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Overcoming shadows in 3-source photometric stereo
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Abstract—Light occlusions are one of the most significant
difficulties of photometric stereo methods. When three or more
images are available without occlusion, the local surface ori-
entation is overdetermined so shape can be computed and the
shadowed pixels can be discarded. In this paper we look at the
challenging case when only two images are available without
occlusion, leading to a 1 degree of freedom ambiguity per pixel
in the local orientation. We show that, in the presence of noise,
integrability alone cannot resolve this ambiguity and reconstruct
the geometry in the shadowed regions. As the problem is ill-posed
in the presence of noise, we describe two regularization schemes
that improve the numerical performance of the algorithm while
preserving the data. Finally the paper describes how this theory
applies in the framework of color photometric stereo where one is
restricted to only three images and light occlusions are common.
Experiments on synthetic and real image sequences are presented.

Index Terms—photometric stereo, shadows.

I. INTRODUCTION

Photometric stereo is a well established 3d reconstruction

technique based on the powerful shading cue. A sequence of

images (typically three or more) of a 3d scene are obtained

from the same viewpoint and under varying illumination.

Assuming a Lambertian reflectance model, one can estimate

the local orientation of the surface that projects onto that

pixel from the intensity variation in each pixel. By integrating

all these surface orientations, a very detailed estimate of the

surface geometry can be obtained. As with any other recon-

struction method, photometric stereo faces several difficulties

when dealing with real images. One of the most important

of these difficulties is the frequent presence of shadows in an

image. No matter how careful the arrangement of the light

sources, shadows are an almost unavoidable phenomenon,

especially in objects with complex geometries. This paper

investigates the phenomenon of shadows in photometric stereo

with three light sources.

Shadows in photometric stereo have been the topic of a

number of papers [1], [2], [3]. Most papers assume we are

given four or more images under four different illuminations.

This over-determines the local surface orientation and albedo

(3 degrees of freedom) which implies that we can use the

residual of some least squares solution, to determine whether

shadowing has occurred. However when we are only given

three images there are no spare constraints against which

to test our hypothesis. Therefore the problem of detecting

shadows becomes more difficult. Furthermore, when a pixel
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is in shadow in one of the three images most methods simply

discard it. In this work we show how one can use the remaining

two image intensity measurements to estimate the surface

geometry inside the shadow region. Using an argument based

purely on counting degrees of freedom and equations, this

is theoretically possible since we need to estimate 2 DOF

per pixel (depth and albedo) and we have two independent

measurements per pixel. The solution we propose is based on

enforcing (1) integrability of the gradient field, as well as (2)

smoothness in the recovered shape.

Using photometric stereo on just three images may seem

like an unreasonably hard restriction. There is however a

particular situation when only three images are available. This

technique is known as color photometric stereo [4] and it uses

three light sources with different light spectra. When the scene

is photographed with a color camera, the three color channels

capture three different photometric stereo images. Because

shape acquisition is performed on each frame independently,

the method can be used on video sequences without having

to change illumination between frames [5]. In this way we

can capture the 3D shape of deforming objects such as cloth,

or human faces. Since the method is constrained to operate

only on three images, it is an ideal application of the theory

we present here. Summarizing, the main contributions of this

paper are the following:

1) We show how to exploit image regions in photometric

stereo where one of the three images is in shadow. A

geometric formulation of the problem is given where a

set of point-to-point and point-to-line distances are mini-

mized under the integrability condition. The integrability

condition is implicitly enforced by parametrizing the

surface as a height field, as opposed to our previous work

[6] where the surface was parametrized by a gradient

field and thus integrability had to be explicitly enforced

during optimization.

2) We develop two regularization schemes that make the

optimization problem well posed while not suppressing

the data.

3) We apply the technique to color photometric stereo. The

regularization schemes have been validated in a practical

capture setup by running them on thousands of frames

of captured video.

A. Previous work

A vast literature exists on the topic of photometric stereo.

Its applications range from 3D reconstruction [7], medical

imaging [8] or cloth modeling [5]. One way of characterizing

photometric stereo methods is based on the number of different

lights required and how they cope with highlights or shadows.

