDA method. We have also imple-
mented Ye et al.’s incremental LDA method (Ye et al. 2005).
Note that the original algorithm of Ye et al.’s can only take a
single new data point. The incremental PCA method of Hall
et al. (2000) is integrated into the algorithm to take a set of
new data points: the update of the within-class scatter matrix
is done by the incremental PCA and the rest of steps remains
the same except that they are processed for a chunk of new
data, not for a individual data point. Running the original al-
gorithm 37 × 5 times (we add 37 × 5 images) in each time
update for the experiments is highly time-demanding, as the
algorithm involves the process of O(C3) computations (C
is the number of classes), which is similar to Uray et al.
(2007). As shown in Fig. 3(c), the computation time of Ye
et al.’s method yet significantly grows compared to the pro-
posed method when the number of classes becomes large.
The cost of our incremental LDA method is comparable to
that of Hall et al.’s incremental PCA method while giving
a much higher retrieval accuracy as shown in Fig. 3(a). The
computation time of the incremental PCA and LDA methods
in Fig. 3(c) is dependent on the dimension of the eigenspace
models used. They were automatically chosen according to
the accumulated data variance, which varied by different im-

ages to add in each step. Overall, from a certain point, they
remain approximately constant not increasing.

5.1.3 Results on Altkom, BANCA by Updating Existing
Classes and Semi-supervised Incremental LDA

Figure 5(a)–(c) shows the label propagation accuracy, i.e.
the ratio of the number of correctly estimated samples and
the total number of unlabeled samples, for the Altkom,
BANCA and ETH80 dataset respectively. For the Altkom
dataset (Fig. 2(c)), we use 40 persons, 15 images per per-
son. The leftmost 3 to 13 images per person are labeled and
the rest of images are unlabeled. For the BANCA dataset
(Fig. 2(d)), we use 260 images of 26 persons and use the
leftmost 3,5,7,9 labeled images per person and the rest
of it unlabeled. For evaluating the proposed method over
other label propagation methods, we use the ETH80 dataset
(Leibe and Schiele 2003). It contains 8 object categories as
shown in Fig. 6 and in each category there are 10 differ-
ent objects, and for each object there are 41 different poses.
We randomly draw 9,18,27, . . . ,81 labeled samples of ap-
ples, pears and tomatoes (10-fold cross-validation was per-
formed) as in Cheng et al. (2009) (we directly compare the
accuracies reported in Cheng et al. (2009)). 20 × 20 pixel
gray-value images were used. LDA was computed with the
labeled train data and class label estimation of the unlabeled
samples, which was obtained by the maximum posterior
probabilities (27). The EM algorithm in the LDA subspace
converged after ten iterations in all three experiments. The
label propagation accuracy reasonably improves when more
labeled images are used as shown in Fig. 5(a)–(c). The pro-
posed method delivers the comparable accuracy to Linear
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Fig. 5 Performance of semi-supervised incremental LDA: Label prop-
agation accuracy based on the semi-supervised learning for (a) Altkom
(b) BANCA (c) ETH80 dataset. The proposed method exhibits com-
parable accuracy to Sparsity Induced Similarity (SIS) (Cheng et al.
2009), Gaussian Kernel Similarity (GKS) (Belkin and Niyogi 2004),
Linear Neighborhood Propagation (LNP) (Wang and Zhang 2007) and
K-Nearest Neighbor (KNN) method on the ETH80 dataset. Retrieval
inaccuracy (ANMRR) and computation costs for the Altkom database

when the amount of initial labeled data is (d, g) 33 percent (e, h) 67
percent, and (f, i) for the BANCA database when the half of the train
set is labeled. Semi-supervised incremental LDA method decreases the
retrieval inaccuracy without the class labels of new training data being
available, while being as time-efficient as incremental LDA with given
labels. The accuracy difference between the two methods is smaller
when using more labeled data

Fig. 6 ETH80 data set contains 8 different object categories

Neighborhood Propagation (LNP) (Wang and Zhang 2007)
method, outperforming Gaussian Kernel Similarity (GKS)
(Belkin and Niyogi 2004) and K-Nearest Neighbor (KNN)
method. It lags behind Sparsity Induced Similarity (SIS)
(Cheng et al. 2009) method in accuracy, but note that the
proposed method is an efficient incremental method whereas

the SIS is a purely batch method that is hard to cope with
a large scale dataset in both memory and time. Despite a
standard EM incorporated into our method, the LDA learns
a class-discriminative subspace, greatly facilitating the label
propagation. The label propagation accuracy of the proposed
method may be further improved by combining it with spec-
tral analysis (Belkin and Niyogi 2004), sparsity measures
(Cheng et al. 2009), etc, which remains as our future work.

