
Chapter 13

Structure from motion

13.1 Introduction

In this chapter and the next, we will describe tools and techniques for obtain-
ing information about the geometry of 3D scenes from 2D images. This task
is challenging because the image formation process is not generally invertible:
from its projected position in a camera image plane, a scene point can only be
recovered up to a one-parameter ambiguity corresponding to its distance from
the camera. Hence, additional information is needed to solve the reconstruction
problem.

One possibility is to exploit prior knowledge about the scene to reduce the
number of degrees of freedom. For example parallelism and coplanarity con-
straints can be used to reconstruct simple geometric shapes such as line seg-
ments and planar polygons from their projected positions in individual views.
This is the approach considered in the next chapter, which describes a prac-
tical interactive system for recovering geometric models from photographs of
architectural scenes.

Another possibility is to use corresponding image points in multiple views.
Given its image in two or more views, a 3D point can be reconstructed by trian-
gulation. An important prerequisite is the determination of camera calibration
and pose, which may be expressed by a projection matrix. The geometrical
theory of structure from motion allows projection matrices and 3D points to be
computed simultaneously using only corresponding points in each view. More
formally, given n projected points uij , i ∈ {1 . . .m}, j ∈ {1 . . . n} in m images,
the goal is to find both projection matrices P1 . . .Pm and a consistent struc-
ture X1 . . .Xn. This chapter reviews briefly some associated theory and surveys
existing work in this area.

Structure from motion techniques are used in a wide range of applications
including photogrammetric survey [23], the automatic reconstruction of virtual
reality models from video sequences [55], and for the determination of camera
motion (e.g. so that computer-generated objects can be inserted into video
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2 CHAPTER 13. STRUCTURE FROM MOTION

footage of real-world scenes [25]).

13.1.1 Chapter outline

This chapter begins by reviewing the familiar pinhole projection model (Sec-
tion 13.2) and explaining how a projection matrix can be determined in the
laboratory by photographing a suitable calibration target (Section 13.3). Hav-
ing identified corresponding points in two views (Section 13.4), it is possible to
compute their epipolar geometry (Section 13.5). This relationship is expressed
algebraically by a fundamental matrix, which can decomposed to recover a pair
of compatible projection matrices (Section 13.6). Then associated 3D points
can obtained by triangulation (Section 13.7). Methods for obtaining structure
and motion parameters for more than two views are described in Section 13.8.
The final stage of most structure from motion algorithms is bundle adjustment,
which is used to obtain a maximum likelihood parameter values by non-linear
optimisation (Section 13.9).

13.2 Image projection

13.2.1 Notation

In what follows, it will be convenient to work with homogenous1 as well as
Euclidean coordinates. In homogenous coordinates, a point in N -dimensional
space is expressed by a vector with N + 1 elements that is defined only up to
scale, i.e. multiplying the vector by an arbitrary non-zero scale factor will not
change its meaning. Provided the N + 1’th element is non-zero, a homogenous
coordinate may be related to its Euclidean equivalent by dividing the first N
elements by the N +1’th. Otherwise, the coordinate describes a point at infinity.

For example, a homogenous 3D point has the form X̃ ∼ [ X̃ Ỹ Z̃ W̃ ]>

(where ∼ means equality up to scale). Provided W̃ is non-zero, X̃ is related to
its Euclidean equivalent X = [ X Y Z ]> by the following equations:

X = [ X̃/W̃ Ỹ /W̃ Z̃/W̃ ]> X̃ ∼ [ X Y Z 1 ]> (13.1)

Similarly, a homogenous 2D point x̃ ∼ [ x̃ ỹ w̃ ]> is related to its Euclidean
equivalent x = [ x y ]>:

x = [ x̃/w̃ ỹ/w̃ ]> x̃ ∼ [ x y 1 ]> (13.2)

13.2.2 Pinhole camera

The most common camera model is pinhole projection. This model is a good
approximation to the behaviour of most real cameras, although in some cases
it can be improved by taking non-linear effects (such as radial distortion) into
account. According to the pinhole projection model, the relationship between

1Or homogeneous.



13.2. IMAGE PROJECTION 3

a 3D point and its corresponding 2D image point has three components, which
are described below:

1. The first component is the rigid body transformation that relates points
X̃ ∼ [ X Y Z 1 ]

>
in the world coordinate system to points X̃c ∼

[ Xc Yc Zc 1 ] in the camera coordinate system (see Figure 13.1). This
transformation can be written as:
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(13.3)

where R is a 3×3 rotation matrix that represents camera orientation and
T is a three vector that represents camera translation, i.e. the position of
the world origin O in the camera coordinate system. Together, these are
known as camera extrinsic parameters and describe camera pose.

2. The second component is the 3D to 2D transformation that relates 3D
points X̃c ∼ [ Xc Yc Zc 1 ] (in the camera coordinate system) to 2D
points x̃ ∼ [ x y 1 ]> on the camera image plane. By using similar
triangles (Figure 13.1), we obtain the following relationship:

x = f
Xc

Zc
y = f

Yc

Zc
(13.4)

where f is the focal length. Since changing the value of f corresponds
simply to scaling the image, we can set f = 1 and account for the missing
scale factor within the camera calibration matrix (below). Then, using ho-
mogenous coordinates, the relationship can be expressed by the following
matrix equation:
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. (13.5)

Because x̃ is defined only up to scale, it is independent of the magnitude
of Xc, i.e. it depends only on the direction of the 3D point relative to the
camera, and not how far away it is.

3. The final component is the 2D to 2D transformation that relates points x̃

on the camera image plane to pixel coordinates ũ ∼ [ u v 1 ]>. This is
written as follows:

ũ ∼ Kx̃ (13.6)

where K is an upper triangular camera calibration matrix of the form:

K =





αu s u0

0 αv v0

0 0 1



 (13.7)
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Figure 13.1: Pinhole projection of a 3D point X onto a camera image plane. The
extrinsic parameters of the camera R, T represent the rigid body transformation
between the world XY Z coordinate system (origin O) and the camera XcYcZc

coordinate system (origin C). Note that the image plane is shown here in front
of the optical centre C. In a real camera, the image plane would be behind the
optical centre, and the image would be inverted.

and αu and αv are scale factors, s is skew, and u0 = [ u0 v0 ]> is the
principal point. These are camera intrinsic parameters. Usually, pixels
are assumed to be square in which case αu = αv = α and s = 0. Hence, α
can be considered to be the focal length of the lens expressed in units of the
pixel dimension. The principal point is where the optical axis intersects
that camera’s image plane.

Finally, it is convenient to combine equations 13.3, 13.5, and 13.6 into a single
linear equation. Using homogenous coordinates, a 3D point X̃ is related to its
pixel position ũ in a 2D image array by the following relationship:

ũ ∼ PX̃ (13.8)

where P ∼ K[R T ] is a 3× 4 projection matrix.

13.2.3 Radial distortion

Lens distortion means that image points are displaced from the position pre-
dicted by the ideal pinhole projection model. The most common form of dis-
tortion is radial distortion, which is inherent in all single-element lenses. Under
radial distortion, image points are displaced in a radial direction from the centre
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(a) (b)

Figure 13.2: Radial distortion illustration. (a) Distortion-free image. (b) Under
radial distortion, image points are displaced radially from the image centre.

of distortion (see Figure 13.2). In some cases, the linear projection model in
equation 13.8 can be significantly improved by taking this effect into account.

Let x̃ ∼ [ x y 1 ]> denote the image point associated with pixel position
ũ ∼ [ u v 1 ]>, i.e. x̃ ∼ K−1ũ. Under the assumption that the centre of
distortion is the same as the principal point, radial distortion can be corrected
using the following equation (Tsai [50], Weng et al. [53]):

x̂ = x + L(r)x (13.9)

ŷ = y + L(r)y (13.10)

where [ x̂ ŷ ]> is the corrected point for [x y ]> and r2 = x2 + y2. L(r) is the
distortion function and can be approximated by L(r) ≈ k1r

2 + k2r
4. k1 and

k2, the coefficients of radial distortion, are considered to be camera intrinsic
parameters. In what follows, radial distortion will be assumed to be negligible
unless otherwise specified, i.e. k1 = k2 = 0.

Sometimes it is necessary to find an inverse of the relationship in equations
13.9 and 13.10, e.g. when correcting an image for radial distortion. However,
the true inverse is not simple to express mathematically. Hence, under the
assumption that radial distortion is small, the following approximation is often
used instead:

x ≈ x̂− L(r)x̂ (13.11)

y ≈ ŷ − L(r)ŷ (13.12)

13.3 Camera calibration

Camera intrinsic and extrinsic parameters can be determined for a particular
camera and lens combination by photographing a controlled scene. For ex-
ample, we might position the camera to view the calibration object shown in
Figure 13.3a and automatically extract the image positions of known 3D points
(Figure 13.3b). Let [ui vi ]> be the measured image position of 3D point
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(a) (b)

Figure 13.3: A photograph of a camera calibration object (a) from which the
image positions of known 3D points can be extracted automatically (b).

