
Multiple Classifier Boosting and
Tree-Structured Classifiers

Tae-Kyun Kim and Roberto Cipolla

Abstract. Visual recognition problems often involve classification of myriads of
pixels, across scales, to locate objects of interest in an image or to segment images
according to object classes. The requirement for high speed and accuracy makes
the problems very challenging and has motivated studies on efficient classification
algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the
multimodal problems by simultaneously clustering samples and boosting classifiers
in Section 2. The method is extended into an online version for object tracking in
Section 3. Section 4 presents a tree-structured classifier, called Super tree, to fur-
ther speed up the classification time of a standard boosting classifier. The proposed
methods are demonstrated for object detection, tracking and segmentation tasks.

1 Introduction

Boosting has become a standard method in object detection [3], tracking [26] and
segmentation [33] problems, where a vast number of image sub-windows, across
pixels and scales, need to be classified. Performing the tasks in a reasonable time
demands extremely fast evaluation of each sub-window.A boosting classifier makes
a decision by aggregating simple weak-learners such as Haar-like features, whose
computations are accelerated by an integral image.
When object images exhibit multi-modalities (see Figure 1), a single boosting

classifier is often not sufficient. A standard boosting classifier [25, 9] is represented
by the weighted sum of binary weak-learners as

Tae-Kyun Kim
Department of Electrical and Electronic Engineering, Imperial College, London, UK
e-mail: tk.kim@imperial.ac.uk

Roberto Cipolla
Department of Engineering, University of Cambridge, UK
e-mail: cipolla@eng.cam.ac.uk

R. Cipolla et al. (Eds.): Machine Learning for Computer Vision, SCI 411, pp. 163–196.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

164 T.-K. Kim and R. Cipolla

Fig. 1 Pedestrian detection. Wojek et al. [19] have shown that the proposed multiple classi-
fier boosting algorithm [31] outperforms various standard methods (SVM, AdaBoost etc) for
the multi-appearance pedestrian detection problems.

H(x) =
m

∑
i=1

αihi(x), (1)

where αi is the weight and hi the i-th binary weak-learner in {−1,1}. Object im-
ages of e.g., multi-poses or multi-object categories are difficult to be dichotomised
from non-object images by a single aggregation of simple features. Conventionally,
multiple boosting classifiers, each of which is for a defined sub-category, are re-
quired [4, 6]. However, manual labeling of object categories and/or poses is difficult
for a large data set and how to partition images into sub-categories is often not clear.
We present a new co-clustering problem of images and visual features in Section 2.
The problem is tackled by simultaneously boosting multiple classifiers which com-
pete for object images by their expertise. Each boosting classifier is an aggregation
of weak-learners, i.e., simple visual features. The solution is achieved by a gradient-
descent optimisation technique. We demonstrate by both synthetic and real image
data sets that the obtained classifiers are capable of solving XOR i.e., multi-modal
classification problems that a standard boosting classifier fails to solve.
In object tracking a major challenge is handling appearance changes of a target

object due to factors such as changing pose, illumination and deformation. Recently
a class of techniques using discriminative tracking has been shown to yield good
results by treating tracking as a classification framework [21, 22, 24, 26] (see Fig-
ure 2). A classifier is iteratively updated using positive and negative training samples
extracted from each frame. Online boosted classifiers have been widely adopted ow-
ing to their efficiency and good classification performance [22, 26, 27]. However, as
they maintain a single boosted classifier, they are limited to single view tracking or
slow view changes of a target object. Tracking tends to fail during rapid appearance
changes, because most weak learners of a boosted classifier do not capture the new
feature distributions. Rapid adaptation of an online classifier in order to track these
changes increases the risk of incorrectly adapting to background regions. Section 3
presents a new multi-pose object tracking solution by extending the multi-classifier

Multiple Classifier Boosting and Tree-Structured Classifiers 165

Re-detection

Search region
at time t+1

Previous object location
at time t

Fig. 2 Object tracking by fast re-detection. A search window is set based on the previous
location and speed of a target object, and a classifier is applied to evaluate every sub-window
within the search region. The proposed online multiple classifier boosting method [34] allows
tracking during rapid pose changes.

boosting algorithm in Section 2 into an online version. The proposed algorithm
jointly learns the classifiers and a soft partitioning of the input space, defining an
area of expertise for each classifier. We show how this formulation improves the
specificity of the strong classifiers, allowing simultaneous location and pose estima-
tion in a tracking task. The proposed online scheme iteratively adapts the classifiers
during tracking.
Despite the efficiency of a boosting classifier, it is often required to further reduce

the evaluation time. A cascade of boosting classifiers, which could be seen as a de-
generate tree, effectively improves the classification speed: by filtering out majority
of negative class samples in its early stages [3]. Designing a cascade, however, in-
volves manual efforts for setting a number of parameters: the number of classifier
stages, the number of weak-learners and the threshold per stage. In Section 4, we
present a novel way to speed up the evaluation time of a boosting classifier without
needing a conventional multi-stage boosting cascade. We make a shallow (flat) net-
work deep (hierarchical) by growing a tree from decision regions of a given boosting
classifier. The obtained tree, called Super tree, provides many short paths for speed-
ing up while it preserves the reasonably smooth decision regions of the boosting
classifier for good generalisation. For converting a boosting classifier into a deci-
sion tree, we formulate a Boolean optimisation problem, which has been previously
studied for circuit design but limited to a small number of binary variables. The
method has been demonstrated for segmentation problems (see Figure 3).
The rest of the chapter is organised as follows: Section 2 presents the multiple

classifier boosting algorithm to learn multi-modal appearances, Section 3 its online
version for object tracking. Conversion of a boosting classifier into a decision tree
for speeding up is explained in Section 4. The summary and conclusion is drawn in
Section 5.

166 T.-K. Kim and R. Cipolla

Fig. 3 Semantic segmentation. Every pixel of an input image (left) is assigned one of object
categories (right).

2 Multiple Classifier Boosting

It is known that visual cells (visual features) selectively respond to imagery pat-
terns in perception. Learning process may be associated with co-clusters of visual
features and imagery data in a way of facilitating image data perception. We formu-
late this in the context of boosting classifiers with simple visual features for binary
classification tasks e.g., object detection [3]. There are two sets of images: a set of
object images and a set of non-object images, labeled as positive and negative class
members respectively. There are also a huge number of simple image features, only
a small fraction of which are selected to discriminate the positive class from the neg-
ative class by H(x) = ∑t αtht(x) where x is an input vector, αt ,ht are the weight and
the score of t-th weak-learner using a single feature, and H is a boosting classifier.
When object images exhibit multi-modalities, a single aggregation of simple fea-
tures is often not sufficient to dichotomise object images from non-object images.
Our problem is to find out subsets of object images, each of which is classified by
an associated set of features i.e., a boosting classifier, for maximising classification
performance. Note that image clusters to be obtained are coupled with selected fea-
tures and likewise features to be selected are dependent on image clusters, requiring
concurrent clustering of images and features.
See Figure 4 for an example where subsets of face images are pose-wise ob-

tained with associated features by the proposed method (Section 2.1). Features are
placed around eyes, a nose and mouth as the cues for discriminating faces from
background. As such facial features are distributed differently mainly according to
face pose in the example, the obtained pose-wise face clusters are, therefore, intu-
itive and desirable in perception. Note the challenges in achieving this: the input
set of face images are mixed up by different persons, lighting conditions as well as
poses. Some are photographs of real-faces and the others are drawings. Desired im-
age clusters are not observable in input space. See Figure 5 for the clusters obtained
by the traditional unsupervised clustering method (k-means clustering) on the face

Multiple Classifier Boosting and Tree-Structured Classifiers 167

...

...

Face image set

Random image set

Visual feature set
Face cluster-1

Face cluster-2

Feature set-1

Feature set-2

Fig. 4 Perceptual co-clusters of images and visual features. For given a set of face and
random images and simple visual features, the proposed method finds the joint-clusters of
face images and features, which facilitates classification of face images from random images.
Face clusters are pose-wise obtained in the example.

