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1 Introduction

When humans grasp and manipulate objects, they almost invariably do so
with the aid of vision. Visual information is used to locate and identify things,
and to decide how (and if) they should be grasped. Visual feedback helps us
guide our hands around obstacles and align them accurately with their goal.
Hand—-Fye Coordination gives us a flexibility and dexterity of movement that
no machine can match.

Most vision systems for robotics usually need to be calibrated. Cam-
era geometry — the focal length, principal point and aspect ratio of each
camera [17], the relative position and orientation of the cameras (epipolar
geometry) [15] and their relation to the robot coordinate system [16] — must
be measured to a high degree of accuracy. A well-calibrated stereo rig can
accurately determine the position and shape of things to be grasped in all
three dimensions [14]. However, if calibration is erroneous or the cameras are
disturbed, the system will usually fail gracelessly.

An alternative approach in hand-eye applications where a manipulator
moves to a visually-specified target, is to use visual feedback to match ma-
nipulator and target positions in the image. Exact spatial coordinates are
not required, and a well-chosen feedback architecture can correct for quite
serious inaccuracies in camera calibration (as well as inaccurate kinematic
modelling) [19]. Visual feedback alone without exploiting or learning the re-
lationship between the robot kinematics and the stereo cameras, however, can
lead to inefficient motions [10].

In this paper we describe a system that combines stereo vision with a
robotic manipulator to enable it to efficiently locate and reach simple un-
modelled objects in an unstructured environment. The system is initially
uncalibrated; it “calibrates” itself automatically by tracking the gripper dur-
ing four deliberate exploratory movements in its workspace and is able to
operate successfully in the presence of errors in the kinematics of the robot
manipulator and unknown changes in the position, orientation and intrinsic
parameters of the stereo cameras during operation.



The system exploits an affine stereo algorithm — a simple but robust ap-
proximation to the geometry of stereo vision — (described in section 2) which,
though of modest accuracy, requires minimal calibration and can tolerate
small camera movements. We show that, in some circumstances, this sim-
plified camera model is less sensitive to image measurement error since it
avoids computing parameters required in the full perspective stereo which
are inherently ill-conditioned [4]. Closed-loop control is achieved by tracking
the gripper’s movements across the two images to estimate its position and
orientation relative to the target object. This is done with a form of active
contour model resembling a B-spline snake [3] but constrained to deform only
affinely (described in section 3) to produce a more reliable tracker which is
less easily confused by background contours or partial occlusion. Inevitable
errors in aligning the gripper and target object position and orientation are
corrected by an image-based feedback mechanism (section 4). Preliminary
results of a realtime implementation are presented (section 5) and show the
system to be remarkably immune to unexpected movements of the cameras
and focal lengths even after the initial self-calibration.

2 Affine Stereo

2.1 Perspective and projective camera models

The full perspective transformation between world and image coordinates
is conventionally analysed using the pinhole camera model, in which image-
plane coordinates (u, v) are ratios of world coordinates (., y., z.) in a camera-
centred frame, thus: w= fz./z., v = fy./z.. The relation between the
camera-centred and some other world coordinate frame consists of rotation
(R) and translation (t) components representing the camera’s orientation
and position. Using homogeneous coordinates (with scale factor s for conve-
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The relation between image plane coordinates (u,v) and pixel addresses
(X,Y) can be modelled by an affine transformation (to represent offsets,
scaling and shearing). Combining this with (1) yields a general 3D to 2D



projection, with 11 degrees of freedom:
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This is the usual camera model for many stereo vision systems. Although
it neglects effects such as lens distortion which are significant in some high-
accuracy applications [15], it correctly predicts image distortion due to per-
spective effects e.g. parallel 3D lines projecting to intersect a vanishing point
and the cross ratio (not ratio) of lengths is invariant to this transformation.