[ Xi Yi Zi ]>. From 13.8, each such correspondence generates two equations
that the elements of the projection matrix P must satisfy:

ui =
p11Xi + p12Yi + p13Zi + p14

p31Xi + p32Yi + p33Zi + p34

vi =
p21Xi + p22Yi + p23Zi + p24

p31Xi + p32Yi + p33Zi + p34
.

These equations can be rearranged to give two linear equations in the 12 un-
known elements of P. For n calibration points we have 2n equations:

�
������

X1 Y1 Z1 1 0 0 0 0 −u1X1 −u1Y1 −u1Z1 −u1

0 0 0 0 X1 Y1 Z1 1 −v1X1 −v1Y1 −v1Z1 −v1

...
...

...
...

...
...

...
...

...
...

...
...

Xn Yn Zn 1 0 0 0 0 −unXn −unYn −unZn −un

0 0 0 0 Xn Yn Zn 1 −vnXn −vnYn −vnZn −vn

�
������

�
������������������
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�
������������������

= 0.

Since there are 11 unknowns (scale is arbitrary), we need to observe at least 6
3D points to recover the projection matrix and calibrate the camera.

13.3.1 Numerical considerations

The equations can be solved using orthogonal least squares. First, we write
them in matrix form:

Ap = 0 (13.13)

where p is the 12 × 1 vector of unknowns (the 12 elements of the projection
matrix, pij), A is the 2n× 12 matrix of measurements, and n is the number of
3D points. The linear least squares solution minimizes ||Ap|| subject to ||p|| = 1
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and is given by the unit eigenvector corresponding to the smallest eigenvalue
of A>A. Numerically, this computation is performed via the singular value
decomposition [41] of the matrix:

A = UΛV>

where Λ = diag(σ1, σ2, . . . , σ12) is the diagonal matrix of singular values and
the matrices U and V are orthonormal. The columns of V are the eigenvectors
of A>A and the required solution is the column of V corresponding the smallest
singular value σ12. However, the least squares solution is only approximate and
should be used as the starting point for non-linear optimisation: i.e. finding the
elements of the projection matrix P that minimize the sum of squared errors
between the measured and predicted pixel positions ui and ûi(P,Xi):

min
P

∑

i

||ui, ûi(P,Xi)||
2.

At this stage, it is also possible to extend the projection model ûi(P,Xi) to
take account of radial distortion if desired.

Once the projection matrix has been estimated, the first 3 × 3 sub-matrix
can be decomposed (by QR decomposition [41]) into an upper triangular camera
calibration matrix K and an orthonormal rotation matrix R.

13.4 The correspondence problem

The geometrical theory of structure from motion assumes that one is able to
solve the correspondence problem, which is to identify points in two or more
views that are the projections of the same point in space.

One solution is to identify corresponding points interactively in each view.
An important advantage is that surfaces can be defined simultaneously with
correspondences, e.g. by having the user identify geometric primitives such
as cuboids and prisms [6]. A disadvantage is that the interactive approach is
time consuming; also, the accuracy of the resulting reconstruction will depend
critically on how carefully the user positions the image points.

Years of research [1, 12, 13, 21, 31, 34, 38] have shown that, in general,
the correspondence problem is difficult to solve automatically. Automatic algo-
rithms work by computing some measure of agreement between image pixels.
Usually, it is impossible to compare every pixel of one image with every pixel
of the next because of combinatorial complexity. In any case, not all points
are equally well suited for matching. Hence, local-scale image features are used
instead.

Feature matching works by detecting interest points in the images, e.g.
Harris corner points [14] are located at the maxima of the local image auto-
correlation function. The local neighbourhoods of such points contain a lot
of intensity variation and hence they are comparatively easier to differentiate.
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Having detected interest points, image appearance in their local vicinity is char-
acterised by an appropriate descriptor. Features with more similar descriptors
are considered to be more likely matches.

Feature matching techniques may be divided into two categories: narrow-
and wide-baseline.

Narrow-baseline matching. Under the assumption that the change in cam-
era position and orientation is small, the local vicinity of interest points will look
similar in two nearby views. Hence, image features can be characterised simply
by a set of pixel intensity values sampled from a rectangular window centred
on the interest point. Pixel intensity values are compared by normalised cross-
correlation or the sum of squared differences [22].

A disadvantage of narrow-baseline matching is that depth computation is
quite sensitive to image coordinate measurement noise for closely spaced view-
points. However, by tracking feature correspondences throughout video se-
quences, it is possible to recover structure and motion parameters accurately
(see Section 13.8, below). Impressive results have been demonstrated by Beard-
sley et al. [3], Pollefeys et al. [39], Fitzgibbon and Zisserman [11], and Zisserman
et al. [55], amongst others.

Wide-baseline matching. Whilst narrow-baseline matching algorithms per-
form well for the closely spaced viewpoints in video sequences, they are not
applicable to images obtained from viewpoints in more general configuration.
When the baseline is large, surfaces in the two images may exhibit substantial
change of scale, different degrees of foreshortening, different patterns of occlu-
sion, and large disparities in their locations. All of these factors make it much
more difficult to determine correct correspondences automatically.

In recent years, considerable progress has been made in the development of
wide-baseline matching algorithms that are invariant to various classes of image
transformation. For example, Schmid et al. [45] characterise image features us-
ing rotationally invariant Gaussian derivatives so that matching can be achieved
in a way that is immune to image rotation (see also [2, 32]). Dufournaud et al.
[7] use a multi-scale framework to match images at different scales. Here, fea-
tures are detected at several scales and a robust matching algorithm is used to
select the correct scale relationship. Also, Lowe [28] achieves scale invariance by
detecting features at local maxima in image scale space2 (also [32, 33]). Finally,
Pritchett and Zisserman [42] have described an affine-invariant feature matching
approach that works by finding homographies relating dominant planes between
views. Other affine-invariant matching schemes work by iteratively refining the
shape of an interest region until some appropriate convergence criteria is met
[2, 33, 51].

2Scale-space features are located at image positions where the response to a Laplacian filter
is at a local maximum in the three-dimensional parameter space defined by the image u, v

coordinate and the scale of the Laplacian.
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13.5 Two-view geometry

In 1913, Kruppa [24] proved the fundamental result that given two views of five
distinct 3D points, one could recover the relative position and orientation of the
cameras as well as the positions of the points (up to an unknown global scale
factor). Then the work of Longuet-Higgins [27] in the early 1980s showed how
an essential matrix relating a pair of calibrated views can be estimated from
eight or more point correspondences by solving a linear equation, and also how
the essential matrix can be decomposed to give relative camera orientation and
position.

13.5.1 The essential matrix

Given the projection of a 3D point in one image, its projection in a second image
is restricted to the corresponding epipolar line. This is illustrated in Figure 13.4.
The epipolar line l̃′ can be seen to be the projection of the ray going from the
optical centre C through the image point x̃ on the first image plane. This
is equivalent to intersecting the plane generated by the optical centres C, C′

and the image point x̃ (epipolar plane) with the second image plane. Note
that all epipolar lines in an image have a common point: the projection of the
second optical centre. This point is called the epipole and is denoted ẽ and ẽ′

respectively for first and second cameras in Figure 13.4.

The epipolar constraint can be formulated algebraically using the essential
matrix E, which relates corresponding image points in two views [8]. Consider
two pinhole cameras with projection matrices P and P′. Given a Euclidean
point X′ in the coordinate system of camera C′, its position X in the coordinate
system of C is given by:

X = RX′ + T (13.14)

where R is a 3 × 3 rotation matrix and T is a 3-vector. Pre-multiplying both
sides by X>[T]× gives:

X>[T]×RX′ = X>EX′ = 0 (13.15)

where 3× 3 essential matrix E ∼ [T]×R and [T]× is the cross product matrix3.
Equation 13.15 also holds for image points x̃ and x̃′ , which gives the epipolar
constraint:

x̃>Ex̃′ = 0 (13.16)

Note that E depends only on R and T and is defined only up to an arbitrary
scale factor. Thus, it has 5 parameters.

3For T = [ tx ty tz ]>, [T]× =

�
�

0 −tz ty
tz 0 −tx
−ty tx 0

�
� .
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Figure 13.4: Epipolar geometry for two cameras. Given the projection x̃ of a
3D point X in one image, its projection x̃′ in a second image is restricted to the
corresponding epipolar line l̃′.

13.5.2 The fundamental matrix

From equation 13.6, image points x̃ may be related to pixel positions ũ by the
inverse camera calibration matrix K−1:

x̃ ∼ K−1ũ (13.17)

This means the epipolar constraint (equation 13.16) may be rewritten in terms
of pixel positions:

(K−1ũ)>E(K′−1ũ′) = 0

ũ>(K−1>EK′−1)ũ′ = 0

ũ>Fũ′ = 0 (13.18)

where F ∼ K−1>EK′−1 is the fundamental matrix [8]. F is a 3× 3 matrix that
has rank 2 (the epipole ẽ is the null space of F). It can be estimated linearly
given 8 or more corresponding points. Considerable attention has been given to
the problem of estimating the fundamental matrix accurately from noisy image
data [16], and robustly in the presence of outliers [48, 54].

