
Int J Comput Vis (2012) 100:203–215
DOI 10.1007/s11263-011-0461-z

Making a Shallow Network Deep: Conversion of a Boosting
Classifier into a Decision Tree by Boolean Optimisation

Tae-Kyun Kim · Ignas Budvytis · Roberto Cipolla

Received: 17 December 2010 / Accepted: 11 May 2011 / Published online: 7 June 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper presents a novel way to speed up the
evaluation time of a boosting classifier. We make a shallow
(flat) network deep (hierarchical) by growing a tree from de-
cision regions of a given boosting classifier. The tree pro-
vides many short paths for speeding up while preserving the
reasonably smooth decision regions of the boosting classi-
fier for good generalisation. For converting a boosting clas-
sifier into a decision tree, we formulate a Boolean optimisa-
tion problem, which has been previously studied for circuit
design but limited to a small number of binary variables.
In this work, a novel optimisation method is proposed for,
firstly, several tens of variables i.e. weak-learners of a boost-
ing classifier, and then any larger number of weak-learners
by using a two-stage cascade. Experiments on the synthetic
and face image data sets show that the obtained tree achieves
a significant speed up both over a standard boosting classi-
fier and the Fast-exit—a previously described method for
speeding-up boosting classification, at the same accuracy.
The proposed method as a general meta-algorithm is also
useful for a boosting cascade, where it speeds up individ-
ual stage classifiers by different gains. The proposed method
is further demonstrated for fast-moving object tracking and
segmentation problems.

T.-K. Kim (�)
Department of Electrical and Electronic Engineering, Imperial
College London, South Kensington Campus, London SW7 2AZ,
UK
e-mail: tk.kim@imperial.ac.uk

I. Budvytis · R. Cipolla
Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, UK

Keywords Boosting · Decision tree · Decision regions ·
Boolean optimisation · Boosting cascade · Face detection ·
Tracking · Segmentation

1 Introduction

Boosting is a popular method in object detection (Viola and
Jones 2001, 2004), tracking (Grabner and Bischof 2006) and
segmentation (Avidan 2006) problems, where a vast num-
ber of image sub-windows, across pixels and scales, need to
be classified. Doing the tasks in a reasonable time demands
very fast evaluation of a classifier per window. A boosting
classifier makes a fast decision by aggregating simple weak-
learners such as Haar-like features, whose computations are
accelerated by an integral image. Despite its efficiency, it is
often required to further reduce the classification time of a
boosting classifier. A cascade of boosting classifiers, which
could be seen as a degenerate tree (see Fig. 1(a)), effectively
improves the classification speed by filtering out majority of
negative class samples in its early stages (Viola and Jones
2001, 2004; Xiao et al. 2003). Designing a cascade, how-
ever, involves manual efforts for setting a number of param-
eters: the number of classifier stages, the number of weak-
learners and the threshold per stage. See Sect. 7.1 for details.

In this work, we propose a novel way to accelerate the
classification (or evaluation) time of a boosting classifier up
to an order of magnitude without sacrificing its accuracy, not
relying on a conventional cascade. The chance for improve-
ment comes from the fact that a standard boosting classi-
fier can be seen as a very shallow network, see Fig. 1(b),
where each weak-learner is a decision-stump and all weak-
learners are used to make a decision. The flat structure af-
fords smooth decision regions which help avoid overfitting

mailto:tk.kim@imperial.ac.uk

204 Int J Comput Vis (2012) 100:203–215

Fig. 1 Boosting as a tree. (a) A boosting cascade is seen as an im-
balanced tree, where each node is a boosting classifier. (b) A boosting
classifier has a very shallow and flat network where each node is a

decision-stump i.e. weak-learner. (c) A conventional decision tree has
multiple paths, each of which has the different number of decision-
stumps i.e. path-length

to train data i.e. good generalisation, however, it is not op-
timal in classification time. The proposed method converts
the shallow network (a given boosting classifier as input)
to a deep hierarchical structure (a decision tree as output).
The obtained tree speeds up a boosting classifier by having
many short paths: easy data points are quickly classified by
a small number of weak-learners on their traverses. Since
it replicates the decision regions of a boosting classifier, the
method alleviates a highly-overfit behaviour of conventional
decision trees. We introduce a novel Boolean optimisation
formulation and method. A boosting classifier splits a data
space into 2n primitive regions by n binary weak-learners.
The decision regions of the boosting classifier are encoded
by the boolean codes and class labels of the primitive re-
gions. A decision tree is then grown using the region in-
formation gain. Further details are about a better way of
packing the region information (Sect. 6) and the two stage
cascade allowing the conversion with any number of weak-
learners (Sect. 7). Without designing a multi-stage cascade
(Viola and Jones (2001) used a 32 layer cascade) our method
offers a convenient way of speeding up, while the method
incorporated in such a multi-stage cascade could provide a
further speed-up.

The paper is organised as follows: Sect. 2 reviews related
work. Overview of the proposed method is given in Sect. 3
and the formulation as Boolean optimisation in Sect. 4. Sec-
tions 5, 6 and 7 present the proposed solutions. Experimental
results are shown in Sect. 8 and the conclusion is drawn in
Sect. 9.

