
Towards Person Authentication by Fusing Visual and Thermal Face
Biometrics

Ognjen Arandjelovíc1, Riad Hammoud2, and Roberto Cipolla1

1 Department of Engineering
University of Cambridge
Cambridge, CB2 1TQ
UK
{oa214,cipolla }@eng.cam.ac.uk

2 Delphi Corporation
Delphi Electronics and Safety
Kokomo, IN 46901-9005
USA
riad.hammoud@delphi.com

Abstract

The objective of this work is to recognize faces using sets of images in visual and thermal spectra. This
is challenging because the former is greatly affected by illumination changes, while the latter frequently
contains occlusions due to eye-wear and is inherently less discriminative. Our method is based on the fusion
of the two modalities. Specifically: we examine (i) the effects of preprocessing of data in each domain, (ii) the
fusion of holistic and local facial appearance, and (iii) propose an algorithm for combining the similarity
scores in visual and thermal spectra in the presence of prescription glasses and significant pose variations,
using a small number of training images (5-7). Our system achieved a high correct identification rate of 97%
on a freely available test set of 29 individuals and extreme illumination changes.

1 Introduction

In this chapter we focus on face appearance-based biometrics. The cheap and readily available hardware
used to acquire data, their non-invasiveness and the ease of employing them from a distance and without the
awareness of the user, are just some of the reasons why these continue to be of great practical interest.

However, a number of research challenges remain. Specifically, face biometrics have traditionally fo-
cused on images acquired in the visible light spectrum and these are greatly affected by such extrinsic
factors such as the illumination, camera angle (or, equivalently, head pose) and occlusion. In practice, the
effects of changing pose are usually least problematic and can oftentimes be overcome by acquiring data
over a time period e.g. by tracking a face in a surveillance video. Consequently, image sequence or image
set matching has recently gained a lot of attention in the literature [2] [13] [35] and is the paradigm adopted
in this chapter as well. In other words, we assume that the training image set for each individual contains
some variability in pose, but is not obtained in scripted conditions or in controlled illumination.



In contrast, illumination is much more difficult to deal with: the illumination setup is in most cases not
practical to control and its physics is difficult to accurately model.Thermal spectrumimagery is useful in
this regard as it is virtually insensitive to illumination changes, as illustrated in Fig. 1. On the other hand,
it lacks much of the individual, discriminating facial detail contained in visual images. In this sense, the
two modalities can be seen as complementing each other. The key idea behind the system presented in this
chapter is that robustness to extreme illumination changes can be achieved byfusingthe two. This paradigm
will further prove useful when which we consider the difficulty of recognition in the presence of occlusion
caused by prescription glasses.

Fig. 1. Sensitivity to lighting conditions:Illumination changes have a dramatic effect on images acquired in the visible
light spectrum (top row). In contrast, thermal imagery (bottom row) shows remarkable invariance.

1.1 Mono-sensor based techniques

Optical sensors.

Among the most used sensors in face biometric systems is the optical imager. This is driven by its availability
and low-cost. An optical imager captures the light reflectance of the face surface in the visible spectrum.
The visible spectrum provides features that depend only on surface reflectance. Thus, it is obvious that the
face appearance changes according to the ambient light. In order to overcome the lighting, pose and facial
expression changes, a flurry of face recognition algorithms, from the two well-known broad categories,
appearance-based and feature-based methods, has been proposed [31]. Appearance-based methods find the
global properties of the face pattern and recognize the face as a whole. In contrast, feature-based methods
[30] [25] [14] explore the statistical and geometrical properties of facial features like eyes and mouth. The



face recognition performance depends on the accuracy of facial feature detection. Moreover, local and global
lighting changes cause existing face recognition techniques for the visible imagery to perform poorly.

Infrared sensors.

Recent studies have proved that face recognition in the thermal spectrum offers a few distinct advantages
over the visible spectrum, including invariance to ambient illumination changes [44] [38] [32] [37]. This is
due to the fact that a thermal infrared sensor measures the heat energy radiation emitted by the face rather
than the light reflectance. A thermal sensor generates imaging features that uncover thermal characteristics
of the face pattern. Indeed, thermal face recognition algorithms attempt to take advantage of such anatomical
information of the human face as unique signatures.