13.5.3 Estimating the fundamental matrix

From equation 13.18, we see that each point correspondence, ũi ∼ [ ui vi 1 ]>

and ũ′
i ∼ [ u′

i v′i 1 ]>, generates one constraint on the elements of the funda-
mental matrix F:

[

u′

i v′i 1
]





f11 f12 f13

f21 f22 f23

f31 f32 f33









ui

vi

1



 = 0.
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For n pairs of correspondences, the constraints can be rearranged as linear
equations in the 9 unknown elements of the fundamental matrix:
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= 0

or in matrix form:

Af = 0

where A is an n× 9 measurement matrix, and f represents the elements of the
fundamental matrix fij as a 9-vector. Given 8 or more correspondences a least
squares solution4 can be found as the unit eigenvector (f is defined up to an
arbitrary scale) corresponding to the minimum eigenvalue of A>A. A unique
solution is obtained unless the points and the camera centres lie on a ruled
quadric or all the points lie on a plane (Faugeras and Maybank [9]).

The computation can be poorly conditioned and it is important to pre-
condition the image points by normalizing them to improve the condition num-
ber of A>A before estimating the elements of the fundamental matrix by sin-
gular value decomposition (Hartley [16]).

Two steps can be taken to improve the solution if desired (Luong and
Faugeras [29]). The most important requires enforcing the rank 2 property of
the fundamental matrix. This can be achieved by a suitable parameterisation
of F. Another improvement requires finding the 7 independent parameters of
the fundamental matrix that minimize the distances between the image points
and their epipolar lines.

13.6 Recovering projection matrices

As shown above, the fundamental matrix depends on the relative position and
orientation of a pair of views, and can be estimated using point correspondences.
In this section, we explain how a fundamental matrix can be decomposed to re-
cover the camera motion, and, thereby, camera projection matrices. As we shall
see, provided that the camera calibration matrices are known, it is possible to
recover a pair of compatible projection matrices up to a 1 parameter ambiguity,
corresponding to an unknown scale for the camera translation.

4Note that the fundamental matrix has only 7 degrees of freedom since its determinant
must be zero. A non-unique solution can be obtained from only 7 point correspondences and
is described by Huang and Netravali [19].
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If the camera calibration matrices K and K′ are known, we can transform
the recovered fundamental matrix into an essential matrix (13.18)

E ∼K′>FK (13.19)

and decompose this matrix into a skew-symmetric matrix corresponding to
translation and an orthonormal matrix corresponding to the rotation between
the views:

E ∼ [T]×R. (13.20)

The latter is in fact only possible if the essential matrix has rank 2 and two
equal singular values.

Numerical considerations

This decomposition can be achieved by computing the singular value decompo-
sition [41] of the essential matrix (Hartley [15]):

E = UΛV> (13.21)

where Λ = diag(σ1, σ2, σ3) and the matrices U and V are orthogonal. The
decomposition into a translation vector and the rotation between the two views
requires that σ1 = σ2 6= 0 and σ3 = 0. The nearest essential matrix (in the sense
of minimizing the Frobenius norm between the two matrices) with the correct
properties can be obtained by setting the two largest singular values to be equal
to their average and the smallest one to zero (Hartley [15]). The translation and
axis and angle of rotation can then be obtained directly up to arbitrary signs
and unknown scale for the translation:

[T]× = U





0 1 0
−1 0 0
0 0 0



U> (13.22)

R = U





0 −1 0
1 0 0
0 0 1



V> (13.23)

The projection matrices follow directly from the recovered translation and
rotation by aligning the reference coordinate system with the first camera to
give:

P = K[I | 0]

P′ = K′[R | T]

where T is typically scaled such that |T| = 1. Four solutions are still possible
due to the arbitrary choice of signs for the translation T and rotation R, however
the correct one is easily disambiguated by ensuring that the reconstructed points
lie in front of the cameras.
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13.7 Triangulation

Given projection matrices, 3D points can be computed from their measured
image positions in two or more views. This is triangulation [17]. Ideally, 3D
points should lie at the point of intersection of the back-projected rays. However,
because of measurement noise, back-projected rays will not generally intersect.
Thus 3D points must be chosen in such a way as to minimize an appropriate
error metric.

The ‘gold standard’ reconstruction algorithm minimizes the sum of squared
errors between the measured and predicted image positions of the 3D point in
all views in which it is visible, i.e.

X = argmin
X

∑

i

||ui − ûi(Pi,X)||2.

where ui and ûi(Pi,X) are the measured and predicted image positions in view
i (see Figure 13.5). Under the assumption that image coordinate measurement
noise is Gaussian-distributed, this approach gives the maximum likelihood so-
lution for X. Hartley and Sturm [17] describe a non-iterative solution for two
views. For more than two views, the minimization can be achieved iteratively by
non-linear optimisation. However, this approach necessitates a sufficiently good
initialisation, otherwise it might fail by finding a local minimum cost solution.
A popular strategy works by exploiting equation 13.8. Because the homogenous
3-vectors ũi and PiX̃ are parallel, it is possible to write:

[ũi]×PiX̃ = 0.

This equation has three rows but provides only two constraints on X̃ since
each row can be expressed as a linear combination of the other two. All such
constraints can be arranged into a matrix equation of the form

AX̃ = 0

where A is a 3n × 4 matrix and n is the number of views in which the recon-
structed point is visible. The required solution for the homogenous 3D point X̃

minimizes ||AX̃|| subject to ||X̃|| = 1 and is given by the eigenvector of A>A

corresponding to the smallest eigenvalue. It can be found by the singular value
decomposition of the symmetric matrix A>A.

13.8 Multiple-view structure from motion

We have seen that the essential or fundamental matrix encapsulates the geo-
metric constraint relating pairs of views. Next, we will turn our attention to
solving the structure and motion problem for an arbitrary number of views.
The final stage is usually bundle adjustment, which is used iteratively to refine
structure and motion parameters by the minimisation of an appropriate cost
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Figure 13.5: Triangulation illustration. Given projection matrices, a 3D point
X can be computed from its measured pixel positions (u1,u2, . . .) in two or
more views (C1, C2, . . .). Ideally, X should lie at the intersection of the back-
projected rays (solid lines). However, because of measurement noise, these rays
will not generally intersect. Hence X should be chosen so as to minimise the
sum of squared errors between measured and predicted pixel positions (ui and
ûi).

function (see Section 13.9, below). However, bundle adjustment depends criti-
cally on a suitable initialisation – otherwise the algorithm may fail by converging
to a local minimum cost solution. The following sections discuss sequential and
factorisation algorithms for m-view structure from motion.

13.8.1 Sequential methods

Sequential algorithms are the most popular. They work by incorporating suc-
cessive views one at a time (e.g. Figure 13.6). As each view is registered, a
partial reconstruction is extended by computing the positions of all 3D points
that are visible in two or more views using triangulation (see Section 13.7).
A suitable initialisation is typically obtained by decomposing the fundamental
matrix relating the first two views of the sequence (see Section 13.6).

There exist several strategies for registering successive views:

• Epipolar constraints. One possibility is to exploit the two-view epipolar
geoemtry that relates each view to its predecessor. For example, where
camera intrinsic parameters are known, essential matrices can be used
(Figure 13.6). Essential matrices are estimated linearly using 8 or more
point correspondences and decomposed to give relative camera orientation
and the direction of camera translation (Sections 13.5 and 13.6). The
magnitude of the translation can be fixed using the image in the new
view of a single known 3D point, i.e. a point that has already been
reconstructed from its image in earlier views.

• Resection. An alternative is to determine the pose of each additional
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Figure 13.6: Sequential registration illustration. Views 1 to 7 are registered
one at a time by computing the essential matrices E12, E23, etc. relating each
one to its predecessor. The essential matrix can be decomposed to give relative
orientation and the direction of translation and 3D to 2D correspondences are
used to determine the magnitude of the translation. As each new view is incor-
porated, the partial reconstruction is extended by reconstructing all 3D points
that are visible in two or more views.

view using already-reconstructed 3D points [3, 4, 15, 40]. As we have
seen, 6 or more 3D to 2D correspondences allow linear solution for the 12
elements of a projection matrix (Section 13.3).

• Merging partial reconstructions. Another alternative is to merge
partial reconstructions using corresponding 3D points [10, 11]. Typically,
two- or three-view reconstructions are obtained using adjacent image pairs
or triplets; then they are merged using corresponding 3D points. In [11],
longer reconstructions are built up hierarchically by merging progressively
longer subsequences.

These sequential registration schemes have some important limitations. In
the context of interactive modelling systems, one disadvantage is that a large
number of corresponding points must be defined in each view. For uncalibrated
reconstruction, commercial photogrammetry software (such as ImageModeler5)
usually requires a minimum of 7 correspondences per view (and more are rec-
ommended for better accuracy). Since corresponding points must usually be
visible in three or more views, this means substantial overlap is required. For
long sequences of views (e.g. along a city street), this requirement can be pro-
hibitive. Another complication is that there exist various kinds of degenerate
structure and motion configuration for which the standard algorithms will fail
[43]. For example: (i) camera rotation in the absence of translation, (ii) planar
scenes, (iii) a 3D point lying on a line passing through the optical centres of the

5See http://www.realviz.com/
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cameras in which it is visible. In practice, it may be hard to avoid these kinds
of degeneracy, especially if views are obtained without careful (or even expert)
planning.