2 Related Work

2.1 Accelerating Boosting Classifiers

A tree-structured system consisting of multiple boosting
classifiers (Torralba et al. 2007; Wu and Nevatia 2007;
Huang et al. 2005; Tu 2005; Li and Zhang 2004) has been

studied for multi-pose or multi-category object detection
problems. The common structure is a tree hierarchy where
each path is a strong boosting classifier dedicated to a single
object pose or category. Torralba et al. have proposed shar-
ing weak-learners among multiple boosting classifiers (Tor-
ralba et al. 2007) for reducing the classification time. By
placing the most common weak-learners at the top of the
tree structure, the total number of weak-learners of multiple
boosting classifiers to use is reduced accelerating classifica-
tion. The method requires pre-defined sub-pose or category
labels, which are often not straightforward to obtain. In light
of this problem, there have been attempts (Wu and Nevatia
2007; Huang et al. 2005; Tu 2005) to simultaneously learn
the sub-category labels and multiple boosting classifiers by
clustering samples in a tree. Whereas all above methods are
relevant to speed up a system of multiple boosting classifiers
for multi-pose or multi-category problems, our work targets
at a single boosting classifier. The proposed method as a
meta-algorithm can also help accelerate a multiple boosting
system.

The method called AdaTree (Grossmann 2004a, 2004b)
or ADtree (Freund and Mason 1999), which is obtained by
modifying boosting algorithms, yields a decision tree dur-
ing learning. A conceptual difference lies in that the pre-
vious studies (Grossmann 2004a; Freund and Mason 1999)
present a novel way of boosting learning that alters the de-
cision regions of a standard boosting classifier. Our method
takes a boosting classifier learnt in a standard way as input
and replicates the decision regions (so the accuracy) of the
input classifier but speeds it up. It is worth noting that, in
the experiments of Grossmann (2004a), AdaTree exhibited
significantly worse accuracy than Adaboost, suffering from
lack of generalisation due to its tree nature.

More relevant to ours are the works by Sochman and
Matas (2005) and Zhou (2005). For speeding up the clas-
sification time of a single boosting classifier, the shortest set
of weak-learners for a given error rate has been obtained by
the sequential probability ratio test in Sochman and Matas

Int J Comput Vis (2012) 100:203–215 205

Fig. 2 Fast-exit vs super tree. Fast-exit methods have the structure of
a single path of varying lengths (a), while our method yields the tree
structure of multiple paths of different lengths (b)

(2005). It takes an early exit when the boosting sum reaches
a certain value whose sign cannot be altered by the remain-
ing weak-learners. Similarly, Fast-exit method has been pro-
posed in Zhou (2005) (see Sect. 7.2). This line of methods
uses a (so called) single path of varying length (see Fig. 2),
where data points go through the weak-learners in the same
order but exit at different points. In contrast, our method has
a tree structure i.e. multiple paths of different lengths. The
proposed method is more efficient in terms of speed by con-
sidering various combinations and orders of weak-learners
(see Sect. 8). Zhou’s first represented a boosting classifier
by a Boolean table and implemented a binary decision tree
(Zhou 2005). His solution, however, is a brute force search
for all possible tree configurations, which has a high com-
putational cost. It therefore affords to only about 5 and 10
weak-learners.

2.2 Boolean Expression Minimisation

Boolean expression minimisation is used to minimise the
number of terms and binary variables in the Boolean ex-
pression. Algorithms for the minimisation have mainly been
studied in the circuit design (Schwender 2007). Since cir-
cuits have strictly predefined specifications, exact minimi-
sation was the goal of most studies. The complexity of a
logic expression rises exponentially when the number of bi-
nary variables increases. Therefore, conventional minimisa-
tion methods are limited to a small number of binary vari-
ables, typically from a few to about 15 variables (Schwender
2007). Boolean minimisation has been also applied to size
down a redundant decision tree, represented by a Boolean
table (Chen 1994).

3 Conversion of a Boosting Classifier into a Tree

Both a boosting classifier and a decision tree are composed
of weak-learners (or called decision-stumps/split-nodes).
Whereas a boosting classifier places decision stumps in a flat
structure, a decision tree has a deep and hierarchical struc-
ture (see Fig. 1(b, c)). The different structures lead to dif-
ferent behaviours: Boosting has a better generalisation via

Fig. 3 (Color online) Decision regions (a) of a boosting classifier and
(b) a conventional decision tree. The decision regions of the boosting
classifier are smooth compared to those of the decision tree

reasonably smooth decision regions and decision trees use
few weak learner tests to determine a class of a data point.
Figures 3 and 4 illustrates both differences.

Figure 3 demonstrates the difference in smoothness of
decision regions learnt by both methods. Here a part of
negative-class (blue) data points are scattered in the mid-
dle of positive-class (red) samples. A conventional decision
tree and a boosting classifier are learnt over the points using
arbitrary lines in 2D as weak-learners. Whereas the decision
tree forms complex decision regions trying classification of
all training points, the boosting classifier exhibits reasonable
smoothness in decision regions. In boosting the smoothness
of decision regions is induced by choosing weak learners
globally i.e. by looking at all the data points (with appropri-
ate data weights) which provides an opportunity to account
for noise. Where in standard decision tree methods only the
first weak learner is chosen by looking to all the data points
and other ones are chosen locally (by looking to data points
of a subregion) which especially in presence of noise (as
demonstrated in Fig. 3), yields to a severe overfitting. Over-
fitting in decision trees is tackled by either bagging (Quinlan
1996) or pruning (Esposito et al. 1997). However the first
way introduces much larger classification cost (number of
bagged classifiers). The second way is limited in accuracy
for high dimensional data as demonstrated in Sect. 8.2.

We propose a method to grow a tree from the decision re-
gions of a boosting classifier. As shown in Fig. 4, the tree ob-
tained, called super tree, preserves the Boosting decision re-
gions: it places a leaf node on every region that is important
to form the identical decision boundary (i.e. accuracy). In
the mean time, Super tree has many short paths that reduce
the average number of weak-learners to use when classify-
ing a data point. In the example, the super tree on average
needs 3.8 weak-learners to perform classification whereas

206 Int J Comput Vis (2012) 100:203–215

Fig. 4 Converting a boosting classifier into a tree for speeding up. The proposed conversion preserves the Boosting decision regions and speeds
up 5 times by having many short paths

Fig. 5 Boolean expression minimisation for an optimally short tree.
(a) A boosting classifier splits a space by binary weak learners (left).
The regions are represented by the boolean table and the boolean ex-

pression is minimised (middle). An optimal short tree is built on the
minimum expression (right)

the boosting classifier needs 20: all 20 weak-learners are
used for every point.