2.2 Weak perspective and affine camera models

Consider a camera viewing a compact scene of interest from distance h. For
convenience, we can translate the world coordinate system so that the scene
lies close to the world origin. The component of t along the optical axis, t3,
will then equal h. As distance increases relative to the extent of the scene,
sf/h will tend to unity for all points, and equation (1) becomes:
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This formulation assumes that images are not distorted by variations in depth,
and is known as weak perspective [13]. It is equivalent to orthographic projec-
tion scaled by a factor inversely proportional to the average depth, h. It can
be shown that this assumption results in an error which is, at worst, A/h
times the scene’s image size.

The entire projection, again incorporating scaling and shearing of pixel
coordinates, may now be written very simply as a linear mapping:
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The eight coeflicients p;; efficiently represent all intrinsic and extrinsic camera
parameters [15]. This simple approximation to the projection transformation
— the affine camera [11] — will be used as the camera model throughout
the paper. Its advantages will become clear later when it leads to efficient
calibration and reduced sensitivity to image measurement error. Note that
parallel lines project to parallel lines in the image and ratios of lengths and
areas are invariant to the transformation.



2.3 Motion of planar objects under weak perspective

There are many situations in computer vision where an object must be tracked
as 1t moves across a view. Here we consider the simple, but not uncommon,
case where the object is small and has planar faces.

We can define a coordinate system centred about the object face itself so
that it lies within the xy plane. If the object is small compared to the camera
distance, we again have weak perspective, and a special case of (4):
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We see that the transformation from a plane in the world to the image plane is
a 2D affine translation. As the camera moves relative to the object, parame-
ters a;; will change and the image will undergo translation, rotation, change in
scale (divergence) and deformation, but remain affine-invariant [8, 2] (figure

1).

This is a powerful constraint that can be exploited when tracking a planar
object. It tells us that the shape of the image will deform only affinely as the

object moves, and that there will exist an affine transformation between any
two views of the same plane.

Figure 1: The gripper being tracked as it translates and rotates under weak
perspective. The origin and sampling points of the tracker are shown in white.
The front of the gripper is approximately planar, and its image shape distorts
affinely as it moves under weak perspective.

2.4 The affine stereo formulation

In stereo vision two calibrated views of a scene from known viewpoints allow
the Euclidean reconstruction of the scene. In the following two uncalibrated
views under weak perspective projection are used to recover relative 3D po-
sitions and surface orientations.



Recovery of relative position from image disparity

We assume that the cameras do not move relative to the scene during each
period of use. Combining information from a pair images, we have four image
coordinates (X, Y, X', V") for each point, all linear functions of the three world
coordinates (&, Yu, Zu ):
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where Q is a 4 X 4 matrix formed from the p;; coefficients of (4) for the two
cameras. To calibrate the system it is necessary to observe a minimum of four
non-coplanar reference points, yielding sixteen simultaneous linear equations
from which Q may be found. With noisy image data, greater accuracy may
be obtained by observing more than four points.

Once the coefficients are known, world coordinates can be obtained by
inverting (6), using a least-squares method to resolve the redundant informa-
tion. Errors in calibration will manifest themselves as a linear distortion of
the perceived coordinate frame.

Note:

1. It is not essential to calibrate a stereo vision system to obtain useful
3-D information about the world. Instead, four of the points observed
may be given arbitrary world coordinates (such as (0,0,0), (0,0,1),
(0,1,0) and (1,0,0)). The appropriate solution for Q will define a
coordinate frame which is an arbitrary 3-D affine transformation of
the ‘true’ Cartesian frame, preserving affine shape properties such as
ratios of lengths and areas, collinearity and coplanarity. This is in
accordance with Koenderink and van Doorn’s Affine Structure-from-

Motion Theorem [9].

2. In hand-eye applications, it might instead be convenient to calibrate
the vision system in the coordinate space in which the manipulator
is controlled (assuming this maps approximately linearly to Cartesian
coordinates). This can be done by getting the robot manipulator to
move to four points in its workspace.

3. The integration of information from more than two cameras to help
avoid problems due to occlusion is easily accommodated in this frame-
work. Each view generates two additional linear equations in 6 which
can be optimally combined.