13.8.2 Factorisation methods

Unlike sequential methods, batch methods work by computing camera pose and
scene geometry using all image measurements simultaneously. One advantage is
that reconstruction errors can be distributed meaningfully across all measure-
ments; thus, gross errors associated with sequence closure can be avoided.

One family of batch structure from motion algorithms are called factorisa-
tion methods (after Tomasi and Kanade [47]). Fast and robust linear methods
based on direct SVD factorisation of the image point measurements have been
developed for a variety of simplified linear (affine) camera models, e.g. or-
thographic (Tomasi and Kanade [47]), weak perspective (Weinshall and Tomasi
[52]), and para-perspective (Poelman and Kanade [37]). Unfortunately, none of
these methods are generally applicable to real-world scenes because real camera
lenses are too wide-angle to be approximated as linear.

More recently, a number of researchers have described ‘factorisation-like’
algorithms for perspective cameras too (Sturm and Triggs [46], Heyden [18],
Schaffalitzky et al. [44]). However, these methods are iterative and there is no
guarantee that they will converge to the optimal solution.

Again, one limitation of all of these algorithms [18, 37, 44, 46, 47, 52] is that
there exist degenerate structure and motion configurations for which they will
fail. Another is that they cannot cope with missing data, i.e. every 3D points
must be visible in every view. Hence, they are not applicable to sparse modelling
problems (except perhaps as a means of initialising sequential algorithms like
in [44]). Jacobs [20] overcomes this limitation, but only for affine cameras (and
at the expense of the optimality of the solution).

13.9 Bundle adjustment

From image features uij , structure from motion gives an initial estimate of pro-
jection matrices Pi and 3D points Xj . Usually it will be necessary to refine
this estimate using iterative non-linear optimisation to minimize an appropri-
ate cost function. This is bundle adjustment [5]. Bundle adjustment works by
minimising a cost function that is related to a weighted sum of squared reprojec-
tion errors. Usually Gauss-Newton iteration is used (with an appropriate step
control policy) for rapid convergence.

This section provides a brief review of established bundle adjustment theory.
For a more comprehensive treatment of this subject, the reader is referred to
the excellent article by Triggs et al. [49].
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13.9.1 Problem definition

The goal of bundle adjustment is to determine an optimal estimate of a set of
parameters θ, given a set of noisy observations. Most bundle parameters cannot
be observed directly, e.g. projection matrices, 3D point coordinates. Instead,
they allow us to make predictions of quantities that can, e.g. the measured pixel
coordinates of imaged 3D points.

Let the set of predictions be z(θ) and the set of corresponding observations
be z̄. Then residual prediction error ∆z is given by:

∆z = z̄− z(θ) (13.24)

In general, the observation vector z̄ may be partitioned into a set of statistically
independent measurements z̄1 . . . z̄N with associated predictions z1(θ) . . . zN (θ).

Bundle adjustment proceeds by minimizing an appropriate cost function. For
a maximum likelihood parameter estimate, the cost function should reflect the
likelihood of the residual ∆z. Under the assumption of Gaussian-distributed
measurement noise, the appropriate cost function is a sum of squared errors,
which is the negative sum of log likelihoods:

f(θ) =
1

2

∑

i

∆zi(θ)>Wi∆zi(θ) ∆zi(θ) = z̄i − zi(θ) (13.25)

Here ∆zi(θ) is the feature prediction error and Wi is a symmetric positive
definite weight matrix that is chosen to approximate the inverse covariance of
the measurement noise associated with measurement z̄i.

13.9.2 Numerical optimisation

Newton’s method

The minimization of the cost function is an iterative process. At each iteration,
we seek a parameter displacement θ → θ + δθ that minimizes f(θ). By fitting
a Taylor expansion-based local model to the cost function, it is possible to solve
approximately for δθ using linear algebra [35].

The quadratic Taylor series is:

f(θ + δθ) ≈ f(θ) + gT δθ +
1

2
δθTHδθ (13.26)

where g is the gradient vector, and H is the Hessian matrix. Under the as-
sumption that the Hessian is positive definite, the local model is then a simple
quadratic with a unique global minimum. Setting df

dθ
(θ+δθ) ≈ Hδθ+g to zero

for the stationary point gives the Newton step:

δθ = −H−1g (13.27)

Iterating the Newton step gives Newton’s method.
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The Gauss-Newton approximation

Differentiating the weighted sum of squared errors cost function in equation
(13.25) gives the Hessian and gradient in terms of the Jacobian J = dz

dθ
:

g ≡
df

dθ
= J>W∆z H ≡

d2f

dθ
2 = J>WJ +

∑

i

(∆z>W)i

d2(∆z)i

dθ
2

(13.28)
where W = diag(W1,W2, . . . ,WN ) and the notation (. . .)i means the i’th

element of a vector. In practice, the d2(∆z)i

dθ2 term in H is likely to be small in

comparison to J>WJ if either: (i) the prediction error ∆z(θ) is small or (ii) the

model is nearly linear, d2zi

dθ2 = 0 [49]. Dropping this term gives the Gauss-Newton

approximation to the least squares Hessian, H ≈ J>WJ. Thus, the Newton
step prediction equations become the Gauss-Newton or normal equations [35]:

(J>WJ)δθ = −J>W∆z (13.29)

For well-parameterised bundle problems under an outlier-free least squares cost
model evaluated near the cost minimum, the Gauss-Newton approximation is
usually very accurate [49].

Parameterisation

We have seen that bundle adjustment works by fitting a local quadratic approxi-
mation to the cost function at each iteration. In practice, the rate of convergence
depends critically on the quality of this approximation. Thus, it is important to
choose a parameter representation such that the effect of parameter variation
will be locally as near linear as possible on the chosen cost model [49]. An
interesting problem is to parameterise camera orientations in such a way as to
avoid the familiar singularities associated with Euler angle representations. A
good solution is to leave camera orientations Ri as 3× 3 rotation matrices but
to compute incremental updates Ri → ∆(Ωi)Ri at each iteration as function
of a parameter vector Ωi = [ ωx ωy ωz ]>. The 3× 3 rotation matrix ∆(Ωi)
is expressed using Rodriguez formula:

∆(Ωi) = I + sin φ[Ωi]× + (1− cosφ)[Ωi]
2
× (13.30)

where φ = |Ωi|, and

[Ωi]× =
1

φ





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (13.31)

For small ωi, this method gives approximately the same result as applying a
sequence of three Euler angle rotations ωx, ωy, and ωz about the world X , Y ,
and Z axes. The same result could be obtained by representing incremental
rotations using quaternions [36] or geometric algebra [26].
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Step control

In practice, Newton’s method may fail to converge to a minimum cost solution.
It can converge to a saddle point instead of a minimum, and, for large steps, the
quadratic cost model may be so inaccurate that the cost will actually increase.
To guarantee convergence, a suitable step control policy must be added. Each
step must follow a descent direction, i.e. a direction with a non-negligible
downhill cost component, or, if the gradient is near a saddle point, down a
negative curvature direction of the Hessian [35].

An elegant solution is the Levenberg-Marquardt method [30], which varies
smoothly between the two extremes of Newton and gradient descent. Where
the local quadratic cost model is accurate, the Newton step in equation 13.27
should give a significant cost reduction. Otherwise, simple gradient descent is
about the best that can be achieved. Levenberg-Marquardt works by replacing
the Hessian H in the Newton step equation (13.27) with a modified version H′

that has been altered according to the following prescription:

h′

jj = hjj(1 + ε) (13.32)

h′

jk = hjk (j 6= k) (13.33)

where hij means the i, j’th element of the matrix. When ε is large, the modified
Hessian is forced to be diagonally dominant so that the update is a simple
gradient descent. But as ε tends to zero, its effect becomes negligible and we
have Newton descent. ε is adjusted dynamically so that it tends to decrease as
the quadratic approximation to the cost function improves.

The complete procedure is as follows [41]:

1. Compute the cost function f(θ)

2. Set ε = 0.001.

3. Solve the normal equations (13.29) for δθ using the modified Hessian H′

and evaluate f(θ + δθ)

4. If f(θ + δθ) ≥ f(θ), increase ε by a factor of 10 and go back to 3.

5. If f(θ + δθ) ≤ f(θ), decrease ε by a factor of 10, update the trial solution
θ ← θ + δθ, and go back to 3.

Convergence criteria

By iterating the Gauss-Newton step (possibly modified according to the above
step control strategy), we hope to obtain a progressively better parameter es-
timate. The remaining difficulty is to decide when to stop iterating. Since the
minimum cost solution is at best only a statistical estimate of the true solu-
tion, it will usually be wasteful and unnecessary to iterate until convergence to
machine accuracy or round off limit. In any case, it is not uncommon to find
that the update equation becomes near-degenerate in the vicinity of the mini-
mum because the cost surface has a valley-like topography. This means there
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is no well-defined solution for the update step; instead, a range of solutions
is about equally good. In consequence, the Levenberg-Marquardt method is
prone to wandering about in parameter space without achieving any significant
reduction in cost. A simple but effective solution is described in [41]. Itera-
tion is stopped on the second successive occasion where the cost function f(θ)
decreases6 by less than a small fractional amount (10−3).