4 Boolean Optimisation Formulation

There are various Boosting techniques such as Logit-
Boost (Friedman et al. 2000), ConfidenceBoost (Schapire
and Singer 1998) etc. as well as AdaBoost (Freund and
Schapire 1997) (arguably the most popular boosting algo-
rithm), all of which is discrete and interpreted as the uni-
fied boosting framework by gradient descent, called Any-
Boost (Mason et al. 2000). Such a boosting classifier is rep-
resented by the weighted sum of binary weak-learners as

H(x) =
m∑

i=1

αihi(x), (1)

where αi is the weight and hi the i-th binary weak-learner
in {−1,1}. The boosting classifier splits a data space into

2m primitive regions by m binary weak-learners. Regions
Ri, i = 1, . . . ,2m are expressed as boolean codes (i.e. each
weak-learner hi corresponds to a binary variable wi). See
Fig. 5 for an example, where the boolean table is com-
prised of 23 regions. The region class label c is determined
by (1). Region R8 in the example does not occupy the 2D
input space and thus receives the don’t care label marked
“x” being ignored when representing decision regions. The
region prior p(Ri) is introduced for data distribution as
p(Ri) = Mi/M where Mi and M are the number of data
points in the i-th region and in total. The decision regions of
the boosting classifier are encoded by a set of regions repre-
sented as

⎧
⎪⎨

⎪⎩

B(Ri): boolean expression

c(Ri): region class label

p(Ri): region prior

(2)

Int J Comput Vis (2012) 100:203–215 207

With the region coding, an optimally short tree is defined in
terms of average expected path length of data points as

T∗ = minT

∑

i

E(lT(Ri))p(Ri), (3)

where T denotes all possible configurations of a decision
tree. E(lT(Ri)) is the expected path length of the i-th re-
gion in T. The path length is simply the number of weak-
learners (or split-nodes) on the path to the i-th region. The
decision tree should closely duplicate the decision regions of
the boosting classifier as a constraint of the optimisation: the
regions that do not share the same class label c(Ri) must not
be put in the same leaf-node of the tree. Any regions of don’t
care labels are allowed to be merged with other regions for
the shortest path possible.

Preserving the decision regions of a boosting classifier
yields reasonably smooth decision regions for good gener-
alisation. The region smoothness can be defined by

∑

i,j

|c(Ri) − c(Rj)|
Hd(B(Ri),B(Rj))

, (4)

where Hd is the hamming distance of the region boolean
codes and c is the region label. Neighbouring regions (i.e.
the regions of small hamming distance) have coherent labels
for the smoothness. The region smoothness formula is not
explicitly used in the optimisation in Sect. 5 but explains
how a boosting classifier differs from a tree in terms of the
smoothness of decision regions.

Discussion on Boolean Expression Minimisation The
boolean expression for the table in Fig. 5 can be minimised
by optimally joining the regions that share the same class
label or don’t care label as

w1w2w3 ∨ w1w2w3 ∨ w1w2w3 ∨ w1w2w3

−→ w1 ∨ w1w2w3 (5)

where ∨ denotes OR operator. The minimised expression
has a smaller number of terms. Only the two terms, w1 and
w1w2w3 are remained representing the joint regions R5 −R8

and R4 respectively. A short tree is then built from the min-
imised boolean expression by placing more frequent vari-
ables at the top of the tree (see Fig. 5(right)). The method
for Boolean expression minimisation has been widely used
for optimising redundant trees or similarly minimising cir-
cuits composed of “AND” and “OR” gates but it is NP-hard
when it has a large number of variables i.e. weak-learners.
Note that the existing methods are typically limited to 10 or
15 variables, which makes the application difficult for our
problem that involves a large number of variables i.e. weak-
learners. Furthermore, all regions are treated with equal im-
portance in the kind of methods, while an optimally short
tree is defined by considering the data distribution i.e. re-
gion prior in (3).

5 Growing a Super Tree

We propose a novel boolean optimisation method for ob-
taining a reasonably short tree for a large number of weak-
learners of a boosting classifier. The classifier information
is efficiently packed by using the region coding and a tree
is grown by maximising the region information gain. First,
a base algorithm is explained, then its limitations and an im-
proved method are presented in the following section. We
use the notations in Sect. 4 to describe the algorithms.

Regions of Data Points The number of primitive regions
2m is intractable when m is large. Regions Ri that are occu-
pied by any training data points are only taken as input s.t.
p(Ri) > 0. The number of input regions is thus smaller than
the number of data points. Regions with no data points are
labeled don’t care.