Appearance-based face recognition algorithms applied to thermal IR imaging consistently performed
better than when applied to visible imagery, under various lighting conditions and facial expressions [27]
[36] [38] [34]. Further performance improvements were achieved using decision-based fusion [38]. In con-
trast to other techniques, Srivastanaet al. [39], performed face recognition in the space of Bessel function
parameters. First, they decompose each infrared face image using Gabor filters. Then, they represent the
face by a few parameters by modelling the marginal density of the Gabor filter coefficients using Bessel
functions. This approach has been improved by Buddharajuet al. [10]. Recently, Friedrichet al. [18] shown
that IR-based recognition is less sensitive to changes in 3D head pose and facial expression.

1.2 Multi-sensor based techniques

As the surface of the face and its temperature have nothing in common, one would state that the extracted
cues from both sensors are not redundant and yet complementary. Several attempts have been made in face
recognition based on the fusion of different types of data from multiple sensors. Face recognition algorithms
based on the fusion of visible and thermal IR images demonstrated higher performance than individual image
types [9] [33] [12] [20]. Biometric systems that integrate face and speech signals [6], the face and fingerprint
information [22], and the face and the ear images [11] improved the accuracy in personal identification.

Recently, Heoet al. [21] proposed two types of visible and thermal fusion technique, the first fuses low-
level data while the second fuses matching outputs. Data fusion was implemented by applying pixel-based
weighted averaging of co-registered visual and thermal images. Decision fusion was implemented by com-
bining the matching scores of individual recognition modules. To deal with occlusions caused by eyeglasses
in thermal imagery, they used a simple ellipse fitting technique to detect the circle-like eyeglass regions in
the IR image and replaced them with an average eye template. Using a commercial face recognition system,
FaceIt [24], they demonstrated improvements in recognition accuracy.

2 Method Details

In the sections that follow we explain our system in detail, the main components of which are conceptually
depicted in Fig. 2.

2.1 Matching image sets

In this chapter we deal with face recognition fromsetsof images, both in the visual and thermal spectrum. We
will show how to achieve illumination invariance using a combination of simple data preprocessing (§2.2),
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Fig. 2.System overview:Our system consists of three main modules performing (i) data preprocessing and registration,
(ii) glasses detection and (iii) fusion of holistic and local face representations using visual and thermal modalities.

local features (§2.3) and modality fusion (see§2.4). Hence, the requirements for our basic set-matching
algorithm are those of (i) some pose generalization and (ii) robustness to noise. We compare two image sets
by modelling the variations within a set using a linear subspace and comparing two subspaces by finding the
most similar modes of variation within them.

The modelling step is a simple application of Principal Component Analysis (PCA) without mean sub-
traction. In other words, given a data matrixd (each column representing a rasterized image), the subspace
is spanned by the eigenvectors of the matrixC = ddT corresponding to the largest eigenvalues; we used
5D subspaces, as sufficiently expressive to on average explain over 90% of data variation within intrinsically
low-dimensional face appearance changes in a set.

The similarity of two subspacesU1 andU2 is quantified by the cosine of the smallest angle between two
vectors confined to them:

ρ = cos θ = max
u∈U1

max
v∈U2

uT v. (1)

The quantityρ is also known as the first canonical correlation [23]. It is this implicit “search” over entire
subspaces that achieves linear pose interpolation and extrapolation, by finding the most similar appearances
described by the two sets [26]. The robustness of canonical correlations to noise is well detailed in [8] (also
see [29]).



Further appeal of comparing two subspaces in this manner is contained in its computational efficiency. If
B1 andB2 are the corresponding orthonormal basis matrices, the computation ofρ can be rapidly performed
by finding the largest singular value of the5× 5 matrixBT

1 B2 [8].

2.2 Data preprocessing & feature extraction

The first stage of our system involves coarse normalization of pose and brightness. We register all faces,
both in the visual and thermal domain, to have the salient facial features aligned. Specifically, we align the
eyes and the mouth due to the ease of detection of these features (e.g. see [5] [7] [15] [16] and [41]). The 3
point correspondences, between the detected and the canonical features’ locations, uniquely define an affine
transformation which is applied to the original image. Faces are then cropped to80× 80 pixels, as shown in
Fig. 3.