Face cluster-1 Face cluster-2

Fig. 5 Face clusters obtained by the k-means clustering method.

images. Images of the obtained clusters are almost random with respect to pose.
A required method must have a discriminative process and part-based representa-
tions (like the simple features used) to obtain more meaningful face clusters for
classification. Technically, it is also required to cope with an arbitrary initialisation
of image clusters because the target clusters are hidden. The k-means clustering re-
sult is completely different from that obtained by the proposed method as shown in
Figure 4 and Figure 5. Feature selection should be efficiently performed among a
huge number of input features.
We simultaneously boosts multiple boosting classifiers, each of which has exper-

tise on a particular set of object images by a set of weak-learners. The proposed
method (Section 2.1) has a potential for wide-applications in perceptual data explo-
ration. It generally solves a new co-clustering problem of a data set (e.g., a set of
face images) and a feature set (e.g., simple visual features) in a way to maximise
discrimination of the data set from another data set (e.g., a set of random images).

Related Work

Existing co-clustering work (e.g., [1]) is formulated as an unsupervised learning
task. It simultaneously clusters rows and columns of a co-occurrence table by e.g.,
maximising mutual information between the cluster variables. Conversely, we make
use of class labels for discriminative learning. Using a co-occurrence table in prior
work is also prohibitive due to a huge number of visual features that we consider.

168 T.-K. Kim and R. Cipolla

…

y1(x)

y2(x)

yL(x)

x

g1(x)

g2(x)

gL(x)

Expert 1

Expert 2

Expert L

Gating Network

…

y1(x)

y2(x)

yL(x)

x

g1

g2

gL

Expert 1

Expert 2

Expert L

yy

Y= igi(x) yi(x) Y= igi yi(x)

� �

��� ���

Fig. 6 Mixture of Experts vs Ensemble Learning. In MOE, the gating network as a function
of input activates an expert encouraging specialization. In Ensemble learning i.e., Boosting,
all experts contribute to form a decision with pre-determined weights.

Mixture of Experts [2] (MoE) jointly learns multiple classifiers and data parti-
tions. It emphasises local experts and is suitable when input data are naturally di-
vided into homogeneous subsets, which is, however, often not the case in practice
as observed in Figure 5. Note that EM in MoE resorts to a local optimum and in
practice, it is difficult to establish a good initial data partition. Furthermore, the data
partitions of MoE could be undesirably affected by a large background class con-
sidered in our problem and the linear transformations used in MoE are limited for
delivering a meaningful part-based representation of object images.
Boosting [8] is a sequential learning method for aggregating multiple weak clas-

sifiers. It finds weak-learners to correctly classify erroneous samples by previous
weak-learners. While MoE makes a decision by dynamically selected local experts,
all experts or weak-learners in a boosting classifier contribute to a decision with
weights (See Figure 6). Expert selection required in MoE is generally a difficult
problem when an input space is not naturally divided into sub-regions (clusters).
A boosting classifier solves various non-linear classification problems but cannot
solve XOR problems where only half the data can be correctly classified by each
weak-learner (see [8] for the strength of weak learnability). Two disjointed sets of
weak-learners, i.e., two boosting classifiers, are required to conquer each half of
data by a set of weak-learners. Torralba et al.’s method for multiple boosting clas-
sifiers [4] relies on manual labels for cateogry/pose, whereas we optimise image
clusters and boosting classifiers simultaneously.

2.1 MCBoost: Multiple Classifier Boosting

Our formulation considers K strong classifiers, each of which is represented by a
linear combination of weak-learners as

Multiple Classifier Boosting and Tree-Structured Classifiers 169

Fig. 7 Risk map computed for given two class data (circle and cross). Weak-learners (either
a vertical or horizontal line) found by the Adaboost method [8] are placed on the high risk
regions.

Hk(x) = ∑
t

αkthkt(x), k = 1, ...K, (2)

where αkt and hkt are the weight and the score of t-th weak-learner of k-th strong
classifier. Each strong classifier is devoted to a subset of input patterns allowing
repetition and each weak-learner in a classifier comprises of a single visual feature
and a threshold. For aggregating multiple strong classifiers, we formulate Noisy-
OR as

P(x) = 1−∏
k

(1−Pk(x)), (3)

where Pk(x) = 1/(1+ exp(−Hk(x))). It assigns samples to a positive class if any of
classifiers does and to a negative class if every classifier does. That is, an individ-
ual classifier is forced to learn from a subset of positive samples and all negative
samples. A positive sample is therefore required to be accepted as the positive class
by at least one of the classifiers and a negative sample to be rejected by all. The
Noisy-OR framework does not require classifier selection when making a decision:
the joint probability in (3) is computed using all k classifiers for any x. Note that the
mixture of experts partitions an input space into many overlapping or disjoint re-
gions and only classifiers of regions that a test data point falls in are used. This is a
significant difference in design. A conventional design in object detection study [6]
also favours the OR framework that does not need classifier selection. Our derivation
builds on the previous Noisy-OR boosting algorithm [5], which has been proposed
for multiple instance learning. It learns a single boosting classifier from given bags
of samples whereas ours learns multiple boosting classifiers.
The sample weights are initialised e.g., by randomly partitioning positive sam-

ples, i.e., wki = 1 if xi ∈ k and wki = 0 otherwise, where i and k denote i-th sample
and k-th classifier respectively. We set wki = 1/K for all k’s for negative samples.
For given weights, the method finds K weak-learners at t-th round of boosting, to
maximise

∑
i

wki ·hkt(xi), hkt ∈H, (4)

170 T.-K. Kim and R. Cipolla

Algorithm 1.MCBoost

Input: A data set (xi,yi) and a set of pre-defined weak-learners
Output:Multiple boosting classifiers Hk(x) = ∑T

t=1αkthkt(x),k = 1...,K

1.Compute a reduced set of weak-learnersH by the risk map (5) and randomly
initialise the weights wki.
2.Repeat for t = 1, ...,T :
3. Repeat for k = 1, ...,K:
4. Find weak-learners hkt that maximise ∑i wki ·hkt(xi),hkt ∈H.
5. Find the weak-learner weights αkt that maximise J(H+αkthkt).

6. Update the weights by wki =
yi−P(xi)

P(xi)
·Pk(xi).

7. End
8.End

Fig. 8 Pseudocode of MCBoost algorithm

where hkt ∈ {−1,+1} andH denotes a reduced set of weak-learners for speeding up
the learning process. Previous methods e.g., [20] for reducing the boosting learning
time may be independently deployed. The reduced set is obtained by restricting
the location of weak-learners around the expected decision boundary. Each weak-
learner, h(x) = sign(aT x + b), where a and b represent a simple feature and its
threshold respectively, can be represented by aT (x− xo), where xo is interpreted as
the location of the weak-learner. By limiting xo to the data points that have high
risk to be misclassified, the complexity of searching weak-learners at each round of
boosting is reduced. The risk is defined as

R(xi) = exp{−
∑ j∈NB

i
‖xi− x j‖2

1+∑ j∈NW
i
‖xi− x j‖2 } (5)

where N B
i and NW

i are the set of predefined number of nearest neighbors of xi

in the opposite class and the same class of xi (see Figure ??). The weak-learner
weights αkt ,k = 1, ...,K are then found to maximise J(H+αkthkt) by a line search.
Following the AnyBoost method [9, 5], we set the sample weights for the next round
as the derivative of the cost function with respect to the classifier score. For the cost
function J = log∏i P(xi)

yi(1− P(xi))
(1−yi), where yi ∈ {0,1} is the label of i-th

sample, the weight of k-th classifier over i-th sample is updated by

wki =
∂ J

∂Hk(xi)
=

yi−P(xi)

P(xi)
·Pk(xi). (6)

See Figure 8 for the pseudocode of the proposed method.

Multiple Classifier Boosting and Tree-Structured Classifiers 171

Step 5

Step 4

Step 3

Step 2

Step 1

A

Classifier 1

CC

A
CC

A

A

B

B C

C

Classifier 3Classifier 2

BBB

BBB
C

AA

A

BBA

BBB
B

A

CB

C

C

BC

AA B

Fig. 9 State diagram for MCBoost.