Tree Growing by the Region Information Gain Huffman
coding (Cormen et al. 2001) is related to our optimisation.
It minimises the weighted (by region prior in our problem)
path length of code (region). The technique works by creat-
ing a binary tree of nodes by maximising the entropy-based
information gain. We similarly grow a tree based on the re-
gion information gain for an optimally short tree. For a cer-
tain weak-learner wj , j = 1, . . . ,m, the regions in the left
split and the right split w.r.t. the weak-learner are readily
given from the boolean expressions as

Rl = {Ri |B(Ri) ∧ w1 · · · wj · · · wm) = 0}
Rr = Rn \ Rl

(6)

where Rn is the set of regions arriving at the node n and ∧
is AND operator. At each node, it is found the weak-learner
that maximises

�I = −
∑

Rl
p

∑
Rn

p
E(Rl) −

∑
Rr

p
∑

Rn
p

E(Rr) (7)

where p is the region prior and E is the entropy function of
the region class distribution, which is

Q(c∗) =
∑

R∗
c

p, where R∗
c = {Ri |c(Ri) = c∗}. (8)

The node splitting is continued until all regions in a node
have the coherent region label. The key ideas in the method
have two-folds: (1) growing a tree from the decision regions
and (2) using the region prior (data distribution). Compared
to conventional decision trees built on data points, the pro-
posed tree is grown upon smooth decision regions, guar-
anteeing better generalisation. Using the region prior helps
getting an optimally short tree in the sense of average path
length of data points.

208 Int J Comput Vis (2012) 100:203–215

6 Tree Growing with the Extended Regions

The base algorithm in the previous section encounters per-
formance degradation for a high dimensional input space.
Only encoding the regions of data points does not reproduce
the exactly same decision regions of a boosting classifier.
Regions of no data points may be assigned different class
labels from the original ones, since they are don’t cares in
the tree learning. When a test point falls into those regions,
the boosting classifier and the tree would make different de-
cisions. This degrades classification accuracy when data has
a high dimension for a given number of training data. Re-
gions along the decision boundary are important although
they do not have an actual data point when training. Cover-
ing as much of the regions as possible ensures good perfor-
mance. Adding up the primitive regions, however, becomes
soon computationally prohibitive. To help close replication
of the decision regions, we propose the extended regions and
the accordingly modified region information gain.

Extended Regions The region transformation is proposed
to cover the regions in a fairly sufficient and yet computa-
tionally tractable manner. It takes each primitive region of
data point (Ri) multiple times (see Table 3(a) for this effect)
and pushes it closer into the decision boundary by randomly
flipping 1’s to 0’s (if the region class is positive) or 0’s to 1’s
(if negative) until the boosting sum gets close to 0 but still
keeps the same class. The extended region ERi is then ob-
tained by replacing all 0’s in the boolean code of the pushed
region with don’t care variables.

A toy example is provided in Table 1. A positive class
region coded as 101111 by weak-learner response has it’s
boosting sum equal to 1.0 − 0.8 + 0.7 + 0.6 + 0.4 + 0.2 =
2.1. It is turned into boundary regions 001111 (boosting sum
−1.0 − 0.8 + 0.7 + 0.6 + 0.4 + 0.2 = 0.1) and 101001 by
accordingly flipping response of weak-learner w1 (bound-
ary region 1) and weak-learners w4 and w5 (boundary re-
gion 2). The resulting extended regions 1 and 2 then rep-
resent two overlapping however not self-contained sets of
primitive regions: {001111, 011111, 101111, 111111} (ex-
tended region 1 in Table 1) and {101001, 101011, 101101,
101111, 111001, 111011, 111101, 111111} (extended re-
gion 2). Since the region space is big enough, it is unlikely to

Table 1 Extended region coding

get identical extended regions or many regions with signifi-
cant overlaps by the random drawing. The extended regions
maintain the region class label c(Ri) and prior p(Ri).

Modified Region Information Gain When splitting nodes
(6) an extended region can be placed in both left and right
splits due to the existence of don’t care variables. The rep-
etition of same extended regions at different nodes does not
hinder from duplicating the decision regions but increases
the average tree length. To compensate the repetition, the
information gain is modified as

�J =
(|Rl | + |Rr |

|Rn|
)t

�I (9)

where �I is the information gain in (7), which takes a
value in [−∞,0]. The first term equals to one for the prim-
itive regions but is in the range of Viola and Jones (2001,
2004) for the extended regions. The modified gain penalises
weak-learners that place extended regions in both splits. The
weight factor t is set empirically (see Table 3(b)). See Fig. 6
for the pseudo-code of the proposed algorithm.

7 Two Stage Cascade

The proposed method scales up to meaningfully several tens
of weak-learners (see Sect. 7.1) on a standard PC. For al-
lowing any larger number of weak-learners, a two stage cas-
cade is exploited. A conventional multi-stage boosting cas-
cade and fast-exit method is briefly reviewed in Sect. 7.1 and
Sect. 7.2 respectively, followed by the proposed two-stage
cascade in Sect. 7.3.

7.1 Conventional Multi-Stage Cascade

A cascade of boosting classifiers is typically obtained by
changing the number of weak-learners and the threshold of
booting classifiers. The boosting classifiers of the smaller
numbers (thus more efficient) of weak-learners are placed at
early stages of a cascade, to reject as many of the negative
class samples as possible while passing almost all positive
class samples to next stages. Those at the early stages have
a lower threshold, yielding higher detection rates and higher
false positive rates. The detection rate and false positive rate
of the entire cascade are

S =
K∏

i=1

si , E =
K∏

i=1

ei,

where K is the number of classifiers, and si , ei are the de-
tection rate and false positive rate of the ith classifier re-
spectively. Designing a cascade is a difficult optimisation
problem on the number of classifiers or stages, the number

Int J Comput Vis (2012) 100:203–215 209

Fig. 6 Pseudocode of the
algorithm Algorithm: Growing a super tree

Input: a set of data point regions R or extended regions ER, encoded by {B,c,p}
Output: a decision tree

1. Start with a root node n = 1 containing the list of all regions Rn.
2. For i = 1, . . . ,m

3. Spit the node: (Rl ,Rr) = split(Rn,wi) (by (6)).
4. Compute the gain: �I = gain(Rl ,Rr) (by (7) or (9) for the extended region).
5. Find w∗

i that maximises the information gain.
6. If the gain is sufficient, save it as a split node. Else, save it as a leaf node.
7. Go to a child of split node and recurse the steps 2–6 setting Rn = Rl or Rr .

of features (or weak-learners) of each stage, the threshold of
each stage, while minimizing the total number of features
given a target value of S and E. The final detector of Vi-
ola and Jones (2001) driven by a trial and error process is
a 32 layer cascade of classifiers which includes a total of
4297 features: the first classifier uses two features, the sec-
ond classifier five features, and the next three layers are of
20-feature classifiers followed by two 50-feature classifiers
followed by five 100-feature classifiers and then twenty 200-
feature classifiers. Note that the super tree algorithm is ap-
plicable to each of the early stage boosting classifiers, which
are more crucial to determine the speed-vs-accuracy trade-
off, as they set less than a hundred weak-learners.