Recovery of surface orientation from disparity gradients

Under weak perspective any two views of the same planar surface will be
related by an affine transformation that maps one image to the other. This
consists of a pure 2D translation encoding the displacement of the centroid
and a 2D tensor — the disparity gradient tensor — which represents the dis-
tortion in image shape. This transformation can be used to recover surface
orientation [2]. Surface orientation in space is most conveniently represented
by a surface normal vector n. We can obtain it by the vector product of two
non-collinear vectors in the plane which can of course be obtained from three
pairs of image points. There is, however, no redundancy in the data and this
method would be sensitive to image measurement error. A better approach
is to exploit all the information in available in the affine transform (disparity
field).

Consider the standard unit vectors X and Y in one image and suppose
they were the projections of some vectors on the object surface. If the linear
mapping between images is represented by a 2 x 3 matrix A, then the first
two columns of A itself will be the corresponding vectors in the other image.
As the centroid of the plane will map to both image centroids, we can easily
use it and the above pairs of vectors to find three points in space on the plane
(by inverting (6)) and hence the surface orientation.

3 Tracking using affine active contours

An active contour (or ‘snake’) [7] is a curve defined in the image plane that
moves and deforms according to various ‘forces’. These include external
forces, which depend on local image properties and are used to guide the
active contour towards the image features, and internal forces which depend
on the contour shape and are used to enforce smoothness. Typically, a snake
will be attracted to maxima of image intensity gradient, and used to track
the edges of a moving object.

3.1 Anatomy

Our model-based trackers are a novel form of active contour. They resemble
B-spline snakes [3] but consist of (in the order of 100) discrete sampling
points, rather than a smooth curve [6]. We use them to track planar surfaces
bounded by contours, on the robot gripper and the object to be grasped.
Pairs of trackers operate independently in the two stereo views. The trackers
can deform only affinely, to track planes viewed under weak perspective [1].
This constraint leads to a more efficient and reliable tracker than a B-spline
snake, that is less easily confused by background contours or partial occlusion.



Each tracker is a 2D model of the image shape it is tracking, with sampling
points at regular intervals around the edge. At each sampling point there is
a local edge-finder which measures the offset between modelled and actual
edge positions in the image, by searching for the maximum of gradient along
a short line segment [5]. Due to the so-called aperture problem [18], only the
normal component of this offset can be recovered at any point (figure 2).

The positions of the sampling points are expressed in affine coordinates,
and their image positions depend upon the tracker’s local origin and two basis
vectors. These are described by six parameters, which change over time as
the object is tracked. The contour tangent directions at each point are also
described in terms of the basis vectors.

sampling ;point

Figure 2: An active contour: The image is sampled in segments normal to
the predicted contour (dotted lines) to search for the maximal gradient. The
offsets between predicted and actual edges (arrows) are combined globally to
guide the active contour towards the image edge.

3.2 Algorithm

At each time-step the tracker moves and deforms to minimise the sum of
squares of offsets between model and image edges (h;). In our implementa-
tion this is done in two stages. First the optimal translation is found, then the
deformation, rotation, scale (divergence) components are calculated. Split-
ting the task into these two stages was found to increase stability, as fewer
parameters were being estimated at once. To find the optimal translation u
to account for normal offset h; at each sampling point whose image normal
direction is n;, we solve the following equation:

h; =n;-u+e¢. (7)

¢; 1s the error term, and we solve the whole system of equations using a
least-squares method to minimise > €.



Once the translation has been calculated, the other components are esti-
mated. It is assumed that the distortion is centred about the tracker’s local
origin (normally its centroid, to optimally decouple it from translation). The
effects of translation (n,-u) are subtracted from each normal offset, leaving a
residual offset. We can then find the matrix A that maps image coordinates
to displacement:

(hZ —n; - u) =n;- (Apz) + 6;, (8)

where p; is the sampling point’s position relative to the local origin and ¢! is
again the error term to be minimised.