Data Clustering

Data clusters (of positive samples) are obtained by assigning samples xi to a classi-
fier (or cluster) that has the highest classifier probability Pk(xi).
The sample weight of k-th classifier in (6) is determined by the joint probability

P(x) and the probability of k-th classifier Pk(x). For a negative class (yi = 0), the
weights only depend on the probability of k-th classifier. The classifier gives high
weights to the negative samples that are misclassified by itself, independently of
other classifiers. For a positive class, high weights are assigned to the samples that
are misclassified jointly (i.e., the left term in (6)) but may be correctly classified
by the k-th classifier through next rounds (i.e., high Pk(x)). That is, classifiers con-
centrate on samples in their expertise through the rounds of boosting. This can be
interpreted as data partitioning.

Toy Examples

Figure 9 illustrates the concept of the MCBoost algorithm. The method iterates two
main steps: learning weak-learners and updating sample weights. States in the figure
represent the mode of samples (A,B or C) that are correctly classified at each step.
The sample weighting (6) is represented by data re-allocation. Assume that a posi-
tive class has the samples of three target clusters denoted by A,B andC. Samples of
more than two target clusters are initially assigned to a classifier. Weak-learners are
found to classify the dominant mode of samples (bold letters) in each classifier (step
1). Classifiers then re-assign samples according to their expertise (step 2): Samples
C that are misclassified by all are given more importance in the first classifier (bold
letter). Samples B are moved to the third classifier as the expert on B. The first
classifier learns next weak-learners for classifying the samples C while the second

172 T.-K. Kim and R. Cipolla

and third classifiers focus on the samplesA and B respectively (step 3). Similarly, the
samples A,C are moved into the respective most experts (step 4) and all re-allocated
samples are finally correctly classified by weak-learners (step 5).
We present a toy example of XOR classification problems (see Figure 10). The

positive class (circle) comprising the three sub-clusters and the negative class (cross)
in background make the XOR configurations. Any standard single or double boost-
ing classifiers, therefore, do not successfully dichotomise the classes in the example.
We exploit vertical or horizontal lines as weak-learners and set the number of clas-
sifiers K to be three by a priori. We performed partitioning of positive samples as
shown in the left by three different color blobs (randomly mixed) for initialising the
sample weights: each classifier was initially assigned all three color data points hav-
ing its data center around the center of the coordinate. The final decision boundaries
and the tracks of data cluster centres of the three boosting classifiers are shown in the
right. Despite the mixed-up initialisation, the method learns the three classifiers that
nicely settle into the target clusters after a bit of jittering in the first few rounds. The
weak-learner weights (bottom) show the convergence of the three classifiers. Note
that the method obtains the data clusters purely by the boosting classifier scores i.e.,
in a discriminative sense. Although the same data clusters are obtained by conven-
tional clustering methods e.g., k-means in this example, clusters by conventional
ways i.e., in a generative sense are often different from those of our method as ex-
emplified in Figure 5. The proposed method works well with random initialisations
and desirably exhibits quicker convergence when a better initialisation is given.

2.2 Experiments

Discriminative Clustering

We performed experiments using a set of INRIA pedestrian data [11] and PIE face
data [10]. The INRIA set contains 618 pedestrian images as a positive class and
2436 random images as a negative class in training and 589 pedestrian and 9030
random images in testing. The pedestrian images show wide-variations in back-
ground, human pose and shapes, clothes and illuminations (Figure 11). The PIE
data set involves 900 face images as a positive class (20 persons, 9 poses and 5
lighting conditions) and 2436 random images as a negative class in training and 900
face and 12180 random images in testing. The 9 poses are distributed form left pro-
file to right profile of face, and the 5 lighting conditions make sharp changes on face
appearance as shown in Figure 11. Some facial parts are not visible depending on
both pose and illumination. All images were cropped and resized into 24×24 pixel
images. A total number of 21780 simple rectangle features (as shown in Figure 4)
were exploited.
MCBoost learning was performed with the initial weights that were obtained by

the k-means clustering method. Avoiding the case that any of the k-means clusters
is too small (or zero) in size has helped quick convergence in the proposed method.
We set the portion of high risk data as 20% of total samples for speeding up in

Multiple Classifier Boosting and Tree-Structured Classifiers 173

1

31

1

31

1
31

10 20 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
classifier 1

boosting round

w
ea

kl
ea

rn
er

w

ei
g

h
t

10 20 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
classifier 2

10 20 30

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
classifier 3

Fig. 10 Example of learning on the XOR classification problem. For a given random ini-
tialisation (three different color blobs in the left), the method learns the three classifiers
that nicely settle into the desired clusters and correct decision boundaries (right). The weak-
learner weights (bottom) show the convergence.

K=5

K=3

K=9

Pe
de

st
ri

an
 im

ag
es

Fa
ce

 im
ag

es

Image cluster centres

Random images and simple visual features

Fig. 11 Perceptual clusters of pedestrian and face images. Clusters are found to maximise
discrimination power of pedestrian and face images from random images by simple visual
features.

training. The number of classifiers was set as K ∈ {2,3,4,5} and K ∈ {3,5,7,9} for
the INRIA and PIE data set respectively. For all cases, every classifier converged
within 50 boosting rounds.

174 T.-K. Kim and R. Cipolla

Figure 11 shows the cluster centers obtained by the proposed method. The ob-
ject images were partitioned into K clusters (or classifiers) by assigning them to
the classifier that has the highest Pk(x). For the given pedestrian images, the first
three cluster centers look unique and the last two are rather redundant. The three
pedestrian clusters obtained are intuitive. They emphasise the direction of intensity
changes at contours of the human body as discriminating cues of pedestrian images
from random images. It is interesting to see distinction of upper and lower body in
the second cluster, which may be due to different clothes. For the PIE data set, the
obtained face clusters reflect both pose and illumination changes, which is some-
what different from our initial expectation of getting purely pose-wise clusters as
in the case of Figure 4. This result is, however, also reasonable when considering
the strong illumination conditions that shadow face parts. For example, frontal faces
whose right-half side is not visible by the lighting cannot share any features with
those having left-half side not visible. Certain profile faces rather share more facial
features (e.g., one eye, eye brow and a half mouth) with the half-shadowed frontal
faces, jointly making a cluster. All 9 face clusters seem to capture unique character-
istics of the face images.

Multi-view Face Detection

Another experiment was designed using the CMU frontal and profile face image
data sets [12, 13]. Some face examples were shown in Figure 4. The two data sets
contain 322 images in total. The images were randomly and equally partitioned into
a train and a test set. The train set of 161 images had 323 frontal faces and 192 profile
faces and the test set had 271 frontal and 171 profile faces. Every face was cropped
and resized into 24x24 pixel images and around 200 negative samples per image
were randomly collected and resized into 24x24 pixel images. The number of nega-
tive samples in the initial train set was 32200. Two of standard AdaBoost classifiers
(setting the number of weak learners be 50 per each) were initially trained using ei-
ther the frontal or profile faces (by the manual pose label) with the random negative
samples in the initial train set. A total number of 72000 simple rectangle features
were exploited. We applied the two learnt classifiers on the train and test images for
bootstrapping. The total number of bootstrapped negative samples was 7400 for the
train set and 7635 for the test set. The train and test set used for comparison consisted
of both frontal and profile face images and bootstrapped negative samples. The stan-
dard AdaBoost classifier (using 100 weak-learners), two AdaBoost classifiers either
by the k-means clustering (K=2) or the manual pose labels (using 50 weak-learners
per each) and the MCBoost classifier initialised by the k-means clustering (with
K=2) (50 weak-learners per each) were compared. Figure 12 shows the ROC curves
of the methods for the train (left) and test (right) sets respectively. Both graphs
showed the same tendency. The MCBoost significantly outperformed the AdaBoost
using 100 weak-learners (we varied the number of weak-learners and obtained the
best performance by 100 weak-learners) and the AdaBoost with the k-means (K=2).
The proposed method delivered the similar accuracy to that of the AdaBoost with
the pose labels. The AdaBoost with the k-means outperformed the standard single

Multiple Classifier Boosting and Tree-Structured Classifiers 175

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

F
al

se
 n

eg
at

iv
es

AdaBoost
MCBoost (K=2)
AdaBoost (K=2)
AdaBoost (pose label)

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

F
al

se
 n

eg
at

iv
es

AdaBoost
MCBoost (K=2)
AdaBoost (K=2)
AdaBoost (pose label)

Fig. 12 ROC curves on the CMU frontal and profile face data sets. For the train set (left)
and test set (right).