7.2 Fast-Exit

It applies the weak-learners in the order of weights α of the
boosting classifier and lets a data point exit as soon as the
boosting sum (1) reaches to the value whose sign cannot be
altered by the remaining weak-learners. This method speeds
up a boosting classifier while delivering the exactly same
accuracy as the boosting classifier, regardless of the number
of weak-learners used.

7.3 Cascade of Super Tree and Fast-Exit

Designing a cascade involves a number of parameters to set
as explained in Sect. 7.1. The setting is more difficult with
more stages. Our solution explained in the previous section
can be seen as a convenient way of speeding up a boosting
classifier up to several tens of weak-learners without need of
a multi-stage cascade. We use a two stage cascade to cope
with any larger number of weak-learners. We first designed
a two-stage cascade of boosting classifiers in a conventional
way, as described in Sect. 7.1, by varying the number of
weak-learners (but limiting the number of weak-learners of
the first stage to less than a hundred) and the thresholds.
Then, the two stage boosting classifiers were replaced with
the super-tree and the fast-exit method. As shown in Fig. 7,
it places the super tree in the first stage and the fast-exit

Fig. 7 Schematic diagram of the two stage cascade

method in the second stage. The fast-exit method, which
yields the same accuracy as a boosting classifier of any large
number of weak-learners, is required to meet the target accu-
racy of S and E of a cascade. The proposed cascade signif-
icantly speeds up a two-stage cascade of standard boosting
classifiers and the same of the fast-exits at both stages, as
well as a single boosting classifier (see Sect. 8.2).

8 Experiments

8.1 Classification of Synthetic 2D Data

We have made twelve 2D synthetic data sets. Data points
of two classes were generated from Gaussian mixtures as
shown in Fig. 8(left) and Fig. 9(left). The six test sets were
created by randomly perturbing the train sets. The imbal-
anced data sets (Fig. 9) have a big dense chunk of neg-
ative points at a certain location. We have compared the
two methods here: a boosting classifier (AnyBoost imple-
mentation (Mason et al. 2000)) and the proposed tree using
the data point regions. Vertical and horizontal lines are the
weak-learners of boosting. Figure 8(right) and Fig. 9(right)
show the results. The left and right y-axis in the graph show
the classification error rate and the average path length i.e.
number of weak-learners used per point respectively. Note
first that the both methods drop the error rate when the
number of weak-learners is increased indicating good gen-
eralisation. The proposed method exhibited the same ac-
curacy as the boosting classifier for all number of weak-
learners. While the boosting classifier linearly increased the

210 Int J Comput Vis (2012) 100:203–215

Fig. 8 Experimental results on the synthetic data 1. Examples of 2D synthetic data sets (left). Super tree obtains the same accuracy as the boosting
classifier significantly shortening the average path length (right)

Fig. 9 Experimental results on the synthetic data 2. Examples of 2D synthetic data sets (left). The data sets have a big dense chunk of the
negative-class samples at a location. Super tree yields the accuracy of the boosting classifier significantly shortening the average path length (right)

average path length for the number of weak-learners, the
proposed method quickly converged significantly reducing
down the average path length. At 40 weak-learners, the su-
per tree speeds up the boosting classifier by 10 and 16 times
in Fig. 8(right) and Fig. 9(right) respectively. As expected,
the speed gain is bigger when the data distribution is im-
balanced, since the proposed method achieves shorter paths
effectively for more data point regions, whereas the path
length is fixed for all regions in Boosting.

8.2 Face Experiment

For training, we used the MPEG-7 face data set (Kim et
al. 2005) that has 11,845 face images collected from a few
public face data sets such as Yale and XM2VTS, and non-
public face data sets. BANCA face set (520 faces) and Cal-
tech background image sets (900 images) were exploited
for bootstrapping. The total number of negative-class im-
ages for training, which were either bootstrapped or ran-
domly drawn, is 50,128. We used 21,780 Haar-like features

on integral images as weak-learners. We have tested on the
MIT+CMU frontal face test set (Rowley et al. 1998) which
consists of 114 images with 507 labeled frontal faces. The
507 face and 57000 non-face image patches, which were
randomly drawn in location and size (see the rightmost in
Fig. 10), were cropped and resized into 24 × 24 images. Ex-
ample images are shown in Fig. 10. The methods compared
include a standard boosting classifier, Fast exit, Super tree,
the two-stage cascade of Fast exits, and the two-stage cas-
cade of Super tree and Fast-exit. For the super tree, we used
the extended regions. Fixing the accuracy at 0 threshold, we
have compared the average path lengths of the methods in
Table 2. For all different numbers of weak-learners, the su-
per tree significantly reduces the average path length of the
boosting classifier and the fast exit. The two-stage cascade
solution of 60 weak-learner super tree and 200 weak-learner
fast exit speeded up the standard boosting by 6.6–12.7 times
and even the two-stage cascade of 60 and 200 weak-learner
fast exits by 2.5 times. Note that the super tree exploits var-
ious combinations of weak-learners (i.e. paths) for an opti-