Figure 5(d)–(i) shows the results of face image re-
trieval by incremental learning with new images of exist-
ing classes. It compares the proposed semi-supervised in-
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Table 4 Label error accumulation during the update: The number
of mislabeled samples/the total train size, during updates, is reported
based on the proposed semi-supervised learning for the three different
initial points (IP1 and IP2 for Altkom, IP3 for BANCA dataset). Error
accumulation of IP2 is smaller than that of IP1 owing to more labeled
initial data

Init 1st 2nd 3rd 4th 5th

IP1 0.00 10.00 13.89 17.50 19.42 22.00

IP2 0.00 1.36 2.92 4.62 6.25 8.33

IP3 0.00 4.49 13.19 18.27 22.22 26.15

cremental LDA, the semi-supervised batch LDA, the incre-
mental LDA and the batch LDA. As in the previous sec-
tion, the whole data set is partitioned into the two halfs,
one for training the LDA bases, and the other for evaluat-
ing the retrieval performance. The true class labels of the
initial train data are given for the semi-supervised methods,
while all train data are labeled for the incremental and batch
LDA methods. In the semi-supervised methods, the train
data points are projected into the LDA subspace with the
most recent LDA components computed either by the incre-
mental or batch method before the EM iteration. The LDA
is carried out using the probabilistic labels (27) by EM. The
EM algorithm converged typically after ten iterations. We
took the two points in Fig. 5(a) denoted as IP1 and IP2: for
IP1 the leftmost 5 images per person (Fig. 2(c)) are used as
the initial labeled train set and the next 2 images per person
are added without labels at each update having 5 updates in
total (40 persons), and for IP2 the leftmost 10 images are
initially labeled and the single next image is added without
labels each time having 5 updates in total (26 persons). Sim-
ilarly, for IP3 in Fig. 5(b), the leftmost 5 images per person
(Fig. 2(d)) serve as the initial labeled train set and the next
image per person as unlabeled new train data each time, thus
having 5 updates in total. The retrieval accuracies are shown
in Fig. 5(d)–(f) and the computation time in Fig. 5(g)–(i) for
IP1, IP2 and IP3 respectively. The incremental LDA gives
the close accuracy to that of the batch LDA at much lower
computation time. The semi-supervised solution effectively
decreases the retrieval inaccuracy even without the class la-
bels of new train data and its incremental solution yields
the same solution as the batch version. Table 4 shows the
label propagation error accumulated during the update. As
shown in Fig. 5(d)–(f), the accuracy gap between the semi-
supervised methods and supervised methods grew as more
label errors were accumulated. However, the error accumu-
lation is reasonably slow and the proposed method continu-
ally improves the retrial accuracy owing to the use of proba-
bilistic soft labels which mitigate the effect of wrong labels.
The accuracy loss by the semi-supervised methods is smaller
as more labeled initial train data are used (see Fig. 5(d), (e)).
The cost of semi-supervised LDA methods is slightly higher

Fig. 7 Basis update: The first two LDA components are shown at each
update. Whereas the first components are rather steady, the second
components are gradually changed, i.e. updated. The bases incremen-
tally updated look almost identical to those of batch computation for
both supervised and semi-supervised learning. Those learnt by the pro-
posed semi-supervised method also look similar to those of the method
using labels of new samples

than that of supervised methods, as the EM iterations are
performed in the low-dimensional (equivalent to the number
of classes-1) LDA subspace. Note that the semi-supervised
incremental LDA requires far lower computation time than
the batch LDA. The computation time in Fig. 5(g), (h), (i)
is measured as in the MPEG-XM2VTS experiment. There-
fore, the initial time is dependent on the size of the first train
set and the time for subsequent updates by the additional set
size, which is fixed, and the subspace dimensions, which are
varying for the variance of the merged data each time.