AdaBoost classifier. The results confirmed that the standard boosting classifier can
not successfully classify samples in the XOR case (by the multi-modal face samples
and bootstrapped negative samples) and the clusters learnt in the proposed discrim-
inative manner are more suited to learn boosting classifiers than those obtained by
standard unsupervised clustering methods. MCBoost exhibited very close accuracy
to the classifiers learnt by the manual pose labels in the experiment.
The MCBoost method has been extensively tested by Wojek et al. for pedes-

trian detection problems in [19]. They have tested the various combinations of fea-
tures (HOG, Haar, Oriented Histogram Flow) and classifiers (SVM, AdaBoost, MC-
Boost) on their new challenging pedestrian data sets. It has shown that MCBoost
achieves superior performance to linear SVM-based detectors and significantly out-
performs Adaboost for both static and dynamic pedestrian detection problems. MC-
Boost has been shown to be the most robust classifier with respect to challenging
lighting conditions while being computationally less expensive than SVMs.

Discussions

We have introduced a discriminative co-clustering problem of images and visual
features and have proposed a novel method of multiple classifier boosting called
MCBoost. It simultaneously learns image clusters and boosting classifiers, each of
which has expertise on an image cluster. The method works well with either ran-
dom initialisation or initialisation by conventional unsupervised clustering meth-
ods. We have shown in the experiments that the proposed method yields meaningful
co-clusters of images and features and significantly outperforms the conventional
designs that individually learn multiple boosting classifiers by the clusters obtained
by the k-means clustering method or pose-labels.
Useful future studies on the MCBoost method include development of a method

to automatically determine K, the number of classifiers. At the moment, we first
try a large K and decide the right number as the number of visually heterogeneous
clusters obtained (see Section 2.2). A post-corrective step of initial weak-learners

176 T.-K. Kim and R. Cipolla

would be useful for more efficient classification by less number of weak-learners
in total. When the classifiers start from wrong initial clusters and oscillate between
clusters until settling down, some initial weak-learners are wrong and others may be
wasted to make up for the wrong ones. Once the classifiers find right clusters, they
exhibit convergence by decreasing the weak-learner weights. Restaring MCBoost
with the clusters found may yield economical sets of weak-learners for the same
accuracy.

3 Online Multiple Classifier Boosting for Object Tracking

Object tracking has been often treated as a classification problemwhere it is done by
fast re-detection. A search window is set based on the previous location and speed of
a target object, and the object is detected within the search window. The detector is
usually a binary classifier which evaluates sub-windows to tell if they contain a tar-
get object or not, at every pixel across scales, within the search window. It requires
very efficient evaluation per sub-window, as it typically involves a huge number of
sub-windows. Such a classification framework has been shown to yield good track-
ing results [21, 22, 24, 26]. A classifier is on-line updated to reflect environmental
changes. Online boosted classifiers have been widely used owing to their efficiency
and accuracy [22, 26, 27]. The work in [24] introduced online feature selection for
tracking, where in each frame the most discriminative features are chosen to com-
pute likelihoods. Ensemble Tracking [21] takes a similar approach by combining a
small number of weak classifiers using AdaBoost. Online boosting for tracking [26]
introduced a scheme where features are selected from a pool of weak classifiers and
combined into a strong classifier. Online schemes without any target model tend to
suffer from drift. One solution is to introduce an object model that is learned prior
to the tracking phase [27, 29]. The work in [27] proposed semi-supervised learning,
and included a boosted detector or simply the object region in the first frame as a
prior to an online boosting scheme.
Maintaining a single boosted classifier during tracking is limited to single view

tracking or slow view changes of a target object. Tracking tends to fail during rapid
appearance changes, because most weak learners of a boosted classifier are not rel-
evant to the new object appearance. Forcing an online classifier to adapt to these
rapid changes increases the risk of incorrectly adapting to background regions. A
multi-modal object representation and classifier is therefore required. Such a model
can be either generative [23, 32] or discriminative [30]. Typically, in the latter case,
distinct appearance clusters are found first and a classifier is trained on each [4].
Recently multi-classifier boosting was introduced, where clustering and classi-

fier training is performed jointly [18, 31] (see Section 2.1). These methods have so
far been applied to object detection, where the full training set is available from the
beginning. However, direct application to the online tracking domain is not straight-
forward, the main reason being that in an online setting the number of positive and
negative samples is not sufficient to ensure a good partitioning of the input space

Multiple Classifier Boosting and Tree-Structured Classifiers 177

(a) (b)

(c)

Fig. 13 Learning cluster-specific classifiers on toy data. The positive class (circles) exhibits
three clusters and is surrounded by data from the negative class (crosses). (a) The classifi-
cation result using a standard boosting classifier shows errors due to the XOR configuration
(colored circles denote classification as positive class). (b) The Multi-classifier boosting algo-
rithm of [31] successfully divides the two classes but uses two boosting classifiers (blue and
red line) in the same region, leading to inefficient use of weak classifiers. The two clusters
with no negative data points between them can be correctly classified by a single boosting
classifier. (c) The classification result of the proposed MCBQ algorithm shows improved
classifier expertise.

in terms of classifier expertise in the initial phase. Figure 13 illustrates the classi-
fication results of (a) standard Adaboost [25], (b) MCBoost [31] and (c) the pro-
posed algorithm called MCBQ on a toy XOR classification problem. The positive
class exhibits three clusters, but two of them actually form a single cluster in a dis-
criminative sense as there are no negative points between them. Standard AdaBoost
shows poor separation of the classes because it is unable to resolve XOR configu-
rations. For the MCBoost algorithm and the proposed solution, we set the number
of classifiers to be three. MCBoost successfully divides the two classes but shows
overlapping areas of expertise for the two classifiers, since the two clusters without
negative data points in-between can be correctly classified by a single boosting clas-
sifier. In contrast, the proposed algorithm shows improved partitioning of the input
space. As a consequence, weak classifiers are used more efficiently. While tracking
continues, additional negative samples are collected, eventually establishing three
positive clusters in a discriminative sense in this example. However, in the case of
MCBoost, the initially incorrectly assigned boosting classifiers are difficult to be
correctly reassigned during online updates. We have observed this case when clas-
sifiers are initially trained on a short sequence that contains multi-views of a target
object and are subsequently updated.
We therefore propose an extension of the multi-classifier boosting algorithm by

introducing a weighting function Q that enforces a soft split of the input space.

178 T.-K. Kim and R. Cipolla

In addition, we present an online version of the algorithm to dynamically update
the classifiers and the partitioning for the task of multi-modal object tracking. The
algorithm is applied to object tracking where it is used to learn different appearance
clusters during a short initial supervised learning phase.
Other related work is online multiple instance learning (MIL) [22, 5]. Our pro-

posed method can be seen as a multi-class extension of [22].