A minimum of 3 lights is required to perform photometric

stereo with no extra assumptions [7], and only 2 lights with



2

the additional assumption of constant albedo [9]. Whenever

more lights are available, the light visibility problem becomes

a labeling problem where each point on the surface has to be

assigned to the correct set of lights in order to successfully

reconstruct the surface.

For objects with constant albedo, [3] used a Rank-2 con-

straint to detect surfaces illuminated by only 2 lights. In the

case of general albedo, every point on the surface has to be

visible in at least 3 images. A 4-light photometric stereo setup

was proposed in [10], where light occlusion was detected

by checking the consistency of all the possible triplets of

lights. The work by [11] was able to detect light occlusions

in a 4-light setup and simply treat them as outliers. In [1] a

similar algorithm to [10] is presented using a 4-light colored

photometric stereo approach.

In the recent work by [2], an iterative MRF formulation

is proposed for detecting light occlusion and exploiting it as

a surface integration constraint. However, the algorithm also

requires a minimum of 4 lights and is targeted for setups

with a large number of lights. Similarly, previous work on

shape-from-shadows [12], [13] exploit the shadows for 3d

reconstruction. However, they need large quantities of images

in order to get acceptable results since the shadows are the

cue, while in this work the shadows are considered an artifact

that we need to correct for.

In this paper we propose a novel solution for 3-light

photometric stereo with shadows and varying albedo. We are

able to detect and exploit photometric stereo constraints with

only two lights while imposing smooth shape priors that are

specific to our problem. Compared to our previous work [6],

we have two new contributions. The first one is that we

implicitly enforce the integrability constraint by parametrizing

the surface as a height field. As a second contribution, we use

the shape regularization scheme described in section IV-B for

the first time in a least squares framework to perform two

source photometric stereo and three-source photometric stereo

in the presence of shadows, both with varying albedo.

II. THREE-SOURCE PHOTOMETRIC STEREO WITH

SHADOWS

In classic three-source photometric stereo we are given three

images of a scene, taken from the same viewpoint, and illu-

minated by three distant light sources. The light sources emit

the same light frequency spectrum from three different non-

coplanar directions. We will assume an orthographic camera

(with infinite focal length) for simplicity, even though the ex-

tension to the more realistic projective case is straightforward

[14]. In the case of orthographic projection one can align the

world coordinate system so that the xy plane coincides with

the image plane while the z axis corresponds to the viewing

direction. The surface in front of the camera can then be

parametrized as a height function z(x, y). If ∇z is the gradient

of the function wit respect to x and y, one can define the vector

n =
1

√

1 + |∇z|2

(

∇z
−1

)

,

that is locally normal to the surface at (x, y). We can also

define a 2d projection operator P[x] = (x1/x3, x2/x3) so

that it follows that ∇z = P[n].
Now for i = 1 . . . 3 let ci(x, y) denote the pixel intensity

of pixel (x, y) in the i-th image. We assume that, in the

i-th image, the surface point (x, y, z(x, y))⊤ is illuminated

by a distant light source whose direction is denoted by

the vector li and whose spectral distribution is Ei (λ). We

also assume that the surface point absorbs incoming light

of various wavelengths according to the reflectance function

R (x, y, λ). Finally, let the response of the camera sensor at

each wavelength be given by S (λ) . Then the pixel intensity

ci(x, y) is given by [4]

ci(x, y) =
(

l
⊤
i n

)

∫

E (λ) R (x, y, λ) S (λ) dλ. (1)

The value of this integral is known as the surface albedo ρ so

that (1) becomes a simple dot product

ci = l
⊤
i ρn. (2)

Photometric stereo methods use the linear constraints of (2)

to solve for ρn in a least squares sense. From this they obtain

the gradient of the height function ∇z = P[ρn] which is

then integrated to produce the function z itself. In three-

source photometric stereo, when the point is not in shadow

with respect to all three lights, we measure three positive

intensities ci, each of which gives a constraint on ρn. If we

write L =
[

l1 l2 l3

]⊤
and c =

[

c1 c2 c3

]⊤
then

the system has exactly one solution which is given by

ρn = L−1
c. (3)

If the point however is in shadow, say in the 3-rd image, then

the measurement of c3 cannot be used as a constraint. Since

each equation (2) describes a 3d plane, the intersection of the

two remaining constraints is a 3d line given by

(c2l1 − c1l2)
⊤
n = 0. (4)