See Fig. 7 for the updated bases. The bases incrementally
updated look almost identical to those of batch computa-
tion for both supervised and semi supervised learning. We
have also measured cross-correlations (i.e. similarity in di-
rection not scale) of the LDA vectors computed by the batch
method and the proposed incremental method. The Altkom
database of 80 classes (2 images per class) was divided into
two disjoint sets and the two sets were merged by the meth-
ods. The size of the first set was increasing (from 1 to 79 for
the number of classes) along the x-axis of Fig. 8 (left) with
the second set accordingly decreasing. Figure 8 (left) shows
the mean values of cross-correlations of all 79 (the number
of classes-1) vectors. It tends to have a lower peak when the
two sets are of the same size. Regardless of the set size (even
if a set is very small), the log of cross-correlations were very
close to zero (when perfect match), which has been similarly
observed in Hall et al. (2000). See also the example pairs of
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Fig. 8 Cross-correlations of the
LDA components computed by
the batch method and the
incremental method

the highly-correlated and less-correlated with their values in
the figure. Figure 8 (right) shows the mean value of cross-
correlations over all merging for different components.

5.2 Face Authentication Using the BANCA Database

The BANCA database is one of the most popular bench-
mark datasets for face verification. The dataset has face im-
ages of 260 persons in 5 different languages, but only the
English subset, a total of 52 persons, is used in the com-
petitions (Messer et al. 2004; Poh et al. 2009). The 52 per-
sons are divided into two sets of users, which are called G1
and G2, respectively, each set having 13 males and 13 fe-
males. When G1 is used as a development set (to build the
user’s template/model i.e. LDA in our method), G2 is used
as an evaluation set. Their roles are then switched for two-
fold cross-validation. For each face, there are 12 images col-
lected. We used the match controlled (Mc) protocol, which
is adopted in both still-based (Messer et al. 2004) and video-
based competition (Poh et al. 2009). In the Mc protocol, ses-
sion 1 data is used for enrolment whereas the data from ses-
sions 2, 3, 4 are reserved for testing. Example images of ses-
sions 1–4 are the leftmost four images in Fig. 2(d). Note that
a sequence of images is used in the video-based competition
(Poh et al. 2009) while a single image in the still-based com-
petition (Messer et al. 2004). We used the pre-registered face
images provided (Messer et al. 2004). The accuracy mea-
surement is the Weighted Error Rate (WER) for the test data
of groups G1 and G2 at the three different values of R. The
WER is defined as WER(R) = (FRR + R · FAR)/(1 + R),
where FRR and FAR are the false rejection rate and false
acceptance rate respectively.

In the proposed method, face images are represented as
Multi-Scale Local Binary Patterns (Chan et al. 2007) and
the incremental LDA is applied to the histogram vectors. An
image is first divided into m × n non-overlapping blocks.
For each pixel in every block the change in the relative in-
tensity values of the neighboring pixels (P ) that are at a dis-
tance R from it is calculated. For a given block b, P and R,

a histogram Hb
(P,R) of these changes is obtained by bagging

them into h ∈ [0, (P − 1)P + 2] bins. Individual bins in the
histogram represent either the orientation of edge, a max-
ima/minima location or otherwise. The histograms of var-
ious values of P and R in a given block are concatenated
into a column vector, [Hb

(P,R)],∀P,R. Chan et al. have sug-
gested the values for R ∈ [1,10],P = 8 and m,n are taken
to be equal to 4 giving a feature vector of length of 590 per
block, 16 blocks in total. LDA is trained using the images
of the development set and 10 randomly perturbed enroll-
ment images of the evaluation set. LDA is applied to each
block, having 16 LDA projection matrices learnt in total.
The similarity score of two face images is given as the sum
of cross-correlations of the projected vectors over 16 blocks.

Figure 9 (left) and (right) shows the weighted error rate
(WER) and computational time of the batch LDA and the
incremental LDA method, when the images of two persons
were initially given and the images of two more persons
were added each time having 13 updates in total. Compu-
tation time of all 16 LDA projection matrices on the his-
togram vectors was measured. The WER decreases as more
train images are used. The incremental LDA method de-
livers the close accuracy to the batch LDA at much lower
computational time for both G1 and G2. Figure 10 shows
the DET curves, whose x-axis is FRR and y-axis is FAR,
of the proposed method at the final update (i.e. using all
26 persons of the development set defined by the Mc pro-
tocol). Table 5 compares the performance of our method
with the top-runners in the competitions: Pseudo-2D Hidden
Markov Models (HMM), LDA trained on the symmetrised
face images using a large auxiliary dataset, Dynamic Lo-
cal Feature Analysis (DLFA), and LDA applied to colour
channels, all of which are still-based methods from Messer
et al. (2004), and Local Binary Patterns with Gaussian Mix-
ture Model (GMM), Gabor features with GMM, Kernel Dis-
criminant Analysis (KDA) on Gabor features, all of these are
video-based methods from Poh et al. (2009). Our method
outperforms all still-based methods and one video-based
method on average, and all video-based methods for R = 10.
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Fig. 9 Incremental LDA for
BANCA face authentication:
(Left) Decrease of the weighted
error rate of the batch and
incremental LDA methods for
the number of updates. (Right)
Computational time (s) of the
two methods. For clarity, we
only show the case of (R = 1)
for the group 1 and (R = 10) for
the group 2