3.1 Joint Boosting and Clustering

This section explains our improvements in theMCBQ algorithm, based on the multi-
classifier boosting algorithm in Section 2. The following notation is used: Given
is a set of n training samples xi ∈ X , where X is the input domain (in our case
image patches), with labels yi ∈ {−1,+1} corresponding to non-object and object,
respectively. Additionally, each of the object samples can be considered belonging
to one of K groups where the class membership is a priori unknown.
Multi-classifier Boosting creates strong classifiers with different areas of exper-

tise. However, it relies on the training data set containing negative samples which
separate the positive samples into distinct regions in the classifiers’ discriminative
feature space. This also implies that there is no guarantee of pose-specific cluster-
ing. In fact there is no constraint in the algorithm that enforces strong classifiers to
focus on a unique area of expertise, and there is no concept of a metric space on
which perceived clusters can be formed. We make the classifier assignment explicit
by defining functionsQk(xi) :X → [0,1] which weight the influence of strong clas-
sifier k on a sample xi. By mapping xi into a suitable metric space, we can impose
any desired clustering regime on the training set, thus Q defines a soft partition-
ing of the input space. The choice of Q is dependent on the application domain. In
principle any function can be used that captures the structure of the input domain,
i.e., that maps the samples to meaningful clusters. In this method Q is defined by a
K-component Gaussian mixture model in the space of the first d principal compo-
nents of the training data. The k-th GMM mode defines the area of expertise of the
k-th strong classifier. The GMM is updated using a EM-like algorithm alongside the
weak classifiers in the boosting algorithm (Algorithm 1).
The new noisy-OR function in Equation 3 becomes:

p(xi) = 1−∏
k

(1−Qk(xi) pk(xi)), (7)

leading to the new weight update equation:

wk
i =

∂L
∂Hk(xi)

=
yi− p(xi)

p(xi)

Qk(xi) pk(xi)(1− pk(xi))

1−Qk(xi) pk(xi)
. (8)

The full MCBQ algorithm is summarized in Algorithm 2. Note that compared to the
original multi-classifier boosting algorithm additional steps 1, 2, and 8 are required
and step 7 is modified.

Multiple Classifier Boosting and Tree-Structured Classifiers 179

Algorithm 1. Updating Weighting Function
1. Calculate the likelihood of each of the samples under the k-th strong clas-
sifier, pk(xi)

2. Set the new probability of the sample being in the k-th GMM component
as its currentQ value scaled by the likelihood from the classifier,Qk(xi)pk(xi)

3. Update the k-th cluster by the mean and covariance matrix of the samples
under this probability.

Algorithm 2.Multi-classifier Boosting with Weighting Function (MCBQ)
Input: Data set (xi,yi), set of pre-defined weak learners.
Output:Multiple strong classifiers Hk(xi), weighting function Qk(xi).
1. Initialize Q with a Gaussian mixture model.
2. Initialize weights wk

i to the values of Qk(xi).
3. Repeat for t = 1, ...,T
4. Repeat for k = 1, ...,K
5. Find weak learners hk

t maximizing ∑i wk
i h

k
t (xi).

6. Compute weights αk
t maximizing L(Hk+αk

t h
k
t).

7. Update weights by Equation 8.
8. Update weighting function Qk(xi) by Algo 1.
9. End
10. End

3.2 Online MCBQ for Object Tracking

The goal is to learn an object-specific appearancemodel using a short initial training
sequence in order to guide the tracker [27, 32]. The number of training samples is
limited, but is sufficient to bootstrap the classifier. Subsequently, we would like
the tracker to remain flexible to some appearance changes while using the learned
model as an anchor. This motivates the following approach of iteratively adapting
multiple strong classifiers with MCBQ. In order to move MCBQ into an online
setting we need a mechanism for rapid feature selection and incremental updates of
the weak classifiers as new training samples become available. The online boosting
algorithm [26] addresses this issue, allowing for the continuous learning of a strong
classifier from training data. The key step is, at each boosting round, to maintain
error estimates from samples seen so far, for a pool of weak classifiers. At each
round t a selector St maintains these error estimates for weak classifiers in its pool,
and chooses the one with the smallest error to add to the strong classifier.
To summarize, our tracking algorithm contains two-stages: Firstly, training data

is assembled in a supervised learning stage, where the system is given initial sam-
ples which span the extent of all appearances to be classified. An initial MCBQ

180 T.-K. Kim and R. Cipolla

classifier is then built rapidly from this data. Secondly, additional training samples
are supplied to update the classifier with new data during tracking.

Weak Learning and Selection

All weak classifiers use a single Haar-like feature. For online learning from a feature
f and labeled samples (xi,yi) we create a decision threshold θ k

m with parity pk
m from

the mean of feature values seen so far for positive and negative samples, where each
feature value is weighted by the corresponding image weight:

hk
t,m(xi) = pk

m sign(f (xi)−θ k
m), (9)

θ k
m = (μk,++ μk,−)/2, pk

m = sign(μk,+− μk,−), (10)

μk =
Σi|wk

i | f (xi)

Σi|wk
i |

. (11)

The error of the weak classifier is then given as the normalized sum of the weights
of mis-classified samples:

ek
t,m =

∑i 1(hk
t,m(xi) �= yi)|wk

i |
∑i |wk

i |
. (12)

A weak classifier can then be chosen from a pool as the one giving the minimum
error.

Supervised Learning

During the supervised learning stage, we have a set of weighted samples, and a
global feature pool F . Weight distributions are initialized to randomly assign posi-
tive samples to a strong classifier k, and at each round t and strong classifier k the
equations 9, 10, 11, 12 are applied to initialize and select a weak classifier based on
exact errors. In order to facilitate selection at the incremental update stage, we store
in each selector Sk

t , for the positive and negative samples (1) for each feature value,
the sum of weights of samples with that value, and (2) the sum of image weights.
To improve speed, each selector only keeps the best M performing weak classi-

fiers for use in the incremental update stage. After each round of boosting, image
weights are updated as in Equation 8, and voting weights calculated based on the
error of the chosen weak classifier.

Incremental Update

Once the initial classifier has been created, it can be updated with new samples.
Weights for positive samples are initialized based on their classification responses
from each of the component strong classifiers in the MCBQ classifier, and the

Multiple Classifier Boosting and Tree-Structured Classifiers 181

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1

p1
p2
p3

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

Q1
Q2
Q3

(a) (b)

Fig. 14 Improved pose expertise: Plots of the contributions of three strong classifiers given
the image input (bottom row). (a) MCBoost [31] shows no clear separation of expertise over
different poses, while (b) MCBQ has learned pose-specific classifiers, corresponding to left,
center and right view of the face.

sample is passed through the boosting framework. The summations stored in each
selector can be updated from the new sample, and thus the new classification thresh-
olds for the weak classifiers calculated using equations 9, 10, 11. The error val-
ues from Equation 12 are used to choose the best weak classifier to add to the
strong classifier. Finally, the worst-performing weak classifier is replaced with a
new randomly-generated one. Note that in the case of Q being defined as a Gaus-
sian mixture in PCA space, we update the PCA space by the algorithm of Hall et
al. [28] before updatingQ. Pseudo-code is given in Algorithm 3.

3.3 Results

Pose Clustering

For this experiment we captured short training and testing sequences (about 100
frames each) of a face rotating from left to right, see Fig. 14. We trained classifiers
using MCBoost [31] and the MCBQ algorithm on face images and random patches
sampled from the training sequence. In both cases the number of strong classifiers
K is set to 3 by hand. TheQ function is defined by a 3-component Gaussian mixture
on the first 30 principal components. The graph in Fig. 14 shows the contribution of
each strong classifier on the test sequence. The MCBoost algorithm shows no clear
pose-specific response, while MCBQ has successfully captured three distinct pose
clusters, left, right, and center, as shown by the changes in classifier weights.