Fig. 3. Registration:Shown is the original image in the visual spectrum with detected facial features marked by yellow
circles (left), the result of affine warping the image to the canonical frame (centre) and the final registered and cropped
facial image.

Coarse brightness normalization is performed by band-pass filtering the images [5] [17]. The aim is to
reduce the amount of high-frequency noise as well as extrinsic appearance variations confined to a low-
frequency band containing little discriminating information. Most obviously, in visual imagery, the latter are
caused by illumination changes, owing to the smoothness of the surface and albedo of faces [1].

We consider the following type of a band-pass filter:

IF = I ∗Gσ=W1 − I ∗Gσ=W2 , (2)

which has two parameters - the widthsW1 andW2 of isotropic Gaussian kernels. These are estimated from
a small training corpus of individuals in different illuminations. Fig. 4 shows the recognition rate across the
corpus as the values of the two parameters are varied. The optimal values were found to be2.3 and6.2 for
visual data; the optimal filter for thermal data was found to be alow-passfilter with W2 = 2.8 (i.e.W1 was
found to be very large). Examples are shown in Fig. 5. It is important to note from Fig. 4 that the recognition
rate varied smoothly with changes in kernel widths, showing that the method is not very sensitive to their
exact values, which is suggestive of good generalization to unseen data.

The result of filtering visual data is further scaled by a smooth version of the original image:

ÎF (x, y) = IF (x, y)./(I ∗Gσ=W2), (3)
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Fig. 4. Band-pass filter:The optimal combination of the lower and upper band-pass filter thresholds is estimated from
a small training corpus. The plots show the recognition rate using a single modality, (a) visual and (b) thermal, as a
function of the widthsW1 andW2 of the two Gaussian kernels in(2). It is interesting to note that the optimal band-pass
filter for the visual spectrum passes a rather narrow, mid-frequency band, whereas the optimal filter for the thermal
spectrum is in fact alow-passfilter.

where./ represents element-wise division. The purpose of local scaling is to equalize edge strengths in dark
(weak edges) and bright (strong edges) regions of the face; this is similar to the Self Quotient Image of Wang
et al. [43]. This step further improves the robustness of the representation to illumination changes, see§3.

(a) Visual (b) Thermal

Fig. 5. Preprocessing:The effects of the optimal band-pass filters on registered and cropped faces in (a) visual and (b)
thermal spectra.

2.3 Single modality-based recognition

We compute the similarity of two individuals using only a single modality (visual or thermal) by combining
the holistic face representation described in§2.2 and a representation based on local image patches. These
have been shown to benefit recognition in the presence of large pose changes [35].

As before, we use the eyes and the mouth as the most discriminative regions, by extracting rectangular
patches centred at the detections, see Fig. 6. The overall similarity score is obtained by weighted summation:



ρv/t = ωh · ρh + ωm · ρm + (1− ωh − ωm) · ρe, (4)

whereρm, ρe andρh are the scores of separately matching, respectively, the mouth, the eyes and the entire
face regions, andωh andωm the weighting constants.

Fig. 6. Features: In both the visual and the thermal spectrum our algorithm combines the similarities obtained by
matching the holistic face appearance and the appearance of three salient local features - the eyes and the mouth.

The optimal values of the weights were estimated from the offline training corpus. For the visual spec-
trum we obtainedωe = 0.3, while the mouth region was found not to improve recognition (i.e.ωm = 0.0).
The relative magnitudes of the weights were found to be different in the thermal spectrum, both the eye and
the mouth region contributing equally to the overall score:ωm = 0.1, ωh = 0.8.

2.4 Fusing modalities

Until now we have focused on deriving a similarity score between two individuals given sets of images
in either thermal or visual spectrum. A combination of holistic and local features was employed in the
computation of both. However, the greatest power of our system comes from the fusion of the two modalities.