More generally, if the point is in shadow in the i-th image,

(4) can be rearranged as

[c]i×Ln = 0, (5)

or equivalently

P[[c]i×L]∇z = 1, (6)

where [c]i× is the i-th row of the cross product matrix [c]×,
i.e. [c]1× = [0, c3,−c2]

⊤, [c]2× = [−c3, 0, c1]
⊤ and [c]3× =

[c2,−c1, 0]⊤. Equation 6 was derived by [15] and used for

stereo matching in a two-view photometric stereo setup, and

subsequently used by [16] to perform uncalibrated photometric

stereo and by [17] in their proof of nonexistence of a general

illumination invariant. In this paper we use this equation for

the first time in a least squares framework to perform three-

source photometric stereo in the presence of shadows.

III. INTEGRATING IN THE SHADOWED REGIONS

According to the image constraints and assuming no noise

in the data, we can have one of the following three cases (see

Fig. 1):

1) The surface point is in shadow in two or more images.

In this case there is no constraint in ∇z from the images.
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Fig. 1. Geometry of shadowed pixels. The points ∇zj (dark dots) represent
the partial derivatives of the height function at pixel j. For each point ∇zj

there is a corresponding data point P[L−1
c] (white dot). Pixel 1 is unoccluded

and hence ∇z1 must be as close as possible to its data point P[L−1
c1]. Pixel

2 however is occluded so ∇z2 must be as close as possible to its shadow line
P[[c2]i

×
L]. Note that all the shadow lines cross at a single point P[mi].

2) The surface point is not in shadow in any of the three

images. In this case ∇z coincides with P
[

L−1
c
]

.

3) The surface point is in shadow in exactly one image,

say the i-th. In this case ∇z must lie on the line

P[[c]i×L]∇z = 1. We call this line the shadow line of

the shaded pixel.

Now in the presence of noise in the data c, cases 2 and

3 above do not hold exactly as P
[

L−1
c
]

and P[[c]i×L] are
corrupted. The estimation of the unknown height function z
becomes a least squares problem with two different data terms,

one for pixels under shadow and another one for pixels seen

in all three images. For non-shadowed pixels, the difference

between model and data can be measured by the point-to-point

square difference term

E = |∇z − P
[

L−1
c
]

|2. (7)

In the case of the shadowed pixels we have a point-to-line

square difference term

E
(i)

= (P[[c]i×L]∇z − 1)2, (8)

where E
(i)

denotes the error term for pixels shaded in the i-th
image.

Assume we are given a labeling of pixels into all the

possible types of shadow. Let S contain all non-shadowed

pixels while Si contains pixels shaded in the i-th image. Our

cost function becomes
∑

j∈S

Ej +
∑

j∈S1

E
(1)

j +
∑

j∈S2

E
(2)

j +
∑

j∈S3

E
(3)

j ,

which is a set of quadratic terms in ∇z and thus z. Finding
the minimum of this quantity is a simple unconstrained linear

least squares problem that can be solved using a sparse linear

solver such as UMFPACK [18].

Figure 2 shows this idea applied in practice on synthetic

data. It provides evidence that in its present form the problem

is ill-conditioned, especially in larger shadowed regions (see

Fig. 2c). The following section sheds more light on this and

describes our proposed remedy (see figures 2d and 2e).

IV. REGULARIZATION SCHEMES

The linear least squares optimization framework described

in section II when executed in practice shows signs of ill-

posedness in the presence of noise. This is demonstrated in

the synthetic case of figure 2 where three images of a sphere

have been generated. Three shadow regions corresponding to

each of the three lights have been introduced. Even though

the overall shape of the object is accurately captured, some

characteristic ‘scratch’ artifacts are observed. These are caused

by the point-to-line distances which do not introduce enough

constraints in the cost function. The point ∇z can move sig-

nificantly in a direction parallel to the corresponding shadow

line only to gain a slight decrease in the overall cost. This

results in violent perturbations in the resulting height function

that manifest themselves as deep scratches that follow the 2d

flow P[[c]i×L].
If we push the analysis even further and have one of the

images completely shadowed, we then fall back to the two-

source photometric stereo setup shown in Fig. 3. When only

two images are available without shadow (see Fig. 3 top),

after factoring out the albedo (5) we can only determine

the depth gradient along specific directions for each pixel

P[[c]i×L]. If we look at these directions as a vector field, then

depth can be computed independently along each streamline

or “characteristic curve” (see Fig. 3b). In other words, there is

no constraint between the depth of two characteristic curves

and one pixel can only belong to a single characteristic curve.