Tracking Performance

In order to evaluate the performance on the multi-appearance tracking problem,
we captured four sequences where the target object rapidly changes its pose. The
sequences are toyface (452 frames), handball (210 frames), cube (357 frames),
and face (185 frames). We also compared on the public Sylvester sequence (1345
frames). The performance was evaluated against manually labeled ground truth. We
compared AdaBoost, MCBoost and MCBQ trackers (both manually set to K = 2),

182 T.-K. Kim and R. Cipolla

Algorithm 3. Online MCBQ – Incremental Update
Require: Labeled training image (xi,yi), yi ∈ {−1,+1}.
Require:MCBQ classifier Hk(xi), k = 1, ...,K.
// Initialize sample weight wk

i =Qk(xi)/∑kQk(xi)

// For each round of boosting
for t = 1, . . . ,T do
// For each strong classifier, update selector Sk

t
for k = 1, . . . ,K do
// Update the selector’s weak classifiers
for m = 1,2, . . . ,M do
// Update cached weight sums from sample’s feature value, for positive and
negative samples
// Update classification threshold and parity

(
hk

t,m,(xi,yi),wk
i

)
// Calculate new error ek

t,m = ∑i 1(hk
t,m(xi) �= yi)|wk

i |
end for
// Choose the weak classifier with the lowest error
m∗ = argminm

(
ek

t,m

)
, hk∗

t = hk
t,m∗ and ek∗

t = ek
t,m∗

// Calculate voting weight αk
t = 1/

(
1+ exp{−ln

(
1−ek∗

t
ek∗

t

)
}
)

// Replace the weak classifier with the highest error
m− = argmaxm

(
ek

t,m

)
and replace hk

t,m−
end for

// UpdateQk(xi) function
// Update importance weights by Equation 8, then re-normalize.

end for

as well as two publicly available trackers, Semi-supervised Boosting [27] and MIL
tracking [22]. For each sequence the initial classifier was trained on a short ini-
tial training set (25-40 frames), capturing the appearance variation, and updated
online during tracking. Examples of positive training samples are shown in Fig. 15.
Because such a training set is generally not available for public tracking sequences,
the training data for the Sylvester sequence was constructed by randomly sampling
30 frames from the whole sequence. For AdaBoost, MCBoost and MCBQ 50 ran-
dom patches per frame were collected as negative class samples. We stopped boost-
ing rounds when the classification error reached zero on the training samples. The
public code for semi-supervised Boosting and MIL tracking was modified so that
these methods can also be trained on the initial set, otherwise their default param-
eters were used. Parameter settings were unchanged for all experiments. Fig. 16
shows the tracking errors on the five sequences. While none of the algorithms was
able to successfully track the target in all sequences, MCBQ showed the best overall
performance, in particular outperformingAdaBoost andMCBoost. The MIL tracker
performed best on two sequences, however, was not able to recover from drift in two

Multiple Classifier Boosting and Tree-Structured Classifiers 183

Fig. 15 Positive class samples for training. A subset of the positive samples is shown for the
four sequences.

50 100 150 200 250 300 350 400 450
0

50

100

150

Frame #

Po
si

tio
n

E
rr

or
 (

pi
xe

l)

Toy face

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Frame #

Po
si

tio
n

E
rr

or
 (

pi
xe

l)

Hand ball

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

Frame #

Po
si

tio
n

E
rr

or
 (

pi
xe

l)

Cube

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

Frame #

Po
si

tio
n

E
rr

or
 (

pi
xe

l)

Face

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

200

Frame #

Po
si

tio
n

E
rr

or
 (

pi
xe

l)

Sylvester

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

Fig. 16 Tracking error on test sequences. The plots show the tracking error over time on
four test sequences for AdaBoost (red) MCBoost (green), MCBQ (blue), MILTrack (cyan),
and SemiBoost (yellow). MCBQ shows the best overall performance.

of the other sequences. Overall, the single classifier trackers tend to adapt to a cur-
rent appearance mode forgetting previous appearance modes, which often makes
them fail when target objects rapidly change appearance modes. Fig. 17 shows ex-
ample frames from the test sequences.

Discussions

This section proposed MCBQ, a multi-classifier boosting algorithm with a soft
partitioning of the input space. This is achieved with a weighting function Q en-
suring that coherent clusters are formed. We applied the method to simultaneous
tracking and pose estimation. The learned model allows tracking during rapid pose
changes, since it captures multiple appearances. Existing single classifier trackers
tend to adapt to a single appearance mode, forgetting previous modes. MCBQ can
be seen as an extension of MCBoost [31] for the online setting, or a multi-class ex-
tension of the MIL tracker [22]. Future work includes a more principled selection
of the number of strong classifiers and exploring other choices for the weighting
function.

184 T.-K. Kim and R. Cipolla

Fig. 17 Example tracking results on test sequences. The comparison shows tracking results
for MCBQ (blue), AdaBoost (red), MILTrack (cyan), and SemiBoost (yellow) in the evalua-
tion. See text for details.

4 Conversion of a Boosting Classifier into a Decision Tree by
Boolean Optimisation

Boosting is a popular method in object detection [3], tracking [26] and segmenta-
tion [33] tasks, which demand very fast classification. Boosting makes a decision by
aggregating simple weak-learners e.g., Haar-like features, which are computed very
fast on an integral image. Despite its efficiency, it is often required to further reduce
the classification time. A cascade of boosting classifiers, which could be seen as a
degenerate tree (see Figure 18(a)), effectively improves the classification speed: by
filtering out majority of negative class samples in its early stages [3]. Designing a
cascade, however, involves manual efforts for setting a number of parameters: the
number of classifier stages, the number of weak-learners and the threshold per stage.
In this work, we propose a novel way to reduce down the classification time of

a boosting classifier up to an order of magnitude without sacrificing its accuracy,

Multiple Classifier Boosting and Tree-Structured Classifiers 185

c0 c1 c0 c1 c0 c1

H(x)= i hi(x)

h1 hi hT

1 i
T

x

…… ……

: a boosting

classifier
H1(x)

H2(x)

x

(a) (b)

α

Σ

α α

α

Σ

Fig. 18 Boosting as a tree. (a) A boosting cascade is seen as an imbalanced tree, where each
node is a boosting classifier. (b) A boosting classifier has a very shallow and flat network
where each node is a decision-stump i.e., weak-learner.

not relying on a design of cascade. The chance for improvement comes from the
fact that a standard boosting classifier can be seen as a very shallow network, see
Figure 18(b), where each weak-learner is a decision-stump and all weak-learners
are used to make a decision. The flat structure ensures reasonably smooth deci-
sion regions for generalisation, however it is not optimal in classification time. The
proposed method converts a shallow network (a boosting classifier as input) to a
deep hierarchical structure (a decision tree as output). The obtained tree speeds up
a boosting classifier by having many short paths: easy data points are classified by
a small number of weak-learners. Since it preserves the same decision regions of
the boosting classifier, the method alleviates a highly-overfit behaviour of conven-
tional decision trees. We introduce a novel Boolean optimisation formulation and
method. A boosting classifier splits a data space into 2n primitive regions by n bi-
nary weak-learners. The decision regions of the boosting classifier are encoded by
the boolean codes and class labels of the primitive regions. A decision tree is then
grown using the region information gain. Further details are about a better way of
packing the region information and the two stage cascade allowing the conversion
with any number of weak-learners. Without designing a many-stage cascade our
method offers a convenient way of speeding up, while the method incorporated in
such a cascade could provide a further speed-up.

Related Work

For speeding up the classification of a boosting classifier, the shortest set of weak-
learners for a given error rate has been obtained by the sequential probability ratio
test in the work of Sochman et al. [7]. It takes an early exit when the boosting sum
reaches a certain value whose sign cannot be altered by the remainingweak-learners.
Similarly, Zhou has proposed Fast exit method [35]. This line of methods utilises
so called a single path of varying length, while our tree method multiple paths of
different lengths (See Figure 19). The proposedmethod yields a more optimal speed
(see Section 4.2).

186 T.-K. Kim and R. Cipolla

x

x

(a) (b)

Fig. 19 Fast-exit vs super tree. Fast-exit methods have the structure of a single path of vary-
ing lengths (a), while our method yields the structure of multiple paths of different lengths (b).