Fig. 10 DET curves for the BANCA dataset: Using the group 1 and 2
in the Mc protocol

Table 5 Weighted error rates: Using the groups G1 and G2 in the Mc
protocol at the three different operating points. The proposed method
outperforms the still-based methods and yields the comparable accu-
racy to the video-based methods in the BANCA competitions (Messer
et al. 2004; Poh et al. 2009)

R = 0.1 R = 1 R = 10 Av

G1 G2 G1 G2 G1 G2

Proposal 3.98 1.43 4.58 2.23 1.79 0.86 2.48

HMM 7.52 4.90 5.45 0.64 2.56 0.12 3.53

LDA-auxdata 6.53 1.17 7.05 2.88 1.28 2.10 3.50

LDA-color 7.12 0.89 5.58 1.98 1.47 0.92 2.99

DLFA 4.12 3.90 3.04 3.10 1.97 2.12 3.04

LBP-gmma 0.75 6.26 1.63 7.37 1.22 2.77 3.33

Gabor-gmma 1.05 0.42 0.77 2.31 0.45 4.20 1.53

Gabor-kdaa 0.86 2.18 2.34 4.81 2.32 2.02 2.42

aVideo-based methods. See text for more explanations

Note also that the methods in Messer et al. (2004), Poh et
al. (2009) use different features, classifiers and even large
auxiliary data sets, but often adopt LDA as a component.

The proposed incremental LDA method as a general meta-
algorithm could be conveniently applied to various other
methods.

5.3 Object Categorisation by Caltech101 Dataset

We have tested our incremental LDA method on the object
categorisation problem using the Caltech101 dataset. The
data set consists of 101 object categories with varying num-
ber of images up to 800 per category (Fei-Fei et al. 2004).
Mostly objects are presented in real cluttered backgrounds
(cf. the ETH80 dataset in the previous section were captured
in the uniform background). For the online learning experi-
ment, we used 84 categories removing the background cate-
gory and the categories that have less than 40 images. 40 im-
ages were exploited per category. The 40 images per cate-
gory were partitioned into 30 for training and 10 for testing.
The training data was further partitioned into 6 sets, each of
which has 5 images per category. The train data was incre-
mentally grown by adding one set each time. In each image,
interest points were detected by Harris-corners and repre-
sented by Scale-Invariant-Feature Transform (SIFT) 128 di-
mensional vectors. Some example images with the interest
points detected are shown in Fig. 11. The k-means cluster-
ing (k was set 1000) was performed on the set of SIFT vec-
tors collected from entire training images to form a code-
book and all train and test images were represented as the
histograms of codewords, i.e. Bags of Words (BoW). The
LDA projection matrix was learnt using the histograms of
the train data and Nearest Neighbour classification of the
test data was performed in the LDA subspace. As shown in
Fig. 12, the incremental LDA algorithm effectively boosts
the categorisation accuracy (from 24.4 to 31.9 percents)
when more training images are available. The proposed in-
cremental LDA method delivers the close accuracy to that
of the batch LDA method at much lower computation time
(see Fig. 12 right).

Table 6 shows the accuracies of the four methods using
15 image per category for training and 10 image per cat-
egory for testing (i.e. at the 3rd update in Fig. 12). Near-
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Fig. 11 Example images of Caltech101 data set: Different class images are shown with the interest points detected

Fig. 12 Object categorisation
accuracy on Caltech101 dataset:
(Left) Accuracy improvement of
the incremental and batch LDA
method for the number of
updates. (Right) Computational
time (s) of the two methods