After integrating every characteristic curve independently (see

Fig. 3c), we obtain a possible reconstruction that is different

from the original true shape, but that perfectly agrees with the

given constraints. In order to choose one among the possible

solutions, some type of regularization is needed [19](see Fig.

3d and 3e).

The regularization can be seen as a simple prior on the type

of solutions we expect. In order to understand the types of

solution we can expect, we describe our problem once more.

We have a three source photometric stereo with varying albedo

setup, and one of the lights is occluded, i.e. we locally have

a two source photometric stereo setup with varying albedo.

From the theory we know that in the photometric stereo setup,

the albedo and the geometry are coupled, and if there is

not enough data available, both are indistinguishable. This

coupling exactly indicates what two types of priors one would

expect to use: either a shape smoothness prior favoring smooth

shapes or an albedo smoothness prior favoring smooth albedo.

In this work we choose a shape smoothness prior since we will

be dealing with smooth objects with high frequency albedo

such as faces or cloth. We also have two main requirements

on the choice of regularizing criterion:

• The scheme must be consistent with the linear least

squares framework. No non-linear constraints can be

enforced.

• It must suppress noise while preserving as much of the

data as possible.
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(a)

(b) (c)

(d) (e)

Fig. 2. Regularization schemes. This is an experiment on a synthetic sphere
designed to validate the proposed regularization constraints. (a) shows the
input images where the black rectangles correspond to occluded regions.This
object is illuminated from three directions and the three white regions are
occluded in the corresponding images. Middle row shows the photometric
stereo solution without shadows (b) and the effect of optimizing the surface
with no regularization at all,i.e. just using integrability (c). Note the char-
acteristic ‘scratch’ artifacts. (d) shows the resulting surface after adding a
shading regularization term with default values α = 0.2, β = 0. (e) shows the
resulting surface after adding a shape regularization term with default values
α = 0.15, β = 1. See Section IV for a description of the algorithms. The
artifacts have been suppressed while the data has been preserved unsmoothed.
Note how both regularization schemes give almost identical results.

In the following we describe two different regularization

schemes that favor smooth shapes while preserving the data

as much as possible. Their main difference is that one favors

shapes with a smooth shading under the occluded light, while

the second one favors smooth shapes. The second scheme

can be used in a two-source photometric stereo setup as it

is independent of the occluded third light (see Fig. 3).

A. Shading regularization

In this approach we want to impose regularization on the

collected shading intensities, thereby ”inpainting” [20] the

shadowed regions in order to recover the intensities we would

collect had the light not been occluded and the albedo been

constant. From equation (3) we can parametrize the shadow

line as a function of the missing shading µ

∇z = P



L−1





c1

c2

0



 + µρL−1





0
0
1







 . (9)

This parameter represents the value l
⊤
3 n would have, had

the point not been in shadow in the 3-rd image. In order to

(a)

(b) (c)

(d) (e)

Fig. 3. Two-source varying albedo photometric stereo setup. In this
experiment we show a two-source photometric stereo with varying albedo.
(a) shows the two input images. (b) shows the characteristic curves obtained
by plotting seeds following the 2d flow P[[c]3

×
L]. (c) shows one possible

reconstruction of the characteristic curves. Note how each characteristic curve
is reconstructed independently as there is no constraint “across” the curves.
Bottom row shows how a successful reconstruction can be achieved when
using the proposed shape regularization scheme with first order regularization
α = 0.1, β = 0 (d) and second order regularization α = 0, β = 0.5 (e).

simplify the notation of (9) we define matrix M = L−1 where

vector mi is the ith column of matrix M , giving

∇z = P[c1m1 + c2m2 + µρm3]. (10)

We observe that, because c1 and c2 already encode the

albedo ρ in, equation (10) is in fact independent of ρ due

to the projection operator. We also note that ∇z is not a

linear function of µ meaning that we cannot directly regularize

the missing shading µ in a linear least squares framework.