Givenρv andρt, the similarity scores corresponding to visual and thermal data, we compute the joint
similarity as:

ρf = ωv(ρv) · ρv + (1− ωv(ρv)) · ρt. (5)

Notice that the weighting factors are no longer constants, butfunctions. The key idea is that if the visual
spectrum match is very good (i.e.ρv is close to1.0), we can be confident that illumination difference between
the two images sets compared is mild and well compensated for by the visual spectrum preprocessing of
§2.2. In this case, visual spectrum should be given relatively more weight than when the match is bad and
the illumination change is likely more drastic.

The functionωv ≡ ωv(ρv) is estimated in three stages: first (i) we estimatep̂(ωv, ρv), the probability
thatωv is the optimal weighting given the estimated similarityρv, then (ii) computeω(ρv) in the maximum
a posteriori sense and finally (iii) make an analytic fit to the obtained marginal distribution. Step (i) is
challenging and we describe it next.



Input : visual datadv(person, illumination),
thermal datadt(person, illumination).

Output : density estimatêp(ω, ρv).

1: Init
p̂(ω, ρv) = 0,

2: Iteration
for all illuminationsi, j and personsp

3: Iteration
for all k = 0, . . . , 1/∆ω, ω = k∆ω

5: Separation givenω
δ(k∆ω) = minq 6=p[ωρp,p

v + (1− ω)ρp,p
t

−ωρp,q
v + (1− ω)ρp,q

t ]

6: Update density estimate
p̂(k∆ω, ρp,p

v ) = p̂(k∆ω, ρp,p
v )

+sig(C · δ(k∆ω))

7: Smooth the output
p̂(ω, µ) = p̂(ω, µ) ∗Gσ=0.05

8: Normalize to unit integral
p̂(ω, ρ) = p̂(ω, ρ)/

∫
ω

∫
ρ
p̂(ω, ρ)dρdω

Fig. 7. Offline: Optimal fusion training algorithm.

Iterative density estimate.

The principal difficulty of estimatinĝp(ωv, ρv) is of practical nature: in order to obtain an accurate estimate
(i.e. a well-sampled distribution), a prohibitively large training database is needed. Instead, we employ a
heuristic alternative. Much like before, the estimation is performed using the offline training corpus.

Our algorithm is based on an iterative incremental update of the density, initialized as uniform over
the domainω, ρ ∈ [0, 1]. We iteratively simulate matching of an unknown person against a set gallery
individuals. In each iteration of the algorithm, these are randomly drawn from the offline training database.
Since the ground truth identities of all persons in the offline database is known, for eachω = k∆ω we can
compute the separation i.e. the difference between the similarities of the test set and the set corresponding
to it in identity, and that between the test set and the most similar set that doesnot correspond to it in
identity. Densityp̂(ω, ρ) is then incremented at each(k∆ω, ρp,p) proportionally toδ(k∆ω) after being
passed through the sigmoid function. This is similar to the algorithm proposed in [4].

Fig. 7 summarizes the proposed offline learning algorithm. An analytic fit top̂(ωv) in the form (1 +
exp(a))/(1 + exp(a/ρv)) is shown in Fig. 8.
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Fig. 8. Modality fusion: The contribution of visual matching, as a function of the similarity of visual imagery. A low
similarity score between image sets in the visual domain is indicative of large illumination changes and consequently
our algorithm leant that more weight should be placed on the illumination-invariant thermal spectrum.

2.5 Dealing with glasses

The appeal of using the thermal spectrum for face recognition stems mainly from its invariance to illumina-
tion changes, in sharp contrast to visual spectrum data. The exact opposite is true in the case of prescription
glasses, which appear as dark patches in thermal imagery, see Fig. 5. The practical importance of this can
be seen by noting that in the US in 2000 roughly 96 million people, or 34% of the total population, wore
prescription glasses [42].

In our system, the otherwise undesired, gross appearance distortion that glasses cause in thermal imagery
is used to help recognition by detecting their presence. If the subject is not wearing glasses, then both holistic
and all local patches-based face representations can be be used in recognition; otherwise the eye regions in
thermal images are ignored.

Glasses detection

We detect the presence of glasses by building representations for the left eye region (due to the symmetry
of faces, a detector for only one side is needed) with and without glasses, in the thermal spectrum. The
foundations of our classifier are laid in§2.1. Appearance variations of the eye region with out without glasses
are represented by two 6D linear subspaces, see Fig. 9 for example training data. Patches extracted from a
set of thermal imagery of a novel person is then compared with each subspace. The presence of glasses is
deduced when the corresponding subspace results in a higher similarity score. We obtain close to flawless
performance on our data set (also see§3 for description), as shown in Fig. 10.