In practice this formulation can lead to problems when the tracked surface
moves whilst partially obscured (often, a tracker will catch on an occluding
edge and become ‘squashed’ as it passes in front of the surface). It can also be
unstable and sensitive to noise when the tracker is long and thin. We therefore
use a simplified approximation to this equation that ignores the aperture
problem (equating the normal component with the whole displacement):

(h; —n;-u)n; = Ap, + e;. (9)

e; is an error vector, and our implementation solves the equations to min-
imise 3" |e;]>. This produces a more stable tracker that, although sluggish
to deform, is well suited to those practical tracking tasks where motion is
dominated by the translation component. The tracker positions are updated
from u and A using a real time first-order predictive filter. This enhances
performance when tracking fast-moving objects.

4 Visual Feedback for Hand—Eye Coordina-
tion

Affine stereo is a simplified stereo vision formulation that is very easily cal-
ibrated. Conversely, it is of rather low accuracy. Nevertheless, it gives re-
liable qualitative information about the relative positions of points and can,
of course, indicate when they are in precisely the same place. We therefore
use a feedback control mechanism to help to guide the gripper to the target,
using affine stereo to compute the relative position and orientation of their
respective tracked surfaces.

Since the reference points used to self-calibrate are specified in the con-
troller’s coordinate space, linear errors in the kinematic model are effectively
bypassed. The system must still cope with any nonlinearities in control, as
well as those caused by strong perspective effects.

We take an iterative approach, based upon relative positions. The manip-
ulator moves in discrete steps; each motion is proportional to the difference



between the gripper’s perceived position and orientation, and those of the
target plane. This is equivalent to an integral control architecture, in which
the error term is summed at each time step (see figure 3).

The gain is set below unity to prevent instability, even when the vision
system is miscalibrated. The process repeats until the perceived coordinates
of the gripper coincide with those of the target. Alternatively, to implement a
particular grasping strategy, an offset can be introduced into the control loop
to specify the final pose of the gripper relative to the target plane. Irrespective
of the accuracy of stereo and hand-eye calibration visual feedback will ensure
that target and gripper are aligned.
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Figure 3: The control structure of the system, showing the use of visual

feedback.

5 Implementation and Experiments

5.1 Equipment

The system was implemented on a Sun SPARCstation 10 with a Data Cell
52200 frame grabber. The manipulator is a Scorbot ER-7 robot arm, which
has 5 degrees of freedom and a parallel-jawed gripper. The robot has its
own 68000-based controller which implements the low-level control loop and
provides a Cartesian kinematic model. Images are obtained from two inex-



pensive CCD cameras placed 1m—3m from the robot’s workspace. The angle
between the cameras is in the range of 15-30 degrees (figure 4).

Figure 4: The experimental setup. Uncalibrated stereo cameras viewing a
robot gripper and target object.

5.2 Implementation

When the system is started up, it begins by opening and closing the jaws
of the gripper. By observing the image difference, it is able to locate the
gripper and set up a pair of affine trackers as instances of a hand-made 2D
template. The trackers will then follow the gripper’s movements continuously.
Stereo tracking can be implemented on the Sun at over 10 Hz. The robot
moves to four preset points to calibrate the system in terms of the controller’s
coordinate space.

A target object is found by similar means — observing the image changes
when it is placed in the manipulator’s workspace. Alternatively it may be
selected from a monitor screen using the mouse. There is no pre-defined model
of the target shape, so a pair of ‘expanding’ B-spline snakes [2] are used to
locate the contours delimiting the target surface in each of the images. The
snakes are then converted to a pair of affine trackers. The target surface is
then tracked, to compensate for unexpected motions of either the target or
the two cameras.

By introducing modifications and offsets to the feedback mechanism (which
would otherwise try to superimpose the gripper and the target), two ‘be-
haviours” have been implemented. The tracking behaviour causes it to follow
the target continuously, hovering a few centimetres above it (figure 5). The
grasping behaviour causes the gripper to approach the target from above (to
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avoid collisions) with the gripper turned through an angle of 90 degrees, to
grasp it normal to its visible surface (figure 6).

Figure 5: The robot is tracking its quarry, guided by the position and orienta-
tion of the target contour (view through left camera). On the target surface is
an affine snake — an affine tracker obtained by ‘expanding’ a B-spline snake
from the centre of the object. A slight offset has been introduced into the
control loop to cause the gripper to hover above it. Last frame: one of the
cameras has been rotated and zoomed, but the system continues to operate
successfully with visual feedback.