However, we can perform a change of variables and introduce

a new variable w per shaded pixel

w(µ) =
e
⊤
3 (c1m1 + c2m2)

e⊤3 (c1m1 + c2m2) + µρe⊤3 m3
, (11)

with e3 = (0, 0, 1)⊤. The new variable w still specifies a

location along the shadow line of that pixel so equation (10)

simply becomes

∇z = wP[c1m1 + c2m2] + (1 − w)P[m3]. (12)

The term is now quadratic with respect to ∇z and w, allowing

us to regularize the solution in a meaningful way by using first

order |∇w| and second order |∇2w| regularization terms on
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w. The point-to-line distance of (8) can now be replaced with

the following point-to-point distance

E
(3)

= |∇z − wP[c1m1 + c2m2] − (1 − w)P[m3]|
2+

α|∇w|2 + β|∇2w|2,
(13)

where α and β are regularization weights. As w is a proxy for

µ, this corresponds to introducing smoothness in the product

l
⊤
3 n. Since both α and β compare two quantities with different

scales, w is in the range [0, 1] while ∇z is in the range of the

size of the image, we scale both regularization terms by the

size of the images in order to define normalized regularization

parameters that are independent of the image size.

B. Shape regularization

The most common way of regularizing shape is using first-

order and second-order regularization terms. In the context

of a height field, this is achieved by minimizing the norm

of the gradient of the height field |∇z| or minimizing the

Laplacian of the height field |∇2z|. The latter is known to

have good noise reduction properties and to produce smooth

well behaved surfaces with low curvature. However, both

the gradient and the Laplacian are isotropic so they tend to

indiscriminately smooth along all possible directions. See [21]

for a good discussion of anisotropic alternatives to Laplacian

filtering in the context of gradient field integration. In the

context of our problem, there is an efficient way of achieving

anisotropic versions of both the first-order and the second-

order regularization terms. From equation (6), we observe

that the shape is totally unconstrained along perpendicular

directions to P[[c]i×L]. The directions P[[c]i×L] define charac-
teristic curves, visually showing the constraint induced by the

two lights (see Fig. 3b). Therefore a good way of regularizing

the shape is along directions u that are perpendicular to the

characteristic curves, i.e. u⊤P[[c]i×L] = 0. This regularization
will effectively tie together the characteristic curves while

minimizing the distortion of the curves themselves. The point-

to-line distance term (8) is therefore extended with anisotropic

first and second order regularization terms

E
(i)

= (P[[c]i×L]∇z−1)2+α|u⊤∇z|2+β|u⊤H(z)u|2, (14)

α and β being the regularization weights and H(z) the Hessian
matrix.

V. COLOR PHOTOMETRIC-STEREO

It may seem that a photometric stereo scheme with three

images is unnecessarily restrictive. The overall cost in prac-

tice of acquiring one more image is small compared to the

rest of the process (calibration, darkening the environment,

changing the illumination etc). In this section we examine

color photometric stereo [4]. This is a setup where it is not

possible to obtain more than three images. The key observation

is that in an environment where red, green, and blue light is

simultaneously emitted from different directions, a Lambertian

surface will reflect each of those colors simultaneously without

any mixing of the frequencies. The quantities of red, green and

blue light reflected are a linear function of the surface normal

direction. A color camera can measure these quantities from

a single RGB image. Recently [5] it was shown how this

idea can be used to obtain a reconstruction of a deforming

object. Because color photometric stereo is applied on a single

image, one can use it on a video sequence without having

to change illumination between frames. In [5] shadowed

pixels were detected and discarded. Here we show how to

improve that method by incorporating shadow regions into the

reconstruction. In color photometric stereo each of the three

camera sensors can be seen as one of the three images of

classic photometric stereo. The pixel intensity of pixel (x, y)
for the i-th sensor is given by

ci(x, y) =
∑

j

(

l
⊤
j n

)

∫

Ej (λ) R (x, y, λ) Si (λ) dλ. (15)

Note that now the sensor sensitivity Si and spectral distribution

Ej are different per sensor and per light source respectively. To

be able to determine a unique mapping between RGB values

and normal orientation we need to assume a monochromatic

surface. We therefore require that R (x, y, λ) = ρ (x, y) α (λ).
Where ρ (x, y) is the monochromatic albedo of the surface

point and α (λ) is the characteristic chromaticity of the mate-

rial. Let

vij =

∫

Ej (λ) α (λ) Si (λ) dλ,

and

vj =
(

v1j v2j v3j

)⊤
.