Table 6 Classification accuracy for Caltech101 dataset: The methods
are evaluated on 84 categories using 10 images per category. The num-
bers in bracket are obtained by the setting in Mutch and Lowe (2006),
i.e. using 15 images for training and the rest of images for testing of all
101 categories (5-fold cross validation was performed). The accuracies
of state-of-the-arts from Mutch and Lowe (2006), Holub et al. (2005)
are: Baseline (Berg et al. 2005): 14.5, Fei-Fei et al. (2004): 15.5, Mutch
and Lowe (base): 33, Serre et al.: 35, Holub et al. (2005): 37, Berg et
al. (2005): 45, Grauman and Darrell (2005): 49.5, Mutch and Lowe
(final): 51%

Method Method

IncLDA-NN 26.90 (34.57) IncLDA-SVM 33.57 (42.39)

IncPCA-NN 21.19 IncPCA-SVM 18.10

est Neighbour classification is performed in the IncLDA-
NN and IncPCA-NN methods, while Support Vector Ma-

chine is applied to the LDA or PCA feature vectors in the
IncLDA-SVM or IncPCA-SVM methods. C(C − 1)/2 one
vs one linear SVMs are used (C is the number of classes)
and multi-class classification is done by majority voting.
The LDA methods significantly outperforms the PCA meth-
ods at the same dimension (set as 60 in the experiments).
The LDA-SVM method largely improves the accuracy of
the LDA-NN method, whereas the PCA-SVM is not bet-
ter than the PCA-NN method. The proposed incremental
LDA method efficiently captures discriminative information
in a low-dimensional space (the input dimension was re-
duced from 1000 into 60) facilitating large-scale data stor-
age and time-efficient SVM learning/evaluation. The in-
cremental LDA method as a dimension reduction method
should be of a value to many other methods in the area. For
the comparison with state-of-the-arts, we followed the pro-
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tocol of Mutch and Lowe (2006), Holub et al. (2005) using
15 images per category for training and all the rest of images
per category for testing, using 101 categories (5-fold cross
validation was performed). The accuracies of the proposed
methods by this setting are shown in the bracket in Table 6.
The proposed method delivers comparable accuracy to other
methods. Note that standard techniques were exploited for
representation in our method: Harris-corners, SIFT, k-means
clustering methods as in the baseline method (Berg et al.
2005). The LDA combined with the standard representation
largely improves the accuracy of the baseline method (14.5
→ 34.57%). The accuracy of the proposed method could
be further improved by incorporating better image features
and representations e.g. the multi-layer features of Mutch
and Lowe (2006) and Random Forest codebook techniques
(Moosmann et al. 2007).

6 Discussion on Updating LDA-like Discriminant
Models

The proposed three-step algorithm is general and can be ap-
plied to other incremental learning problems that seek to find
discriminative components by maximizing the ratio involv-
ing two different covariance or correlation matrices (Bar-
Hillel et al. 2005; De la Torre Frade et al. 2005; Oja 1983).
The method of using the sufficient spanning set for the three
steps, the component analysis of the two matrices in the nu-
merator and the denominator, respectively, and for the dis-
criminant component computations, allows for efficient in-
cremental learning. Note that the number of input vectors
for the numerator matrix in many methods such as the Ori-
ented Component Analysis (OCA) (De la Torre Frade et al.
2005) and Orthogonal Subspace Method (OSM) (Oja 1983;
Stenger et al. 2008) criteria, is often large in practice. In
these cases the previous incremental LDA algorithms suf-
fer due to the assumption of a small number of input vectors
for the scatter matrix in the numerator (e.g. the number of
classes in the LDA). The proposed method can also be ap-
plied to an LDA mixture model (Kim et al. 2003) as in Hall
et al. (2000), or other LDA variants including direct LDAs
(Yu and Yang 2001) if they are piecewise linear models and
are based on the Rayleigh quotient. See Stenger et al. (2008)
for the application of the three-step update algorithm to the
OSM for set-based object recognition.

7 Conclusions

The proposed incremental LDA solution allows highly effi-
cient learning to adapt to new data sets. A solution closely
agreeing with the batch LDA result can be obtained with

far lower complexity in both time and space. The incremen-
tal LDA algorithm has been also incorporated into a semi-
supervised learning framework by label propagation. The
experiments have shown the usefulness of the incremental
LDA method as a general meta-algorithm, being combined
with various image representations, for face image retrieval,
face authentication, and object categorisation problems.

Directions for future research include the extension to the
non-linear case, adaptive learning with time-series data. Ac-
tive learning for the incremental LDA method would be also
interesting for identifying unlabeled examples whose labels
are most helpful to improve the classification performance.
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