The closest work to ours is Zhou’s [35]. He has introduced representation of a
boosting classifier by a Boolean table and implemented a binary decision tree [35].
His solution, however, is a brute force search for all possible tree configurations,
which is highly computationally-costly. It therefore affords to only about 5 and 10
weak-learners. The speed gain reported was not significant over a standard boosting
classifier and Fast exit method.
Tree-structured multiple boosting classifiers have been proposed for multi-pose

or multi-category detection problems. The common structure is a tree hierarchy each
path of which is a strong boosting classifier. Torralba et al. have proposed sharing
weak-learners among multiple boosting classifiers [4] for accelerating classification
speed. While Torralba’s method requires pre-defined sub-category labels, the meth-
ods in [14, 15, 16] automatically learn the sub-category labels for multiple boost-
ing classifiers in a tree. Whereas all these methods are useful for multiple boosting
classifiers, our work focuses on a single boosting classifier. A further conceptual
difference lies in that the previous studies [17, 14, 15, 16] present a novel way of
learning boosting classifiers and ours takes a boosting classifier learnt in a standard
way as input. We do not alter the decision regions of an input classifier but speed it
up.
Boolean expression minimisation is to minimize the number of terms and binary

variables in the Boolean expression. Algorithms for the minimisation have mainly
been studied in the circuit design [38]. Since circuits have strictly predefined spec-
ifications, exact minimization was the goal of most studies. The complexity of a
logic expression rises exponentially when the number of binary variables increases.
Therefore, conventional minimisation methods are limited to a small number of
binary variables, typically from a few to about 15 variables [38]. Boolean minimi-
sation has been also applied to size down a redundant decision tree, represented by
a Boolean table [39].

4.1 Conversion of a Boosting Classifier into a Tree

Both a boosting classifier and a decision tree are composed of weak-learners (or
called decision-stumps/split-nodes). Whereas a boosting classifier places decision

Multiple Classifier Boosting and Tree-Structured Classifiers 187

34 56791217

2739

54

74

7592

110
128
140152

163175
141153164

154
165176

184 4055

28

415642
57

1829
43587693

111

13
1930

44

597794
112129

142

6078

95

20
3145617980

96
1131304662

81
97114

810

14213247

63
8298

115

131

143
144155

48

64

2233

49
65

8399116117132

6684100118133
145156

166
177185

85
101119

102
120134

146157
16717815

23
3450

6724
35 3651

6886103121
135

147158
16817916918018612213669
87

104123

11
16

2537

52

70
88

105
124
137

148159170181187

7189106
125

26
3853

7290107
73

91

108
126

138
149

150160
171

182172
183
188 189

127
139151161173162174

109

Fig. 20 Decision regions. The decision regions of a boosting classifier (right) are smooth
compared to those of a conventional decision tree (left).

Super tree

rs12

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

Boosting classifier

APL: 20

weaklearners

6

8

11

16

13

2

2

3

2

1

4

7

Fig. 21 Converting a boosting classifier into a tree for speeding up. The proposed conversion
preserves the Boosting decision regions and has many short paths speeding up 5 times.

stumps in a flat structure, a decision tree has a deep and hierarchical structure (see
Figure 18(b) and 21). The different structures lead to different behaviours: Boosting
has a better generalisation via reasonably smooth decision regions. See Figure 20 for
the decision regions of the two methods. Here a part of negative (blue) data points
are scattered in the middle of positive (red) samples. Whereas a conventional deci-
sion tree forms complex decision regions trying classification of all training points,
a boosting classifier exhibits a reasonable smoothness in decision regions. We
propose a method to grow a tree from the decision regions of a boosting classifier.
As shown in Figure 21, the tree obtained, called super tree, preserves the Boosting
decision regions: it places a leaf node on every region that is important to form the
identical decision boundary (i.e., accuracy). In the mean time, Super tree has many
short paths that reduce the average number of weak-learners to use when classify-
ing a data point. In the example, super tree on average needs 3.8 weak-learners to
perform classification whereas the boosting classifier needs 20: all 20 weak-learners
are used for every point.

188 T.-K. Kim and R. Cipolla

4.1.1 Boolean Optimisation Formulation

A standard boosting classifier is typically represented by the weighted sum of binary
weak-learners as

H(x) =
m

∑
i=1

αihi(x), (13)

where αi is the weight and hi the i-th binary weak-learner in {−1,1}. The boosting
classifier splits a data space into 2m primitive regions by m binary weak-learners.
Regions Ri, i = 1, ...,2m are expressed as boolean codes (i.e., each weak-learner
hi corresponds to a binary variable wi). See Figure 22 for an example, where the
boolean table is comprised of 23 regions. The region class label c is determined by
Equation 13. Region R8 in the example does not occupy the 2D input space and thus
receives the don’t care label marked “x” being ignored when representing decision
regions. The region prior p(Ri) is introduced for data distribution as p(Ri) = Mi/M
where Mi and M are the number of data points in the i-th region and in total. The
decision regions of the boosting classifier are encoded by a set of regions repre-
sented as ⎧⎨

⎩
B(Ri) : boolean expression
c(Ri) : region class label
p(Ri) : region prior

(14)

With the region coding, an optimally short tree is defined in terms of average ex-
pected path length of data points as

T∗ =minT ∑
i

E(lT(Ri))p(Ri), (15)

where T denotes all possible configurations of a decision tree. E(lT(Ri)) is the ex-
pected path length of the i-th region in T. The path length is simply the number of
weak-learners (or split-nodes) on the path to the i-th region. The decision tree should
closely duplicate the decision regions of the boosting classifier as an optimisation
constraint: the regions that do not share the same class label c(Ri) must not be put
in the same leaf-node of the tree. Any regions of don’t care labels are allowed to be
merged with other regions for the shortest path possible.
The boolean expression for the table in Figure 22 can be minimised by optimally

joining the regions that share the same class label or don’t care label as

w1w2w3∨w1w2w3∨w1w2w3∨w1w2w3
−→ w1∨w1w2w3 (16)

where ∨ denotes OR operator. The minimised expression has a smaller number of
terms. Only the two terms, w1 and w1w2w3 are remained representing the joint
regions R5−R8 and R4 respectively. A short tree is then built from the minimised
boolean expression by placing more frequent variables at the top of the tree (see
Figure 22(right)). The method for Boolean expression minimisation is close, but not
suited to our problem that involves a large number of variables i.e., weak-learners.

Multiple Classifier Boosting and Tree-Structured Classifiers 189

W2

R3

R5

R6

R1

R2

R4R7

W1

0

0

0

1

1

1

W3

W1 W2 W3 C

R1 0 0 0 0

R2 0 0 1 0

R3 0 1 0 0

R4 0 1 1 1

R5 1 0 0 1

R6 1 0 1 1

R7 1 1 0 1

R8 1 1 1 x

0 1

0

0

1

1

W1

W2

W3

10

0

1

R4

R5,R6,R7,R8

R1,R2

R3

W1W2W3 v W1W2W3 v W1W2W3 v W1W2W3 W1 v W1W2W3

Fig. 22 Boolean expression minimisation for an optimally short tree. (a) A boosting classi-
fier splits a space by binary weak learners (left). The regions are represented by the boolean
table and the boolean expression is minimised (middle). An optimal short tree is built on the
minimum expression (right).

Furthermore, all regions are treated with equal importance in the kind of methods,
while an optimally short tree is learnt by considering data distribution i.e., region
prior in Equation 15.

4.1.2 Growing a Super Tree

We propose a novel boolean optimisation method for obtaining a reasonably short
tree for a large number of weak-learners of a boosting classifier. The classifier infor-
mation is efficiently packed by using the region coding and a tree is grown by max-
imising the region information gain. The base algorithm is explained here, see [46]
for its limitations and an improved method. The number of primitive regions 2m is
intractable when m is large. Regions Ri that are occupied by any training data points
are only taken as input s.t. p(Ri) > 0. The number of input regions is thus smaller
than the number of data points. Regions with no data points are labeled don’t care.
Huffman coding [40] is related to our optimisation. It minimises the weighted (by

region prior in our problem) path length of code (region). The technique works by
creating a binary tree of nodes by maximising the entropy-based information gain.
We similarly grow a tree based on the region information gain for an optimally short
tree. For a certain weak-learner wj, j = 1, ...,m, the regions in the left split and the
right split w.r.t. the weak-learner are readily given from the boolean expressions as

Rl = {Ri|B(Ri)∧w1 · · ·w j · · ·wm) = 0}
Rr = Rn \Rl

(17)

where Rn is the set of regions arriving at the node n and ∧ is AND operator. At each
node, it is found the weak-learner that maximises

Δ I =−∑Rl
p

∑Rn p
E(Rl)− ∑Rr p

∑Rn p
E(Rr) (18)

where p is the region prior and E is the entropy function of the region class distri-
bution, which is

190 T.-K. Kim and R. Cipolla

Algorithm: Growing a super tree

Input: a set of data point regions R encoded by {B,c, p}
Output: a decision tree

1.Start with a root node n = 1 containing the list of all regions Rn.
2.For i=1,...,m
3. Spit the node: (Rl ,Rr) = split(Rn,wi) by (17).
4. Compute the gain: Δ I = gain(Rl ,Rr) by (18).
5.Find w∗i that maximises the information gain.
6.If the gain is sufficient, save it as a split node. Else, save it as a leaf node.
7.Go to a child of split node and recurse the steps 2-6 setting Rn = Rl or Rr.