The presence of glasses severely limits what can be achieved with thermal imagery, the occlusion heavily
affecting both the holistic face appearance as well as that of the eye regions. This is the point at which our
method heavily relies on decision fusion with visual data, limiting the contribution of the thermal spectrum
to matching using mouth appearance only i.e. settingωh = ωe = 0.0 in (4).
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Fig. 9. Appearance models:Shown are examples of glasses-on (top) and glasses-off (bottom) thermal data used to
construct the corresponding appearance models for our glasses detector.

3 Empirical Evaluation

We evaluated the described system on the“Dataset 02: IRIS Thermal/Visible Face Database”subset of
theObject Tracking and Classification Beyond the Visible Spectrum (OTCBVS)database3, freely available
for download athttp://www.cse.ohio-state.edu/OTCBVS-BENCH/ . Briefly, this database contains
29 individuals, 11 roughly matching poses in visual and thermal spectra and large illumination variations
(some of these are exemplified in Fig. 11).

Our algorithm was trained using all images in a single illumination in which all 3 salient facial features
could be detected. This typically resulted in 7-8 images in the visual and 6-7 in the thermal spectrum, see
Fig. 12, and roughly±45◦ yaw range, as measured from the frontal face orientation.

The performance of the algorithm was evaluated both in 1-to-N and 1-to-1 matching scenarios. In the
former case, we assumed that test data corresponded to one of people in the training set and recognition
was performed by associating it with the closest match. Verification (or 1-to-1 matching, “is this the same
person?”) performance was quantified by looking at the true positive admittance rate for a threshold that
corresponds to 1 admitted intruder in 100.

3.1 Results

A summary of 1-to-N matching results in shown in Tab. 1.
Firstly, note the poor performance achieved using both raw visual as well as raw thermal data. The

former is suggestive of challenging illumination changes present in the OTCBVS data set. This is further
confirmed by significant improvements gained with both band-pass filtering and the Self-Quotient Image
which increased the average recognition rate for, respectively, 35% and 47%. The same is corroborated by
the Receiver-Operator Characteristic curves in Fig. 13 and 1-to-1 matching results in Tab. 2.

On the other hand, the reason for low recognition rate of raw thermal imagery is twofold: it was pre-
viously argued that the two main limitations of this modality are the inherently lower discriminative power
and occlusions caused by prescription glasses. The addition of the glasses detection module is of little help
at this point - some benefit is gained by steering away from misleadingly good matches between any two
people wearing glasses, but it is limited in extent as a very discriminative region of the face is lost. Further-
more, the improvement achieved by optimal band-pass filtering in thermal imagery is much more modest

3 IEEE OTCBVS WS Series Bench; DOE University Research Program in Robotics under grant DOE-DE-FG02-
86NE37968; DOD/TACOM/NAC/ARC Program under grant R01-1344-18; FAA/NSSA grant R01-1344-48/49; Of-
fice of Naval Research under grant #N000143010022.
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Fig. 10.Glasses detection results:Inter- and intra- class similarities across our data set.

than with visual data, increasing performance respectively by 35% and 8%. Similar increase was obtained
in true admittance rate (42% vs. 8%), see Tab. 13.

Neither the eyes or the mouth regions, in either the visual or thermal spectrum, proved very discriminative
when used in isolation, see Fig. 14. Only 10-12% true positive admittance was achieved, as shown in Tab. 3.
However, the proposed fusion of holistic and local appearance offered a consistent and statistically significant
improvement. In 1-to-1 matching the true positive admittance rated increased for 4-6%, while the average
correct 1-to-N matching improved for roughly 2-3%.