13.10 Summary

In this chapter, we have described methods for the simultaneous recovery of
3D points and camera projection matrices using corresponding image points
in multiple views. This is structure from motion. Given sufficiently many
corresponding points in two calibrated views, it will be possible in general to
compute a fundamental matrix, which can be decomposed to give the camera’s
motion (at least up to an unknown scale factor for the translation). Then 3D
point coordinates can be computed by triangulation. There also exist sequential
and factorisation-based structure from motion algorithms for more than two
views. The final stage of most algorithms is bundle adjustment, which is used
iteratively to refine structure and motion parameters to achieve a maximum
likelihood estimate by the minimisation of an appropriate cost function.
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Chapter 14

Architectural modelling

14.1 Introduction

In this chapter, we describe a practical method for recovering computer models
of the geometry and appearance of architectural scenes from photographs. This
method has been implemented in the form of a software system called Pho-
toBuilder for creating large-scale architectural models from photographs and
maps1. Such models are used in a variety of applications including town plan-
ning [6], remote measurement [4], and for the creation of photorealistic virtual
reality environments [8].

In what follows, we assume that architectural scenes can be decomposed
into geometric building blocks called primitives. The simplest primitives are
points, line segments, and planar polygons. Combined with appropriate geo-
metric constraints, these primitives can be used to describe a range of more
complex shapes such as cuboids and prisms.

The starting point will be a set of uncalibrated photographs, typically ob-
tained using an ordinary digital camera. It is also possible to use maps or plans
as additional (orthographic) views [12]. We will assume here that correspond-
ing geometric primitives can be identified manually in each view [2, 5, 9, 12,
13, 14, 15]. The main benefit is the possibility of exploiting the user’s higher-
level knowledge to solve the difficult correspondence problem and to obtain a
parsimonious description of the scene’s geometry.

Having identified corresponding primitives in the input views, the aim is to
recover projection matrices Pi ∼ K[Ri Ti ] and a set of 3D points Xj (which
are the vertices of the line segments and planar polygons). The final stage of the
reconstruction algorithm is bundle adjustment, which is used iteratively to refine
structure and motion parameters to obtain a maximum likelihood estimate.
However, bundle adjustment will only succeed given a sufficiently good starting
point; otherwise, the algorithm may fail by converging to a local minimum cost
solution. Hence, the key problem is to obtain a suitable initialisation.

1See http://mi.eng.cam.ac.uk/photobuilder/.
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The solution described here works by decoupling the problem of obtaining
camera orientations from that of obtaining camera positions and scene geometry
(after [2, 5, 13, 14]). First, camera orientations Ri are recovered independently
for each view. Then all camera translations Ti and 3D points Xj can be re-
covered simultaneously by solving a linear equation. Using scene constraints
such as parallelism and coplanarity, it is also possible to reconstruct points that
are visible in fewer than two views. Compared to the standard structure from
motion algorithms (Section 13.8), a significant advantage is that fewer corre-
sponding points are required and non-coplanar points are unnecessary. Hence,
viewpoints can be selected without such careful planning, and models can be
recovered using fewer views and less user intervention.

14.1.1 Assumptions

In what follows, it will be helpful to assume that the camera’s (possibly un-
known) intrinsic parameters are constant for all views, i.e. that all photographs
have been taken by the same camera and lens combination. The main benefit is
that the number of degrees of freedom associated with the reconstruction prob-
lem is significantly reduced so that certain kinds of mathematical degeneracy
can be more easily avoided.

Initially, radial distortion will be assumed to be negligible, i.e. k1 and k2,
the coefficients of radial distortion in equations 13.10 and 13.10, will be assumed
to be 0. In practice, this assumption is at least sufficiently good to allow the
approach to succeed for most real cameras and lenses. In any case, it may be
relaxed during the final bundle adjustment stage of the reconstruction process.

14.1.2 Method outline

The complete method is illustrated in Figure 14.1. Starting with an unordered
set of one or more uncalibrated views, a 3D model is computed in six stages:

1. Firstly, the user identifies corresponding geometric primitives in each pho-
tograph, and, optionally, on a map or plan. The important primitives are
vertices (3D points), line segments (which have two vertices), and planar
polygons (which have three or more). The user also defines simple scene
constraints. Sets of line segments and polygon normals can be defined to
be parallel to a common direction, and pairs of directions can be defined
to be perpendicular.

2. The next step is to estimate the unknown camera calibration matrix K.
An approximate solution is obtained using vanishing points in one of the
input views. Under the assumption that pixels are square, three vanishing
points belonging to a set of orthogonal directions in the scene can be used
to determine the focal length and principal point.

3. Given the calibration matrix, camera orientations Ri are recovered inde-
pendently for each view using vanishing points belonging to known direc-
tions.
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4. Given camera orientations, all camera translations Ti and scene structure
Xj can be recovered simultaneously by solving a linear equation. By
exploiting scene constraints, it is possible to reconstruct points that are
visible in fewer than two views.

5. Next, a maximum likelihood estimate of camera intrinsic and extrinsic
parameters and 3D point positions is obtained by bundle adjustment.

6. Finally, the recovered projection matrices can be used to texture map the
model’s polygons using the input images.

14.1.3 Chapter outline

The remainder of this chapter is organised as follows. First, Section 14.2 de-
scribes a method for computing the camera calibration matrix for a single per-
spective view using vanishing points belonging to orthogonal directions. Given
the camera calibration matrix, Section 14.3 explains how camera orientations
can be determined using image plane vanishing points associated with known
directions. Next, Section 14.4 explains how all camera positions and scene struc-
ture are computed by solving a linear equation and Section 14.5 explains how
a maximum likelihood parameter estimate is obtained by bundle adjustment.
Finally, Section 14.6 presents some results obtained using our interactive mod-
elling system.

14.2 Obtaining the camera calibration matrix

This section describes a simple method for computing the camera calibration
matrix K for a single perspective view of an architectural scene using vanishing
points belonging to orthogonal directions.

14.2.1 Vanishing points

In a perspective view, the images of parallel lines in the world intersect at a
vanishing point (see Figure 14.2). This can be thought of as the projection of a

homogenous point at infinity [d 0 ]> where d is the Euclidean line direction,
i.e.

ṽ ∼ P[d 0 ]>. (14.1)

Vanishing points depend only on the first 3 × 3 sub-matrix of the projec-
tion matrix and are therefore independent of camera position. Here, vanish-
ing points will be expressed using normalised homogenous coordinates, i.e.
ṽ ∼ [ ũ ṽ w̃ ]> with ṽ scaled such that |ṽ| = 1. Methods for computing
vanishing points from imaged line segments are described in Appendix A.
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Figure 14.1: Method outline. (a) The user defines corresponding geometric
primitives (points, line segments, and planar polygons) in each view. (b) Camera
orientations are obtained using vanishing points belonging to known directions
(vanishing points are indicated by dotted lines). (c) Camera positions and
scene geometry are recovered as the solution of a linear equation. (d) Recovered
projection matrices can be used to texture map the model, which can then be
used to synthesise novel views.
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Figure 14.2: Vanishing point illustration for a perspective camera: parallel lines
in the world appear to meet at a vanishing point v in the image.

14.2.2 Camera intrinsic constraints

In what follows, the world XY Z coordinate system is considered to be have been
aligned with a set of orthogonal directions in the scene. Then, using equation
14.1 and by considering the projection of points at infinity corresponding to the
three orthogonal directions, it is simple to derive the following constraints on
the elements of the projection matrix P:





λ1ũ1 λ2ũ2 λ3ũ3

λ1ṽ1 λ2ṽ2 λ3ṽ3

λ1w̃1 λ2w̃2 λ3w̃3



 = P







1 0 0
0 1 0
0 0 1
0 0 0






(14.2)

where the λi are unknown scale factors that are introduced because we have re-
placed the equality-up-to-scale relationship in equation 14.1 with simple equal-
ity. Then, using (13.8), this equation can be rearranged and expressed in terms
of the camera calibration matrix K and the camera orientation R:





ũ1 ũ2 ũ3

ṽ1 ṽ2 ṽ3

w̃1 w̃2 w̃3









λ1 0 0
0 λ2 0
0 0 λ3



 = KR (14.3)

Since R is a rotation matrix, R>R is just the 3 × 3 identity matrix. Hence,
equation 14.3 gives the following constraint on the camera calibration matrix
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and the unknown scale factors λi:




ũ1 ũ2 ũ3

ṽ1 ṽ2 ṽ3

w̃1 w̃2 w̃3









λ2
1 0 0
0 λ2

2 0
0 0 λ2

3









ũ1 ũ2 ũ3

ṽ1 ṽ2 ṽ3

w̃1 w̃2 w̃3





>

= KK> (14.4)

Equation 14.4 shows that orthogonal vanishing points provide a simple con-
straint on the 3× 3 matrix KK> (which is sometimes called the dual image of
the absolute conic) [10].