Int J Comput Vis (2012) 100:203–215 211

Fig. 10 (Color online) Example features (weak-learners) and face images used. Green and red rectangles in the rightmost image correspond
respectively to positive and some negative samples harvested from the particular image

Table 2 Experimental results on the face images. The numbers in the brackets are for the two-stage cascades

No. of
weak
learners

Boosting Fast exit (cascade) Super tree (cascade)

False
positives

False
negatives

Average
path length

False
positives

False
negatives

Average
path length

False
positives

False
negatives

Average
path length

20 501 120 20 501 120 11.70 476 122 7.51

40 264 126 40 264 126 23.26 231 127 12.23

60 222 143 60 222 143 37.24 212 142 14.38

100 148 146 100 148 (144) 146 (149) 69.28 (37.4) (145) (152) (15.1)

200 120 143 200 120 (146) 143 (148) 146.19 (38.1) (128) (146) (15.8)

Table 3 Performance of super
tree for the different numbers of
extended regions per region (a)
and for varying power in the
information gain (b)

FN: false negatives, FP: false
positives

No. of weak-learners 10 20 30 40 50 60

No. per region 1 1 2 10 40 50

FP/FN Super tree 593/157 367/146 292/136 262/129 203/142 224/129

Boosting 588/157 378/143 291/137 264/126 202/142 222/143

(a)

Power 0.5 1 3 5 10

Avg path length 16.4 12.3 11.9 14.5 15.8

FP/FN 246/121 247/123 237/124 235/120 251/132

(b)

mal classification speed, whereas the fast exit takes the com-
binations always in the order of the weak-learner weights.
One can also compare the results of Zhou (2005) with
ours by the standard boosting and the fast-exit as proxies.
Whereas the solution in Zhou (2005) didn’t gain much over
the boosting and the fast exit method, ours significantly im-
proved the both. More importantly, the method (Zhou 2005)
has been tested only for 5 or 10 weak learners whereas our
method in a single stage is conveniently scalable up to sev-
eral tens of weak learners.

Table 3 shows performance of the super tree for the two
internal parameters: the number of extended regions per
primitive region and the power in the information gain (9).
To obtain the close accuracy to the boosting classifier, the

required number of extended regions per region grew as the
number of weak-learners of Boosting increased. For about
the given number of training samples, using 200 extended
regions and 100 weak-learners would start hitting theoreti-
cal memory boundaries. As shown in Table 3(b), the perfor-
mance is not very sensitive to different power values in the
range. The number of weak-learners and extended regions
was set as 40. Power 1–5 gave the best performance. The
values smaller than 0.5 increased the average path length
and the values larger than 10 increased the error rate.

Super Tree vs Conventional Decision Trees The perfor-
mance of a conventional decision tree is affected by two
main factors: node splitting criterion and pruning. Table 4

212 Int J Comput Vis (2012) 100:203–215

Table 4 Pruned conventional decision trees

Un-pruned Pruning method

Reduced error
pruning (REP)

Cost complexity
pruning (CCP)

Pre-pruning

Impurity No of points Max depth

FP FN APL FP FN APL FP FN APL FP FN APL FP FN APL FP FN APL

Imurity measure

Entropy 771 143 9.36 576 135 7.68 639 139 6.61 518 136 4.72 764 142 9.36 743 123 9.32

Gini 1146 146 22.4 726 157 17.82 894 149 10.43 764 144 7.72 1001 150 23.36 829 140 12.06

Misclassification 1163 234 50.84 1070 239 49.27 1140 234 49.17 1163 234 50.84 1163 234 50.8 1138 234 50.38

FN: false negatives, FP: false positives, APL: average path length

shows the performance of decision trees learned using split-
ting criterions based on 3 impurity measures: Entropy (in-
formation gain), Gini index and Misclassification versus dif-
ferent methods of pruning (Esposito et al. 1997): Reduced
Error Pruning (REP), Cost-Complexity Pruning (CCP) and
pruning based on gain in impurity, number of points in leaf
nodes and maximum depth. In order to train and prune the
trees (as in Esposito et al. (1997)) we randomly divided the
initial training data set for tree growing (70%) and valida-
tion (30%). For trees learnt using different splitting criteria
pruning both increased accuracy and decreased average path
length (APL). Pruning had little effect on trees learned on
the misclassification score as it created a very deep imbal-
anced tree and any pruning resulted in reduced accuracy on
the validation set. Pruning based on the impurity seemed to
produce the best values both in accuracy and average depth
for trees learnt using Shannon’s entropy and Gini index.
However even the best value of 136 false negatives and 518
false positives for the tree learned using Shannon entropy is
inferior to the performance of Super Tree of the similar path
length—122 false negatives and 476 false positives. See Ta-
ble 2.

Training Time We have so far discussed the evaluation
time of a boosting classifier, not the training time. Additional
training time for the conversion into Super Tree is relatively
small compared to the typical Boosting training time. The
conversion time for the Super Tree for e.g. 40 weak-learners
took about an hour. For more than 60–80 weak-learners we
use a two-stage cascade. The boosting training time could
also be significantly reduced by e.g. Pham and Cham (2007).

Over a Multi-stage Boosting Cascade Although the com-
parison has been made on the two-stage cascades in the ex-
periments, the proposed method can afford a speed up over
a standard multi-stage boosting cascade by replacing each
stage of a boosting classifier in the cascade with a Super
Tree. If one of the boosting classifiers is too large (for exam-
ple 100 or 200 weak learners) then it is replaced with Fast-
exit method instead of Super tree. The speed gain would

vary depending on the number of weal-learners and the data
distribution i.e. the ratio of positive over negative data points
in each stage boosting classifier. See Table 2 for the speed
gains obtained on the different numbers of weak-learners but
on the same data distribution as specified above.