5.3 Results

Without feedback control, the robot locates its target only approximately
(typically to within 5cm in a 50em workspace) reflecting the approximate
nature of affine stereo and calibration from only four points. With a feedback
gain of 0.75 the gripper converges on its target in three or four control iter-
ations. If the system is not disturbed it will take a straight-line path. The
system has so far demonstrated its robustness by continuing to track and
grasp objects despite:

Kinematic errors. Linear offsets or scalings of the controller’s coordinate
system are absorbed by the self-calibration process with complete trans-
parency. Slight nonlinear distortions to the kinematics are corrected for
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Figure 6: Affine stereo and visual feedback used to grasp a planar face.

by the visual feedback loop, though large errors introduce a risk of
ringing and instability unless the gain is reduced.

Camera disturbances. The system continues to function when its cameras
are subjected to small translations (e.g. 20cm), rotations (e.g. 30 de-
grees) and zooms (e.g. 200% change in focal length), even after it has
self-calibrated. Large disturbances to camera geometry cause the grip-
per to take a curved path towards the target, and require more control
iterations to get there.

Strong perspective. The condition of weak perspective throughout the ro-
bot’s workspace does not seem to be essential for image-based control
and the system can function when the cameras are as close as 1.5 metres
(the robot’s reach is a little under 1 metre). However the feedback gain
must be reduced or the system will overshoot on motions towards the
cameras.

Figure 5 shows four frames from a tracking sequence (all taken through the
same camera). The cameras are about two metres from the workspace. Track-
ing of position and orientation is maintained even when one of the cameras
is rotated about its optical axis and zoomed (figure 5, bottom right).

6 Future Developments

The current system is based upon matching the positions and orientations of
two planes — the gripper and target. Since the gripper and target planes must
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be visible in both images at all times, neither can rotate through more than
about 120 degrees. We intend to develop the system to track the gripper
using a three-dimensional rigid model [6], drawing information from both
images simultaneously. We also aim to identify and track more than one of
the surfaces of the object to be grasped, both for 3-D tracking and also for
analysis of its 3D shape.

We plan to equip such a system with a grasp planner that uses the relative
positions, sizes and orientations of the visible surfaces on the object, to direct
the robot to grasp unmodelled objects in a suitable way.

7 Conclusion

An important component of the system presented in this paper has been affine
stereo. The appendix contains a quantitative comparison with perspective
stereo. Affine stereo provides a simple and robust interpretation of image
position and disparity that degrades gracefully when cameras are disturbed.
Calibration is not only easier (fewer parameters and amenable to linear tech-
niques) but also less sensitive to small perspective effects. It is suitable for
uncalibrated and self-calibrating systems and therefore the preferred stereo
method for our visual servoing application.

By defining the working coordinate system in terms of the robot’s abilities,
linear errors in its kinematics are bypassed. The remaining nonlinearities can
be handled using image-based control and feedback. We have shown that this
can be achieved cheaply and effectively using a novel form of active contour
to track planar features on the gripper and target.

Such a system has been implemented and found to be highly robust, with-
out unduly sacrificing performance (in terms of speed to converge on the
target ).

Appendix: Comparison of full-perspective and
affine stereo

Correspondence and the epipolar constraint

In the affine stereo formulation it was assumed that two sets of image coor-
dinates were available for each world point. The task of identifying pairs of
image features which correspond to the same point in space is known as the
correspondence problem.

The image coordinates of a world feature in two images are not indepen-
dent, but related by an epipolar constraint. Consider the family of planes
passing through the optical centre of each camera. These project to a family
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of epipolar lines in each image. If a feature lies upon a particular line in
the left image, the corresponding feature must lie upon the line in the right
image, which is the projection of the same plane. The constraint reflects
the redundancy inherent in deriving four image coordinates from points in a
three-dimensional world. Most correspondence algorithms exploit this con-
straint, which reduces the search for matching features to a single dimension,
and identifying it is an important aspect of any calibration scheme.