14.2.3 Geometric interpretation

Under the assumption of known aspect ratio and zero skew, equation 14.3 can
be rewritten as:

[

λ1ũ1 λ2ũ2 λ3ũ3

λ1ṽ1 λ2ṽ2 λ3ṽ3

λ1w̃1 λ2w̃2 λ3w̃3

]

=





α 0 u0

0 α v0

0 0 1



R (14.5)

Hence,

R =

[

λ1(ũ1 − w̃1u0)/α λ2(ũ2 − w̃2u0)/α λ3(ũ3 − w̃3u0)/α
λ1(ṽ1 − w̃1v0)/α λ2(ṽ2 − w̃2v0)/α λ3(ṽ3 − w̃3v0)/α

λ1w̃1 λ2w̃2 λ3w̃3

]

(14.6)

The orthonormality of R can be used to recover the principal point u0 =
[ u0 v0 ]> and focal length α. Writing the shorthand v̂i = [ ũi ṽi ]> and
using the orthogonality of the first two columns of R gives:

λ1λ2

[

(v̂1 − w̃1u0)
>(v̂2 − w̃2u0)/α2 + w̃1w̃2

]

= 0 (14.7)

Since λi 6= 0, equation 14.7 can be rewritten:

(v̂1/w̃1 − u0)
>(v̂2/w̃2 − u0) + α2 = 0 (14.8)

and considering the other column pairs of R similarly gives:

(v̂2/w̃2 − u0)
>(v̂3/w̃3 − u0) + α2 = 0 (14.9)

(v̂1/w̃1 − u0)
>(v̂3/w̃3 − u0) + α2 = 0 (14.10)

Subtracting 14.10 from 14.8 gives:

(v̂1/w̃1 − u0)
>(v̂2/w̃2 − u0)− (v̂1/w̃1 − u0)

>(v̂3/w̃3 − u0) = 0 (14.11)

Hence,
(v̂1/w̃1 − u0)

>(v̂2/w̃2 − ṽ3/w̃3) = 0 (14.12)

Under the assumption that the vanishing points ṽi are not at infinity, w̃i 6= 0
and v̂i/w̃i = [ ũi/w̃i ṽi/w̃i ]>, which is just the Euclidean coordinate vi. Thus,
equation 14.12 expresses the condition that v1 − u0 is orthogonal to v2 − v3

(Figure 14.3). The other two orthogonality conditions can be derived similarly
and imply that the principal point u0 is the orthocentre of the triangle4v1v2v3.
Using this value for u0, equation 14.8, 14.9, or 14.10 could be used to compute
α2 (all give the same result). This is the result derived by Caprile and Torre
[3].
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Figure 14.3: Interpretation of u0 as the orthocentre of the triangle 4v1v2v3

defined by the three vanishing points.

14.2.4 Degenerate configurations

Considering vanishing points belonging to three orthogonal directions, it is pos-
sible that one or two vanishing points will be at infinity, i.e. with wi = 0. Then
the method described above is degenerate:

• If a single vanishing point is at infinity, it will be impossible to solve the
orthocentre constraints (equation 14.12 etc.) for u0 because of the terms
in 1/w̃i. However, if u0 is known, then it will still be possible to solve one
of equations 14.8, 14.9, and 14.10 for α2. E.g. if w̃1 = 0 then equation
14.9 (which is independent of w̃1) can still be solved for α2.

• If two vanishing points are at infinity, it will be impossible to solve equa-
tions 14.8, 14.9, and 14.10 for α. However, it is simple to show that the
remaining vanishing point corresponds to the principal point.

Since the method described in Section 14.2.3 is degenerate for vanishing
points at infinity, a practical concern is that it will be sensitive to noise for
vanishing points that are near infinity, i.e. with w̃i ≈ 0. For this reason, it will
usually be preferable to use an approximate rather than a calculated value for
the principal point (typically obtained by setting it to the image centre2). Then
equations 14.8, 14.9, and 14.10 can be solved for α2 even if a single vanishing
point is at infinity. They are first rearranged as follows:

(v̂1 − w̃1u0)
>(v̂2 − w̃2u0) + w̃1w̃2α

2 = 0 (14.13)

(v̂2 − w̃2u0)
>(v̂3 − w̃3u0) + w̃2w̃3α

2 = 0 (14.14)

(v̂1 − w̃1u0)
>(v̂3 − w̃3u0) + w̃1w̃3α

2 = 0 (14.15)

2Since real lenses give the best optical performance near the optical axis, the imaging
arrays of digital camera are usually centred on the optical axis.
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α = 1324(1382) α = 1276(1369) α = 1482(1373)
(a) (b) (c)

Figure 14.4: Computing the camera intrinsic parameters using vanishing points.
A few parallel line segments were defined manually in each view and camera
intrinsic parameters α and u0 (shown as a circle) were recovered using vanishing
points belonging to orthogonal directions. The experiment was repeated after
correcting the image for radial distortion (α in brackets, u0 shown as a square).
Ground truth α ≈ 1400, and ground truth u0 is shown as a cross. The estimated
values are in good agreement.

Given u0, these equations can be solved for α2 using standard linear least
squares3.

14.2.5 Examples

Figure 14.4 shows three photographs obtained using an ordinary digital cam-
era. A few parallel line segments were identified manually in each image and
vanishing points were computed using a maximum likelihood method, which
is described in Appendix A, below. Ground truth camera intrinsic parameters
were obtained separately using the chessboard calibration method of Zhang [17].

Camera intrinsic parameters α and u0 were estimated using vanishing points
belonging to the three orthogonal directions in the scene. Figure 14.4 shows the
results. Recovered focal lengths agree with ground truth to within ±10% and
the principal point to within 150 pixels (image dimensions were 1280 × 1024).
These results are representative of those obtained for a wide range of images.

An interesting question concerns the extent to which ignoring the effects
of radial distortion reduces accuracy. Figure 14.4 also shows the results of
repeating the experiment using images that had been corrected in advance for
radial distortion using ground truth distortion parameters. Now recovered focal
lengths agree with ground truth to within about ± 2% and the principal points
to within 30 pixels, approximately a five-fold improvement in each case.

3It is easy to show that these equations might give a negative value for α2 if the supplied
principal point lies outside the triangle defined by the three orthogonal vanishing points. In
this case, the method will fail. However, this is unlikely in practice unless two of the three
vanishing points are near infinity – and this condition is easy to detect.
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14.3 Finding camera orientations

Given the camera calibration matrix, camera orientations can be determined in-
dependently for each view using vanishing points belonging to known directions
in the world coordinate system. Let vi be the vanishing point associated with
a known direction di (which is a unit vector). Then, using equations 14.1 and
13.8, it is simple to derive the following constraint on the camera orientation
matrix R:

K−1ṽi ∼ Rdi. (14.16)

Given two or more such constraints, it is possible to recover R. Let ai ∼ K−1ṽi,
where ai is scaled such that |ai| = 1. Then the required solution is obtained by
minimising the following sum of squares cost function:

R = arg min
R

∑

i

||ai −Rdi||
2. (14.17)

This is the standard absolute orientation problem and there are several well-
known solutions. An efficient and stable algorithm (due to Arun et al. [1])
uses the singular value decomposition. Writing A = [a1 a2 . . . ] and B =
[b1 b2 . . . ], it can be shown that the least squares rotation matrix is

R = VU> (14.18)

where U and V are the matrices obtained from the singular value decomposition
[11] of BA>:

BA> = UΛV>. (14.19)

Here Λ is the diagonal matrix whose elements are the singular values, and U

and V are 3 × 3 unitary matrices. However, some precautions must be taken
when the points are nearly coplanar, since in these cases, the above algorithm
can lead to a reflection transformation instead of a rotation. In such situations,
the least square rotation matrix is simply obtained by changing the sign of the
column of V that corresponds to the singular value that is close to zero (if there
is no such singular value, which is very unlikely, the algorithm fails).

Often [2, 5, 10, 13, 15], directions di are fixed by assuming that the world
coordinate system is aligned with a dominant set of orthogonal directions in the
scene. However, this method is not applicable to scenes containing buildings
with differing orientations. More generally, the vertical direction can be set
to [ 0 0 1 ]> and important horizontal directions (of the form [X Y 0 ]>)
can be found using a map or plan (Robertson and Cipolla [12]). Horizontal
directions can be estimated from one or more line segments marked on a map
(Figure 14.5). This approach allows a large number of views to be registered in
a meaningful global coordinate system rather than a local one associated with a
particular building, and considerably facilitates building larger-scale models.

Note that there is a sign ambiguity associated with each ai, which arises
because the associated vanishing point might belong to the forwards or back-
wards direction +di or −di. In an interactive system, this ambiguity could be
resolved by asking the user to specify a sign for each vanishing point or the map
positions of two or more vertical lines in each view.
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Figure 14.5: Computing camera orientations using a map. Vanishing points
in the photographs (indicated using dotted lines) correspond to vertical and
horizontal directions in the scene. The vertical direction is set to [ 0 0 1 ]>

and important horizontal directions d1 and d2 (of the form [ X Y 0 ]>) are
estimated using one or more parallel line segments on the map. Hence camera
orientations (indicated by arrows) can be determined in a meaningful global
coordinate system (camera positions are found later).
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14.4 Computing 3D points and camera positions

The previous sections explain how vanishing points belonging to known direc-
tions can be used to recover camera orientations independently for each view,
either in a local coordinate system aligned with the dominant orthogonal direc-
tions in the scene or in a global coordinate system defined by a map. The next
stage is to recover a complete geometric model using corresponding primitives
in all views. Given the camera calibration matrix K, camera orientations Ri,
and directions di, unknown camera translations Ti and 3D points Xj can be
obtained by solving a linear system comprising all viewing and scene constraints
(Shum et al. [13]).