Then the vector of the three sensor responses at a pixel is

given by

c =
[

v1 v2 v3

] [

l1 l2 l3

]⊤
ρn.

Essentially each vector vj provides the response measured by

the three sensors when a unit of light from source j is received

by the camera. If matrix
[

v1 v2 v3

]

is known, then we

can compute

ĉ =
[

v1 v2 v3

]−1
c.

The values of ĉ can be treated in exactly the same way as the

three gray-scale images of section (II).

VI. EXPERIMENTS

We present two synthetic experiments and four real ex-

periments that validate our approach. In figure 2 we study

the effect of the proposed framework to automatically correct

light occlusions on a half sphere with varying albedo and 10%
Gaussian noise. Figure 2b shows the ground truth photometric

stereo reconstruction of the sphere in the absence of shadows.

As soon as we introduce the shadows, the recovered shape in

Fig. 2c shows some characteristic artifacts due to an almost

unconstrained variation of ∇z along the shadow lines in (6).

These artifacts basically show that the recovered shape and

albedo are coupled and integrability constraints on their own

are not enough to separate them when one intensity constraint

is missing. Introducing the regularization schemes of section
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Fig. 4. Face sequence. Two different frames out of a 1000 frame face
video sequence. The left column shows the reconstruction when shadows are
ignored. Middle and right columns show the corresponding reconstructions
after detecting and compensating for the shadow regions using the shading
regularization scheme (middle) and shape regularization scheme (right). Note
the improvement in the regions around the nose reconstruction where strong
cast shadows appear (see arrows). Note also how the shape regularization
scheme fails to reconstruct some boundary regions (see circle). This behavior
is further explained in Fig. 5.

IV adds priors on the expected shading (Fig. 2d) or on the

expected shape Fig. 2e). This helps recovering the correct

shape while minimizing the loss of information. In order to

quantify the shape error against ground truth, we compute

the Root Mean Square Error between the normals of the two

surfaces in degrees. Note that both solutions give very similar

results, with the shading regularization giving an RMSE of

3.23 degrees while the shape regularization gives an RMSE

of 3.17 degrees.

This experiment shows a surprising result concerning the

parameters of the shading regularization scheme that is further

confirmed in Fig. 7. Namely that the second order regular-

ization parameter β plays no role in improving the RMSE,

leading to the optimizer always selecting β = 0 as the best

solution. This has also been verified in two real experiments

with ground truth data in the T-shirt and Carpet real sequences.

It basically means that a prior of constant values for w,

controlled by α in (13), is always better than a prior of constant

gradient, controlled by β.

Figure 3 shows a two-source synthetic experiment giving

further insight on the role of the parameters α and β con-

trolling the shape regularization scheme. It shows that second

order regularization is always preferable, but it can cause some

problems due to a concave-convex ambiguity, as shown in Fig.

5 and discussed below.

It is worth mentioning that the shape regularization scheme

always gives better RMSE results when comparing against

ground truth. This is expected since it directly regularizes

the shape (where we measure the RMS error), as opposed to

the shading regularization scheme that regularizes the shape

”rendered” with the occluded light. This does not mean that

the shading regularization scheme should be discarded as both

schemes behave in slightly different ways.

We have performed a first experiment with video data of a

Fig. 5. Failure case of the shape regularization scheme. The figures
correspond to the bottom face in Fig.4. Left shows characteristic curves
describing the light occlusion on the right-side of the face. Middle and right
show the rendering of the shape under the occluded light using the shading
regularization scheme (middle) and the shape regularization scheme (right).
The failure of the shape regularization scheme is clearly visible at the top
right of the image.

white-painted face illuminated by three colored lights in a sim-

ilar way as in [5]. Both the shadow segmentation and the setup

calibrated are performed as described in [6]. Figure 4 shows

two different frames of the video sequence without taking the

shadows into account (left) and after detecting and adding the

shading constraints (middle) and the shape constraints (right).

We can appreciate how the nose reconstruction is dramatically

improved when correctly processing the shadows (see arrows),

even though only two lights are visible in the shadowed

regions. We also note that the shape regularization scheme

fails in some boundary regions (see circle in right column)

leading to an incorrect reconstruction of the side of the face.