In affine stereo, the epipolar planes are considered to be parallel, and the
constraint takes the form of a single linear relation among the four image
coordinates. With the full perspective model, the lines need not be parallel,
and converge to a point called the epipole (the projection of one camera centre
on the other camera’s image plane). The constraint may be obtained from
calibration data, for instance by rearranging the model to predict one image
coordinate as a function of the other three.

Figure 7 compares the epipolar line structure predicted by both affine and
full perspective stereo models (after calibration using linear least squares). In
this setup, in which the camera distance is about 2 metres, both models give
similar epipolar accuracy. Furthermore, the affine model can predict epipolar
lines using just 4 reference points; perspective stereo requires a minimum of

6.

Accuracy of reconstruction

To compare affine and full perspective stereo, we performed a series of nu-
merical simulations, measuring their ability to estimate the relative positions
of points within a workspace, viewed by a pair of pinhole cameras.!

Under ideal conditions: Without noise or other disturbances, perspective
stereo estimates absolute and relative positions with complete accuracy.
At close range affine stereo performs poorly, but the error decreases in
inverse proportion to camera distance (figure 8).

Accuracy is also somewhat dependent on the number and configura-
tion of the reference points used in calibration, and there is a limited
improvement as the unit cube is sampled more regularly.

With noisy calibration data: Adding 1% Gaussian noise to the image co-
ordinates of the reference points causes both systems to lose accuracy.
Perspective stereo is more sensitive to noise because of its nonlinearlity
and greater degrees of freedom, and is less accurate than the affine stereo

'Reference and test points are confined to a unit cube centred about the origin. There
are 6 reference points within the unit cube. Test points are distributed uniformly within
the cube. The cameras face the origin from a distance of 3-24 units, angled 20° apart
(their focal length is proportional to distance, to normalize image size).
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(c,d) Selected points in the left image, and eplpolar hnes estlmated by the
perspective camera model after calibration with 8 points

e,f) Epi olar lines estimated b aﬂine camera model after calibration
pip Yy
with 8 points and with 4 points

Figure 7: Estimation of epipolar lines. Although it considers the epipolar
lines to be parallel, the affine camera model (e) is almost as accurate as
perspective in this experiment (RMS perpendicular error 4.1 pixels). Even
with only 4 reference points, it produces a reasonable solution (f) from which
stereo correspondence could be performed (RMS error 6.2 pixels).
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Figure 8: RMS relative positioning error (for random point pairs in the unit
cube) as a function of camera distance. The error is due to the approximate
nature of the affine stereo model and drops as camera distance increases.

approximation at large viewing distances (figure 9). (viewing a larger
number of reference points reduces the effects of noise and restores the
accuracy of perspective stereo).

Camera movements after calibration: In a laboratory or industrial en-
vironment it is possible for cameras to be disturbed from time to time
and subject to small rotations and translations. If this happens after
calibration, it will give rise to a corresponding error in stereo recon-
struction.

Table 1 shows the average change in perceived relative position when
one camera is rotated or translated a small distance around/along each
principle axis. The two systems degrade comparably with small move-
ments, the worst of which is rotation about the optical axis. Perspective
stereo is more sensitive to larger movements, and to rotations and trans-
lations in the epipolar plane (in which a small error can induce large
changes of perceived depth), because it distorts nonlinearly.

With noisy image coordinates: When gaussian noise is added to the im-
age coordinates of the points whose relative position is to be estimated
(after accurate calibration), the effect is comparable on both systems,
and their performance converges at large camera distance (figure 10).
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Figure 9: RMS positioning error as a function of camera distance, after cal-
ibration with noisy reference point images (standard deviation 1% of image
size). The error suffered by the perspective model (dotted) is comparable in
magnitude to the affine stereo systematic error.
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Figure 10: RMS relative positioning error from noisy images (standard devia-
tion 1% image size) of world points after accurate calibration with 27 reference
points. The two models converge for camera distances above ~ 10 units.
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| Disturbance | Change (Affine) | Change(Perspective) |