14.4.1 Viewing and scene constraints

Image measurements provide a constraint on 3D points Xj and camera trans-
lations Ti. Let x̃ be the image point associated with pixel position ũ (i.e.
x̃ ∼ K−1ũ) with x̃ scaled such that |x̃| = 1. Then, from (13.8) it is simple to
derive the following linear constraint on the Euclidean point X = [ X Y Z ]>

and camera translation T:

[x̃]×(RX + T) = 0 (14.20)

where the subscript × denotes the cross product matrix. Equation 14.20 ex-
presses the constraint that the vector RX+T is parallel to the direction x̃. Its
3 rows provide only a rank 2 constraint (since any row can be expressed as a
linear combination of the other two).

Other sources of information also provide constraints on 3D points. For ex-
ample, heights (Z coordinates) or 3D positions (XY Z coordinates) can some-
times be fixed or measured directly. Another useful idea is to incorporate mea-
surements made using maps or plans (XY coordinates). Large-scale map data
showing individual building footprints is readily available for most urban areas.

Finally, it is also possible to exploit various kinds of scene constraint, such
as parallelism and coplanarity. An important benefit is the possibility of re-
constructing points that are visible in fewer than two views. For example, the
constraint that a line segment has a known direction d can be written as:

[d]×(X1 −X2) = 0 (14.21)

where X1 and X2 are the endpoints of the line segment. Similarly, coplanarity
can be expressed using the plane equation:

d>X− d = 0 (14.22)

where Xj is a set of coplanar points belonging to the plane with normal d and
perpendicular distance from the origin d.

Table 14.1 lists the viewing and scene constraints used in our system. Note
that these are linear in unknown Xj , camera translations Ti, and plane distances
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Constraint Equation

Image point x̃ ∼ K−1[ ū 1 ]> [x̃]×(RX + T) = 0

Known 3D point X̄ X = X̄

Point [ X̄ Ȳ ]> on map [ X Y ]> = [ X̄ Ȳ ]>

Line length (X1 −X2) = ±ld
Parallelism [d]×(X1 −X2) = 0

Coplanarity d>X− d = 0

Table 14.1: Linear constraints on Euclidean 3D points Xj , camera translations
Ti, and plane distances dl. Camera calibration matrices Ki, orientations Ri,
and directions dk are known.

dl. Hence, all such constraints may be assembled into a matrix equation of the
form:

Lφ = b (14.23)

where φ comprises all unknown camera translations Ti, Euclidean 3D points
Xj , and plane distances dl.

14.4.2 Solving the linear system

In general, the linear system in equation 14.23 will consist of one or more con-
nected components, i.e. independent subsystems that could be solved indepen-
dently [13]. For a connected component to be solvable:

• the number of constraints should be no fewer than the number of un-
knowns; and

• sufficient ground truth data should be be provided to fix the origin and
scale (via the equations in Table 14.1 that have non-zero right hand sides).

Ground truth data is provided in the form or known lengths, heights (Z coor-
dinates), map measurements (X, Y coordinates), or 3D points (X, Y, Z coordi-
nates). A benefit of using map measurements is that far apart buildings can
be reconstructed with the correct geometric relationship even in the absence of
intermediate views. The only extra information required is the (Z-axis) height
of a single point on each building.

Equation 14.23 can be solved using the singular value decomposition. Let
L = UΛV> where Λ = diag(σ1, σ2, . . .) is the matrix of singular values and U

and V are orthonormal. Then the solution for φ is given by:

φ = VΛ̄U>b (14.24)

where Λ̄ = diag( 1
σ1

, 1
σ2

, . . .) [11]. In the event that one or more of the singular
values σi is at or near 0, then the solution is poorly constrained by the available
data and the corresponding elements of Λ̄ should be replaced by 0. Also, the
elements of the corresponding columns of V that are not at or near zero indicate
which elements of φ are underdetermined.
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14.4.3 Iterative solution

By exploiting parallelism and coplanarity constraints (Table 14.1), it is possible
to reconstruct points that are visible in fewer than two views. However, line
directions and plane normals (dl) must be obtained in advance. Where the
world coordinate system has been aligned with a dominant set of orthogonal
directions in the scene, it is likely that many line directions and plane normals
will be aligned with the coordinate axes. More generally, important horizontal
directions can be estimated using lines on a map. But some directions might
still be unknown, e.g. the normals to pitched roofs. Consequently, some 3D
points might be underdetermined by the available constraints.

This problem can be solved using a simple iterative reconstruction scheme.
Given a partial reconstruction (comprising some known and some unknown
directions and 3D points), extra directions can be estimated using already-
reconstructed points (line directions can be estimated linearly from one or more
pairs of 3D points, and plane normals from three or more coplanar 3D points).
Then a more complete reconstruction is obtained using all known directions.
This process is repeated until no more directions or 3D points can be estimated.

14.5 Bundle adjustment

Camera and structure parameters computed by the method described in the
preceding sections will not be optimal in the maximum likelihood sense. Hence,
the final stage of the reconstruction process is bundle adjustment – using the
Gauss-Newton framework described in the previous chapter. Having obtained
an initial estimate for all camera parameters (K, Ri, Ti), structure (Xj), direc-
tions (dk), and plane distances (dl), all parameters are refined in such a way as
to minimize the sum of squared measurement errors. This gives the maximum
likelihood solution under the assumption of Gaussian-distributed measurement
noise. At this stage it is also possible to refine radial distortion coefficients k1i

and k2i if desired.

Here, the set of observations includes the measured image (and possibly
map) positions of the 3D points that form the vertices of the model. In addi-
tion, line direction constraints and planarity constraints can also be modelled
as observations. For example, the distance d>X − d of a point (X) from an
associated plane (with normal d and distance d) can be considered a measured
quantity with a predicted value of 0. Alternatively, constraints can be enforced
precisely using the method of sequential quadratic programming (Triggs et al.
[16]).

An interesting question concerns how to choose prediction weights for the
various measurements. To reiterate, prediction weights reflect the associated un-
certainties. For maximum likelihood parameter estimation, the weight matrices
Wi belonging to each observation z̄i should be set equal to the inverse covari-
ance matrix of the associated measurement noise. For image measurements,
the main source of error is likely to be the inability of the user to position
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corresponding points precisely in images with finite resolution and so standard
deviations are usually expressed in pixels. A useful idea is to allow the user to
choose from a range of possible certainty levels: suggested standard deviations
are 1, 2, 4, 8, and 16 pixels. For map measurements, the most significant source
of error will usually be the limited accuracy of the map. An important reason
for inaccuracy is that mapmakers sometimes approximate complex geometry
with simple geometry. Thus, standard deviations are approximated using the
quoted accuracy of the map. Parallelism and coplanarity constraints must also
be given appropriate prediction weights. These constraints will be enforced in-
creasingly strongly as the weights are increased – and it is useful to allow the
user to adjust the weights to suit the type of scene. To choose a suitable range
of variation it will be helpful to give the reconstruction a scale, e.g. by using
a map coordinate system, or specifying a known length. Then measurement
uncertainties can be expressed in physically meaningful units, e.g. the standard
deviation associated with the prediction (d>X− d = 0) that a 3D point X lies
on a plane (d, d) can be expressed in metres.

After bundle adjustment, two kinds of feedback can be given to the user.
Firstly, inconsistent or outlying observations can be identified because they have
comparatively higher cost, e.g. by plotting exaggerated reprojection errors for
image and map measurements. Secondly, the uncertainty associated with esti-
mated parameter values can be determined by computing the covariance matrix
for the parameter vector (which is just the inverse of the Hessian H−1 [16]).

14.6 Implementation and testing

The method described in this chapter forms the basis of a working system called
PhotoBuilder for creating large-scale architectural models from photographs and
maps4. This software has been implemented using Visual C++ in the form of
a Microsoft Windows application, which provides the facility to export models
using the Virtual Reality Modeling [sic] Language (VRML)5, which is designed
to allow users to explore virtual reality environments via the Internet. This
section presents some illustrative results obtained using this software.

14.6.1 Downing College library

Figure 14.6 shows nine photographs of Downing College Library, which were
obtained using an ordinary digital camera attached to a tripod. The camera had
a medium-wide angle lens and a pixel resolution of 1280× 1024. Approximate
ground truth camera positions were obtained by taking measurements between
the tripod head and the corners of nearby buildings with a tape measure. These
measurements were transferred to a 1:1000 scale map using a compass (see
Figure 14.7a).

4See http://mi.eng.cam.ac.uk/photobuilder/.
5See http://www.web3d.org/x3d/spec/vrml/ISO IEC 14772-All/ for the current ISO spec-

ifications.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 14.6: Nine photographs of the library at Downing College, Cambridge.
Corresponding geometric primitives were defined interactively (thick lines) and
vanishing points were computed for parallel line segments (thin lines).