8.3 Rapid-Moving Object Tracking

Tracking is often done by fast re-detection. It sets a search
window based on the previous location and speed of a target
object, and detects the object again within the search win-
dow. The tracker using the Super Tree as the detector (or
classifier) performed better than the boosting tracker, owing
to its higher speed: it was able to process more frames than
the boosting tracker. Under rapid object movement, missing
a frame means experiencing a drift. We have collected two
sample sequences of 320×240 pixels at 30 frames/second,
called Toy car and Face, and used a public sequence of Ross
et al. (2008). Each sequence is partitioned into two parts: one
for training and the other for testing. For training, the posi-
tive samples were collected using a guide rectangle and the
negative samples using randomly drawn patches around the
guide rectangle. The pool of 21,780 haar-like features was
exploited for weak-learners. For the Toy car sequence, the
super tree obtained from the boosting classifier of 60 weak-
learners had 14 weak-learners as its average path length. The
execution time of the trackers using two methods, which
were implemented by Matlab mex functions, is: 0.0015 (for
integral images), 0.0117 (for weak-learners) and 0.0018 (for
the weighted sum by α) seconds in Boosting, and 0.0015 (in-
tegral images) and 0.0027 (weak-learners) seconds in Super
tree. Thus, the execution rates of the two trackers including
the image capture time were 20 frames per second for Boost-
ing and 27 frames per second for Super tree. By varying de-
tection density similar speed gain was achieved for other two
sequences. Figure 11 shows that the super tree tracks well
the target object in the three test sequences (Toy car, Ross
et al. (2008), Face) while the boosting tracker lost it and ex-
hibited much drifting at the initial frames when it moved

Int J Comput Vis (2012) 100:203–215 213

Fig. 11 (Color online) Performance of Boosting and Super tree track-
ers. Super tree tracker (solid red line) achieves a better tracking accu-
racy by faster classification than Boosting tracker (dashed yellow line).

The super tree tracks well the target object while the boosting tracker
lost the object and exhibited much drifting when it moved abruptly

Fig. 12 Tracking errors. The center location errors (in pixels) of the two trackers are shown for three sequences: Toy car (left), Sylvester (middle),
Face (right)

Table 5 Performance of Boosting and Super tree trackers

Experiment No. of
weak-
learners

Boosting Super tree

ACLE Average path
length

ACLE Average path
length

Toy car 60 28.6 60 8.4 13.8

Sylvester 40 24.6 40 10.1 7.1

Face 20 29.8 20 13.9 6.0

ACLE: average center location errors (in pixels)

abruptly. The average center location errors (in pixels) in
Toy car experiment were 8.4 for the super tree and 28.6 for
the boosting. See Table 5 for other sequences and Fig. 12
for the error graph. The benefit of using Super tree for rapid
tracking would be bigger when a higher frame rate camera is
available. A simple proof-of-concept experiment on tracking
has only been performed in this study. More experimental
analyses and online tree learning algorithms (Basak 2004;

Yeh et al. 2007), which could further benefit the super tree
tracker by adaptation and makes a comparative study with
state-of-the-art trackers meaningful, are remained as future
work.

8.4 Segmentation by Pixel-Wise Classification

The car driving sequences (Brostow et al. 2008) were ex-
ploited for the experiment. Boosting classifier and super tree
were trained for the binary problem for the building class
against non-building class. 1323 DCT features were drawn
from 21 × 21 RGB image patch as weak-learners. The train
set consisted of 7143 positive and 23217 negative pixels
from 184 images of 11 × 15 pixel resolution. Randomi-
sation in learning (similarly to Rahimi and Recht (2008))
reduced the train time of the boosting classifier. The test
set contained 38445 points from 233 images. The correct
recognition rate of Boosting of 40 weak-learners was 0.71
(as global accuracy). The super tree learnt by 10 extended

214 Int J Comput Vis (2012) 100:203–215

Table 6 Segmentation
accuracies and average path
lengths

No. of
weak
learners

Boosting Fast exit (cascade) Super tree (cascade)

Global
accuracy (%)

Average path
length

Global
accuracy (%)

Average path
length

Global
accuracy (%)

Average path
length

40 71 40 71 26.6 70 15.2

60 73.1 60 73.1 40.7 72.6 17.6

200 74.4 200 74.4 (74.6) 175.7 (108.4) (74.8) (94.4)

Fig. 13 (Color online) Segmentation results. Pixels classified into the building class by Super tree (or Boosting) are shown in darker hue

regions per region obtained the close accuracy as 0.70 us-
ing only 15 weak-learners on average. See Table 6 for the
different numbers of weak-learners. The accuracy obtained
seems comparable to Brostow et al. (2008). Note that as in
the face experiment (Table 2) in order to apply Super tree
for a boosting classifier of 200 weak-learners we used a two
stage cascade consisting of 60 and 200 weak learners. The
relative gain of Super tree in terms of average path length
is considerably smaller in the segmentation experiment due
to a much larger ratio (1:3 vs 1:110) of positive over nega-
tive data points. Figure 13 shows the segmentation results.
The blocky effect was due to the low pixel image resolution
used.

9 Conclusion

We have proposed a novel way to speed up a boosting clas-
sifier. The problem is formularised as boolean optimisation
and a new optimisation method is proposed for a large num-
ber of weak-learners. The tree grown from the decision re-
gions of a boosting classifier, called Super tree, provides
many short paths and preserves the Boosting decision re-
gions. The single super tree delivers the close accuracy to
a boosting classifier with a great speed-up for up to several
tens of weak-learners. The proposed two stage cascade al-
lows any number of weak-learners. Experiments have shown

that the tree obtained is reasonably short in terms of aver-
age path length outperforming a standard boosting classifier,
Fast exit, their cascades. The method has been also demon-
strated for rapid object tracking and segmentation problems.