This is caused by the Laplacian regularization term. The term

suffers from an ambiguity of two possible solutions, concave

or convex, both solutions having similar energy and the data

term being unable to disambiguate them.

Figure 5 shows a more detailed analysis of the bottom face

in figure 4. The solution of the shape regularization scheme

agrees with the constraints (Fig. 5 left) even though it picks the

incorrect “concave” solution instead of the convex solution.

This is confirmed by looking at the shade rendering of the

face under the occluded light (see Fig. 5 middle and right).

The shading regularization scheme shows a smooth surface

(Fig. 5 middle) while the shape regularization scheme (Fig.

5 right) shows a clear artifact. This is expected since the

shading regularization does exactly that, it finds the surface

that minimizes the variation of the shading when rendering

the shape with the occluded light. The extra knowledge of the

missing light is exactly what the shape regularization scheme

is missing in order to make the right decision and choose the

convex solution.

A second facial performance capture using [5] is shown in

figure 6. This time the face is not painted, which implies an

assumption of constant albedo chromaticity. In order to cope

with shadows, the shading regularization scheme is used. We

observe that, despite the constant albedo deviations, e.g. the

lips, the system successfully captures fine details such as skin

wrinkles.

Two more real experiments with ground truth are presented

in figures 7, 8 and 9. A classic photometric stereo setup

is used, where three photographs are acquired under three

different illuminations assuming a distance point light source
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Fig. 6. Face sequence. Acquisition of 3d facial expressions using [5] and
the shadow processing technique described in this paper. The shadows are
processed with the shading regularization scheme. The full video sequence
has more than a 1000 frames reconstructed.

and calibrated following [6]. One of the images is repeated

with and without a light occlusion. The three images without

shadows are used to compute a photometric stereo solution,

which will be used as ground truth (see figures 8.b and 9.b).

The solutions obtained by not using any regularization are

shown in figures 8.c and 9.c. A first experiment is performed

to study how the regularization parameters affect the overall

RMSE (see fig. 7). The RMSE curves show that a large range

of parameters produce acceptable results, allowing us to use

a default set of parameters for all the sequences. The shading

regularization scheme solutions with default parameters are

shown in figures 8.d and 9.d while the shape regularization

scheme solutions with default parameters are shown in figures

8.e and 9.e. The RMSE of both schemes are low, the shape

regularization scheme always performing slightly better than

the shading one. Moreover, the shape regularization scheme is

able to perform two-source photometric stereo by completely

discarding the image with the shadow (see figures 8.g and

9.g). The RMSE approximately doubles, but it demonstrates

a working two-source photometric stereo capture system with

varying albedo.

Note that the Carpet’s RMSE is more than three times the

T-shirt’s RMSE. This is mainly due to the presence of higher

frequency detail on the Carpet. This detail is much harder

to preserve by the regularization scheme while still providing

enough regularization to disambiguate the shape.

VII. DISCUSSION

This paper investigated the problem of shadows in the

context of three-source photometric stereo with an extension to
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Fig. 7. Stability of regularization parameters for the Carpet (dashed red)
and T-shirt (solid blue) sequences.. The figures show RMSE curves around
optimal values. Top row shows RMSE curves for the shading regularization
scheme while bottom row shows RMSE curves for the shape regularization
scheme. Left column shows RMSE a a function of α while β is set to its
optimal value. Right column shows RMSE as a function of β when α is set
to its optimal value. Both schemes exhibit good properties with a large range
of regularization parameters producing low RMSE. Based on these curves,
default values are set to α = 0.2 β = 0 for the shading scheme, and α =
0.15, β = 1.0 for the shape scheme. These values are the default ones used
in the sphere, carpet and t-shirt sequences.

two-source photometric stereo. This is a particularly challeng-

ing setup because the surface orientation is under-determined.

In its pure form the problem is ill posed even in the presence

of no noise in the data. We provided a remedy to this in

the form of two regularization schemes that do not suppress

the data of the problem. Finally we showed how the ideas

in this paper can be applied to the interesting acquisition

setup of color photometric stereo. As future work we would

like to investigate ways of exploiting the shadows for 3d

reconstruction [2] and making the algorithm faster in order

to include it in a real-time capture system.
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