zy (cyclic) rotation 1° 0214 0214
xz (epipolar) rotation 1° .0007 .0468
yz (vertical) rotation 1° .0006 .0049

zy (cyclic) rotation 5° 1069 .1068
xz (epipolar) rotation 5° .0095 1867
yz (vertical) rotation 5° .0056 .0769
x (epipolar) translation 0.1 0119 .0207

y (vertical) translation 0.1 .0020 .0007
z (distance) translation 0.1 0119 0119
x (epipolar) translation 0.5 .0596 1168

y (vertical) translation 0.5 0102 .0139
z (distance) translation 0.5 0574 0572

Table 1: RMS change to relative position estimates of world points, caused
by disturbing one of the cameras after calibration

References

[1] A. Blake, R. Curwen, and A. Zisserman. Affine-invariant contour track-
ing with automatic control of spatiotemporal scale. In Proc. jth Int.

Conf. on Computer Vision, pages 66-75, 1993.

[2] R. Cipolla and A. Blake. Surface orientation and time to contact from
image divergence and deformation. In G. Sandini, editor, Proc. 2nd Fu-
ropean Conference on Computer Vision, pages 187-202. Springer—Verlag,
1992.

[3] R. Cipolla and A. Blake. Surface shape from the deformation of apparent
contours. Int. Journal of Computer Vision, 9(2):83-112, 1992.

[4] R. Cipolla, Y. Okamoto, and Y. Kuno. Robust structure from motion
using motion parallax. In Proc. fth Int. Conf. on Computer Vision,

pages 374-382, 1993.

[5] R. Curwen and A. Blake. Dynamic contours: real-time active splines. In
A. Blake and A. Yuille, editors, Active Vision, pages 39-58. MIT Press,
1992.

[6] C. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors,
Active Vision, pages 59-74. MIT Press, 1992.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models.
In Proc. 1st Int. Conf. on Computer Vision, pages 259-268, 1987.

18



[8] J.J. Koenderink. Optic flow. Vision Research, 26(1):161-179, 1986.

[9] J.J. Koenderink and A.J. van Doorn. Affine structure from motion. .J.

Opt. Soc. America, pages 377-385, 1991.

[10] B.W. Mel. Connectionist Robot Motion Planning. Academic Press, San
Diego, 1990.

[11] J.L. Mundy and A.Zissermann editors. Geometric Invariance in Com-

puter Vision. MIT Press, 1992.

[12] G.F. Poggio and T. Poggio. The analysis of stereopsis. Annual review of
neuroscience, vol. 7, pages 379-412, 1984.

[13] L.G. Roberts. Machine perception of three-dimensional solids. In J.T.
Tippet, editor, Optical and FElectro-optical Information Processing. MIT
Press, 1965.

[14] M. Rygol, S. Pollard, and C. Brown. A multiprocessor 3D vision system
for pick-and-place. In Proc. British Machine Vision Conf., BMVC90
pages 169-174, 1990.

[15] R.Y. Tsai. A versatile camera calibration technique for high-accuracy
3D machine vision metrology using off-the-shelf TV cameras and lenses

In IEEE Journal of Robotics and Automation, RA-3(4) pages 323-344,
1987.

[16] R.Y. Tsai and R.K. Lenz. A new technique for fully autonomous and ef-
ficient 3D robotics hand-eye calibration. In Jth International Symposium
on Robotics Research, volume 4, pages 287297, 1987.

[17] R.Y. Tsai and R.K. Lenz. Techniques for calibration of the scale factor
and image center for high accuracy 3D machine vision metrology. IEEFE

Trans. Pattern Analysis and Machine Intell., 10(5):713-720, 1988.

[18] S. Ullman. The interpretation of visual motion. MIT Press, Cam-
bridge, USA, 1979.

[19] S.W. Wijesoma, D.F.H. Wolfe and R.J. Richards. Eye-to-hand coordi-
nation for vision-guided robot control applications. In Int. J. Robotics

Research, 12(1) pages 6578, 1993.

19