References

Avidan, S. (2006). SpatialBoost: adding spatial reasoning to adaboost.
In Proc. ECCV, Graz, Austria.

Basak, J. (2004). Online adaptive decision trees. Journal of Neural
Computation, 16, 1959–1981.

Brostow, G., Shotton, J., Fauqueur, J., & Cipolla, R. (2008). Segmen-
tation and recognition using structure from motion point clouds.
In Proc. ECCV, Marseilles.

Chen, J. (1994). Application of Boolean expression minimization to
learning via hierarchical generalization. In Proc. ACM symposium
on applied computing (pp. 303–307).

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction
to algorithms. Cambridge: MIT Press and McGraw-Hill.

Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (1997). A compara-
tive analysis of methods for pruning decision trees. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19, 476–491.

Freund, Y., & Mason, L. (1999). The alternating decision tree learning
algorithm. In Proc. ICML.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1), 119–139.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic re-
gression: a statistical view of boosting. Annals of Statistics, 28(2),
337–407.

Int J Comput Vis (2012) 100:203–215 215

Grabner, H., & Bischof, H. (2006). On-line boosting and vision. In
Proc. IEEE conf. CVPR (pp. 260–267).

Grossmann, E. (2004a). AdaTree: boosting a weak classifier into a de-
cision tree. In IEEE workshop on learning in computer vision and
pattern recognition (pp. 105–105).

Grossmann, E. (2004b) Adatree 2: boosting to build decision trees or
Improving Adatree with soft splitting rules (Technical report).

Huang, C., Ai, H., Li, Y., & Lao, S. (2005). Vector boosting for rotation
invariant multi-view face detection. In Proc. ICCV.

Kim, T.-K., Kim, H., Hwang, W., & Kittler, J. (2005). Component-
based LDA face description for image retrieval and MPEG-7 stan-
dardisation. Image and Vision Computing, 23(7), 631–642.

Li, S. Z., & Zhang, Z. (2004). Floatboost learning and statistical face
detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9), 1112–1123.

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algo-
rithms as gradient descent. In Proc. advances in neural informa-
tion processing systems (pp. 512–518).

Pham, M., & Cham, T. (2007). Fast training and selection of Haar fea-
tures using statistics in boosting-based face detection. In Proc.
ICCV.

Quinlan, J. (1996). Bagging, boosting, and c4.5. In Proc. national.
conf. on artificial intelligence (pp. 725–730).

Rahimi, A., & Recht, B. (2008). Random kitchen sinks: replacing op-
timization with randomization in learning. In Proc. neural infor-
mation processing systems.

Ross, D., Lim, J., Lin, R., & Yang, M. (2008). Incremental learning for
robust visual tracking. International Journal of Computer Vision,
77(1), 125–141.

Rowley, H., Baluja, S., & Kanade, T. (1998). Neural network-based
face detection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20, 22–38.

Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms
using confidence-rated predictions. In Proc. the eleventh annual
conference on computational learning theory (pp. 80–91).

Schwender, H. (2007). Minimization of boolean expressions using ma-
trix algebra (Technical report). Collaborative Research Center
SFB 475, University of Dortmund.

Sochman, J., & Matas, J. (2005). WaldBoost learning for time con-
strained sequential detection. In Proc. CVPR, San Diego, USA.

Torralba, A., Murphy, K. P., & Freeman, W. T. (2007). Sharing
visual features for multiclass and multiview object detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(5), 854–869.

Tu, Z. (2005). Probabilistic boosting-tree: learning discriminative mod-
els for classification, recognition, and clustering. In Proc. ICCV.

Viola, P., & Jones, M. (2001). Robust real-time object detection. In 2nd
intl. workshop on statistical and computational theories of vision.

Viola, P., & Jones, M. (2004). Robust real-time face detection. Inter-
national Journal of Computer Vision, 57(2), 137–154.

Wu, B., & Nevatia, R. (2007). Cluster boosted tree classifier for multi-
view, multi-pose object detection. In Proc. ICCV.

Xiao, R., Zhu, L., & Zhang, H. (2003). Boosting chain learning for
object detection. In Proc. ICCV.

Yeh, T., Lee, J., & Darrell, T. (2007). Adaptive vocabulary forests for
dynamic indexing and category learning. In Proc. ICCV.

Zhou, S. (2005). A binary decision tree implementation of a boosted
strong classifier. In IEEE Workshop on analysis and modeling of
faces and gestures (pp. 198–212).

	Making a Shallow Network Deep: Conversion of a Boosting Classifier into a Decision Tree by Boolean Optimisation
	Abstract
	Introduction
	Related Work
	Accelerating Boosting Classifiers
	Boolean Expression Minimisation

	Conversion of a Boosting Classifier into a Tree
	Boolean Optimisation Formulation
	Discussion on Boolean Expression Minimisation

	Growing a Super Tree
	Regions of Data Points
	Tree Growing by the Region Information Gain

	Tree Growing with the Extended Regions
	Extended Regions
	Modified Region Information Gain

	Two Stage Cascade
	Conventional Multi-Stage Cascade
	Fast-Exit
	Cascade of Super Tree and Fast-Exit

	Experiments
	Classification of Synthetic 2D Data
	Face Experiment
	Super Tree vs Conventional Decision Trees
	Training Time
	Over a Multi-stage Boosting Cascade

	Rapid-Moving Object Tracking
	Segmentation by Pixel-Wise Classification

	Conclusion
	References