The greatest power of the method becomes apparent when the two modalities, visual and thermal, are
fused. In this case the role of the glasses detection module is much more prominent, drastically decreasing



(a) Visual

(b) Thermal

Fig. 11.Example training sets:Each row corresponds to a single training (or test) set of images used for our algorithm
in (a) the visual and (b) the thermal spectrum. Note the extreme changes in illumination, as well as that in some sets the
user is wearing glasses and in some not.
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Fig. 12.Training sets:Shown are histograms of the number of images per person used to train our algorithm. Depending
on the exact head poses assumed by the user we typically obtained 7-8 visual spectrum images and typically a slightly
lower number for the thermal spectrum. The range of yaw angles covered is roughly±45◦ measured from the frontal
face orientation.

the average error rate from 10% down to 3%, see Tab. 1. Similarly, the true admission rate increases to 74%
when data is fused without special handling of glasses, and to 80% when glasses are taken into account.

4 Conclusion

In this chapter we described a system for personal identification based on a face biometric that uses cues
from visual and thermal imagery. The two modalities are shown to complement each other, their fusion
providing good illumination invariance and discriminative power between individuals. Prescription glasses,
a major difficulty in the thermal spectrum, are reliably detected by our method, restricting the matching to
non-affected face regions. Finally, we examined how different preprocessing methods affect recognition in
the two spectra, as well as holistic and local feature-based face representations. The proposed method was
shown to achieve a high recognition rate (97%) using only a small number of training images (5-7) in the
presence of large illumination changes.

Our results suggest several possible avenues for improvement. We intend to make further use of the
thermal spectrum, by not only detecting the glasses, but also by segmenting them out. This is challenging
across large pose variations, such as those contained in our test set. Another research direction we would
like to pursue is that of synthetically enriching the training corpus to achieve increased robustness to pose
differences between image sets (c.f. [28] [40]). Additionally, more advanced set matching methods can be
used for better discriminative performance, e.g. [3] [13] [19]. Finally, we note that a research challenge that
remains, and which has not been addressed in this chapter, is that of changing facial expression.



Table 1.1-to-N matching (recognition) results:Shown is the average rank-1 recognition rate using different represen-
tations across all combinations of illuminations. Note the performance increase with each of the main features of our
system: image filtering, combination of holistic and local features, modality fusion and prescription glasses detection.

Representation Recognition

Visual

Holistic raw data 0.58

Holistic, band-pass 0.78

Holistic, SQI filtered 0.85

Mouth+eyes+holistic
0.87

data fusion, SQI filtered

Thermal

Holistic raw data 0.74

Holistic raw w/
0.77

glasses detection

Holistic, low-pass filtered 0.80

Mouth+eyes+holistic
0.82

data fusion, low-pass filtered

Proposed thermal + visual fusion
w/o glasses detection 0.90

w/ glasses detection 0.97

Table 2. Holistic, 1-to-1 matching (verification):A summary of the comparison of different image processing filters
for 1 in 100 intruder acceptance rate. Both the simple band-pass filter, and even further its locally-scaled variant,
greatly improve performance. This is most significant in the visual spectrum, in which image intensity in the low spatial
frequency is most affected by illumination changes.

Representation Visual Thermal

1% intruder acceptance

Unprocessed/raw 0.2850 0.5803

Band-pass filtered (BP) 0.4933 0.6287

Self-quotient image (SQI) 0.6410 0.6301
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Fig. 13.Holistic representations Receiver-Operator Characteristics (ROC):Visual (blue) and thermal (red) spectra.

Table 3. Isolated local features, 1-to-1 matching (verification):A summary of the results for 1 in 100 intruder accep-
tance rate. Local features in isolation perform very poorly.

Representation Visual (SQI) Thermal (BP)

1% intruder acceptance

Eyes 0.1016 0.2984

Mouth 0.1223 0.3037
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Fig. 14.Isolated local features Receiver-Operator Characteristics (ROC):Visual (blue) and thermal (red) spectra.

Table 4.Holistic & local features, 1-to-1 matching (verification):A summary of the results.

Representation Visual (SQI) Thermal (BP)

1% intruder acceptance

Holistic + Eyes 0.6782 0.6499

Holistic + Mouth 0.6410 0.6501

Holistic + Eyes + Mouth 0.6782 0.6558

Table 5.Feature and modality fusion, 1-to-1 matching (verification):A summary of the results.

Representation True admission rate

1% intruder acceptance

Without glasses detection 0.7435

With glasses detection 0.8014
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