A small number of corresponding geometric primitives (line segments and
rectangular plane facets) were identified interactively in each photograph and
on the map. Approximate camera intrinsic values were obtained using the van-
ishing point calibration method described in Section 14.2 for the first view (the
principal point was set to the image centre). Then camera orientations were
determined in the map coordinate system using vanishing points belonging to
the vertical direction and two horizontal directions, which were estimated using
line segments on the map. Finally, 3D points were computed using the linear
method described in Section 14.4. So that equation 14.23 would be non-singular,
it was necessary to fix the coordinate system for the reconstruction by specifying
arbitrarily the height of a single 3D point.

Figure 14.7 shows reconstruction results before bundle adjustment. The
recovered geometry is visibly accurate (the aspect ratio of the square building
is 1.0). The quality of the reconstructions can also be assessed in terms of
reprojection error, i.e. how well the model agrees with the image data. RMS
reprojection error was 5 pixels (an error in viewing direction of 0.2◦).
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Figure 14.7: Linear reconstruction results for the Downing College library pho-
tographs. (a) Recovered camera positions and orientations are represented by
arrows, ground truth camera positions are shown as dots. (b) Recovered geome-
try is visually accurate (the real building is also square). The map is reproduced
at approximately 1:1000 scale.
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Next, a more complete model was obtained by identifying more geometric
primitives. Again, the linear reconstruction algorithm was used to obtain an ini-
tial estimate of camera positions and structure. Then all structure and motion
parameters (including camera intrinsic parameters) were refined using bundle
adjustment. The standard deviations associated with image and map measure-
ments were set to 2 pixels and 0.25 m respectively; the standard deviations
associated with parallelism and coplanarity constraints (which were treated as
measurements) were set to 0.05 m.

Figure 14.8 show some novel views of the resulting model. The wire frame
views show that recovered geometry is visually accurate: nominally parallel lines
are close to parallel and nominally coplanar points are close to coplanar. After
bundle adjustment, RMS reprojection error was 1 pixel. Given the wide baseline
relating the images and the fact that a number of vertices were occluded by trees
in this data set, this error is no greater than that likely to have been introduced
by defining point correspondences manually, i.e. a credible optimum has been
obtained. The focal length and principal point estimated by bundle adjustment
were accurate to within 1

14.6.2 Building large models using map information

By combining map and image data, it is simple to model scenes containing a
large number of buildings, possibly with differing orientations and non-rectangular
plan. This section presents illustrative results.

Trumpington Street model

Figure 14.9 shows the first three views out of a sequence of 22 obtained using
an ordinary digital camera in a section of Trumpington Street in Cambridge.
This street is curved, and most of the buildings have different orientations.
Viewpoints were chosen somewhat arbitrarily: sometimes the camera was simply
rotated from one viewpoint to the next and some adjacent views exhibit very
little overlap.

The reconstruction shown in Figure 14.10 was obtained using the method
described in this chapter. First an approximate value for focal length was es-
timated using vanishing points in the first view belonging to orthogonal direc-
tions (the principal point was set to the image centre and radial distortion was
assumed initially to be negligible). Then camera orientations were estimated
using vanishing points belonging to vertical and horizontal directions (horizon-
tal directions were estimated using parallel line segments on the map). Finally,
bundle adjustment was used to refine all structure and motion parameters. The
recovered focal length and principal point were accurate to within 1.7% and 10
pixels of ground-truth values obtained by laboratory calibration.

Since only approximate values were used for the camera intrinsic parameters,
an interesting question concerns how sensitive the reconstruction algorithm is
to inaccuracy. Since bundle adjustment is used as the final stage, recovered
structure and motion parameters should be unaffected by small variations in
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Figure 14.8: Reconstruction results. By defining corresponding primitives inter-
actively in each view, a more complete model has been obtained. (a) The recov-
ered geometry is visually accurate: the wire frame views show that nominally
parallel lines are parallel. (b) Recovered camera pose and a texture-mapped
model. Recovered camera positions may be related to the images in Figure
14.6.
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Figure 14.9: The first three views from a sequence of 22 that was obtained in
Trumpington Street, Cambridge.

the starting conditions. For this dataset, the same results were obtained (after
bundle adjustment) despite focal length errors in the approximate range -50%
to +200%.

Jesus College virtual tour

The second example is a model of Jesus College in Cambridge. This model was
created as part of a ‘virtual tour’ of the college, which is available online6. The
tour allows the user to navigate a large 3D model of the college via the Internet.

Figure 14.11 shows some screen shots of the model, which was reconstructed
using around 50 photographs. The buildings in Jesus have differing orientations
and so a plan of the college was used for to determine camera orientations. The
trees in the model were segmented manually in the images and are represented
by ‘cardboard cut-outs’, i.e. vertically oriented planes with transparency.

One practical difficulty here was the requirement that the model should be
compact enough for efficient network transfer. In part, this has been achieved by
using repeating synthetic textures for relatively uninteresting areas, such as the
grass and pathway. It has also been necessary to subdivide the large model into
several smaller parts (individual courtyards) that can be downloaded separately.

14.7 Summary

This chapter has described an interactive system (PhotoBuilder) for recover-
ing models of the geometry and appearance of architectural scenes from pho-
tographs. The central problem is the recovery of camera projection matrices
and scene structure. A key insight is that it is possible to solve this problem
in two stages. First camera calibration matrices and orientations are obtained
using single-view constraints. Then all camera positions and scene structure
can be determined simultaneously by solving a linear equation. Compared to
systems that use standard sequential structure from motion algorithms, an ad-
vantage is that fewer corresponding points are required and non-coplanar points
are unnecessary. Hence, viewpoints can be selected without such careful plan-

6See http://www.jesus.cam.ac.uk/virtualtour/entrancepage/entrance.htm
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(a)

(b)

Figure 14.10: Trumpington Street model. Two novel views showing (a) recov-
ered camera pose and wire frame geometry and (b) the texture-mapped model.
Note that some of the buildings have different orientations.
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Figure 14.11: Some views of a large model of Jesus College, Cambridge. This
model was reconstructed using around 50 photographs obtained using a camera
with fixed but unknown focal length. The buildings in Jesus have differing
orientations and so a plan of the college was used for camera calibration.



46 CHAPTER 14. ARCHITECTURAL MODELLING

ning, models can be obtained using fewer views, and less user intervention is
required.

Two simple, geometrically intuitive methods have been proposed for ob-
taining the camera calibration matrix and orientation for a single perspective
view. One strategy (after Caprile and Torre [3]) is to use vanishing points corre-
sponding to orthogonal directions in the scene. However, it is difficult to extend
this approach to scenes that include buildings with differing orientations or non-
rectangular plan. An interesting alternative is to use readily available map data.
This approach allows views to be oriented in a global map coordinate system
rather than a local one associated with a particular building. By combining
the constraints provided by a map and multiple perspective views, it is simple
to model scenes containing a large number of buildings, possibly with differing
orientations or non-rectangular plan.

Appendix A: Finding vanishing points

In general, the images of more than two parallel lines will not intersect at a
single point because of measurement noise. Hence, vanishing points must be
chosen so as to minimize an appropriate error metric.

Maximum likelihood estimate. A good strategy is to fit a set of lines that
do intersect at a point, and minimize the sum of squared orthogonal errors from
the endpoints of the measured line segments (Hartley and Zisserman [7]). This
approach is illustrated in Figure 14.12. The vanishing point estimate ṽ is refined
by iterative non-linear optimisation. To avoid the singularity associated with
vanishing points at infinity, it is convenient to represent ṽ by a homogenous
3-vector, subject to the constraint that |ṽ| = 1.

Linear least squares solution. An initial value for ṽ is obtained by solving
a linear least squares problem. The method is given a simple 3D interpretation
in Figure 14.13.

An imaged line segment may be represented by a vector l̃ that is normal to
the plane defined by the line and the centre of projection. Let x̃1 and x̃2 be the
viewing directions associated with the endpoints of the imaged line segment,
i.e. x̃i ∼ K−1ũi. Then l̃ = x̃1 × x̃2 where × denotes the cross product. Here,
each x̃i is normalised such that |x̃i| = 1.

The vectors l̃i corresponding to parallel lines in the world all lie in a plane
(see Figure 14.13). Hence, the common vanishing direction ỹ ∼ K−1ṽ may be
obtained by solving the following linear least squares estimation problem:

ỹ = arg min
ỹ

∑

i

(̃l>i ỹ) (14.25)

which may be written as:
ỹ = argmin

ỹ
|Lỹ|2 (14.26)
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Figure 14.12: Maximum likelihood vanishing point estimation. The vanishing
point ṽ is the intersection of a set of fitted lines that minimize sum of squared
orthogonal errors from the endpoints of the measured line segments.

where L = [ l̃1 l̃2 . . . ]>. The solution is the eigenvector of L>L associated
with the smallest eigenvalue and can be obtained by the singular value decom-
position [11].

In practice, the camera calibration matrix K might be unknown. But since
this linear estimation step is used only to provide an initialisation for non-linear
optimisation, an approximate value for K will be perfectly adequate. Typically,
pixels are assumed to be square and the principal point is set to the image
centre. The focal length is set to the right approximate order of magnitude.
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