Fig. 23 Pseudocode of the algorithm.

Q(c∗) =∑
R∗c

p, where R∗c = {Ri|c(Ri) = c∗}. (19)

The node splitting is continued until all regions in a node have the coherent region la-
bel. The key ideas in the method have two-folds: 1) growing a tree from the decision
regions and 2) using the region prior (data distribution). Compared to conventional
decision trees built on data points, the proposed tree is grown upon smooth decision
regions, guaranteeing better generalisation. Using the region prior helps getting an
optimally short tree in the sense of average path length of data points. See Figure 23
for the pseudo-code of the proposed algorithm.

4.1.3 Cascade of Super Tree and Fast-Exit

Designing a cascade involves a number of parameters to set. The setting is more
difficult with more stages. Our solution explained in the previous section can be
seen as a convenient way of speeding up a boosting classifier up to several tens of
weak-learners without need of a multi-stage cascade. We use a two stage cascade to
cope with any larger number of weak-learners of a boosting classifier. It places the
super tree in the first stage and the fast-exit method in the second stage. The fast-
exit method, which yields the same accuracy as a boosting classifier of any number
of weak-learners, is required to meet the target accuracy of a cascade. We first de-
signed a two-stage cascade of standard boosting classifiers in a conventional way,
by varying the number of weak-learners (but limiting the number of weak-learners
of the first stage to less than a hundred) and the thresholds. Then, the two standard
boosting classifiers were replaced with the super-tree and the fast-exit method. The
proposed cascade significantly speeds up a two-stage cascade of standard boosting
classifiers and the same of the fast-exits at both stages, as well as a single boosting
classifier (see Section 4.2).

Multiple Classifier Boosting and Tree-Structured Classifiers 191

0 5 10 15 20 25 30 35 40
0

0.1

0.2

E
rr

o
r

ra
te

number of weaklearners
0 5 10 15 20 25 30 35 40

0

20

40

0 5 10 15 20 25 30 35 40

1
1.5
2
2.5

A
v

e
ra

g
e

p
a

th

le
n

g
th

Boosting error rate
Super tree error rate
Boosting path length
Super tree path length

Fig. 24 Experimental results on the synthetic data. Examples of 2D synthetic data sets (left).
Super tree obtains the same accuracy as the booting classifier significantly shortening the
average path length (right).

4.2 Experiments and Discussions

Classification of Synthetic 2D Data

We have made twelve 2D synthetic data sets. Data points of two classes were gen-
erated from Gaussian mixtures as exemplified in Figure 24. The six test sets were
created by randomly perturbing the train sets. We have compared the two methods
here: a boosting classifier (AnyBoost implementation [9]) and the proposed tree us-
ing the data point regions. Vertical and horizontal lines are weak-learners of boost-
ing. Figure 24(right) shows the results. The left and right y-axis in the graph show
the classification error rate and the average path length i.e., number of weak-learners
used per point respectively. Note first that the both methods do drop the error rate
when the number of weak-learners is increased indicating good generalisation. The
proposed method exhibited the same accuracy as the boosting classifier for all num-
ber of weak-learners. While the boosting classifier linearly increased the average
path length for the number of weak-learners, the proposed method quickly con-
verged significantly reducing down the average path length. At 40 weak-learners,
the super tree speeds up the boosting classifier by 16 times.

Object Detection

For training, we used the MPEG-7 face data set [41] that has 11,845 face images
collected from a few public face data sets such as Yale and XM2VTS, and non-
public face data sets. BANCA face set (520 faces) and Caltech background image
sets (900 images) were exploited for bootstrapping. The total number of negative-
class images for training, which were either bootstrapped or randomly drawn, is
50,128. We used 21,780 Haar-like features on integral images as weak-learners.
We have tested on the MIT+CMU frontal face test set [12] which consists of 130
images with 507 labeled frontal faces. The 507 face and 57000 random image
patches were cropped and resized into 24x24 images. Example images are shown in

192 T.-K. Kim and R. Cipolla

MPEG-7 face data Caltech background dataset

BANCA
face set

MIT+CMU face test setHaar-like features

Fig. 25 Example features (weak-learners) and face images used.

No. of
weak

learners

Boosting Fast exit (cascade) Super tree (cascade)

False
positives

False
negatives

Average
path length

False
positives

False
negatives

Average path
length

False
positives

False
negatives

Average
path length

20 501 120 20 501 120 11.70 476 122 7.51

40 264 126 40 264 126 23.26 231 127 12.23

60 222 143 60 222 143 37.24 212 142 14.38

100 148 146 100 148 (144) 146 (149) 69.28 (37.4) (145) (152) (15.1)

200 120 143 200 120 (146) 143 (148) 146.19 (38.1) (128) (146) (15.8)

Fig. 26 Experimental results on the face images. The numbers in the the brackets are for the
two-stage cascades.

Figure 25. The methods compared include a standard boosting classifier, Fast exit,
the cascade of two Fast exits, Super tree and the two-stage cascade of Super tree
and Fast-exit. For the super tree, we used the extended regions [46]. Fixing the ac-
curacy at 0 threshold, we have compared the average path lengths of the methods
in Figure 26. For all different numbers of weak-learners, the super tree significantly
reduces the average path length of the boosting classifier and the fast exit. The two-
stage cascade solution of 60 weak-learner super tree and 200 weak-learner fast exit
speeded up the standard boosting by 6.6-12.7 times and even the two-stage cas-
cade of 60 and 200 weak-learner fast exits by 2.5 times. Note that the super tree
exploits various combinations of weak-learners (i.e., paths) for an optimal classifi-
cation speed, whereas the fast exit takes the combinations always in the order of the
weak-learner weights. One can also compare the results of [35] with ours using the
standard boosting and the fast-exit as proxies. Whereas the solution in [35] didn’t
gain much over the boosting and the fast exit method, ours significantly improved
the both. More importantly, the method [35] has been tested only for 5 or 10 weak
learners whereas our method in a single stage is conveniently scalable up to several
tens of weak learners.
Single conventional decision trees of various pruning [37] were very poor. The

best accuracy among those of the different pruned trees (false positives: 1995/false
negatives: 120) is by far worse than that of the super tree of 20 weak-learners (false
positives: 476/false negatives: 122). The super tree was even shorter than the de-
cision tree: the depth of the super tree and conventional tree was about 7.5 and 9
respectively.

Multiple Classifier Boosting and Tree-Structured Classifiers 193

Fig. 27 Segmentation results. Pixels classified into the building class by Super tree (or Boost-
ing) are shown by a darker hue.

Although the comparison has been made on the two-stage cascades, the proposed
method affords a speed up over a standardmulti-stage boosting cascade by replacing
each stage of a boosting classifier in the cascade with a Super Tree. The speed gains
over the different numbers of weak-learners in a single stage boosting classifier are
reported in Figure 26. In the other sense, the proposed method can be seen as a
convenient way of obtaining the comparable speed-up to a multi-stage cascade by
the single super tree (or the proposed two-stage cascade).

Segmentation by pixel-wise classification

The car driving sequences [42] were exploited for the experiment. Boosting classi-
fier and super tree were trained for the binary problem for the building class against
non-building class. 1323 DCT features were drawn from 21x21 RGB image patch
as weak-learners. The train set consisted of 7143 positive and 23217 negative pix-
els from 184 images of 11x15 pixel resolution. Randomisation in learning (simi-
larly to [45]) reduced the train time of the boosting classifier. The test set contained
38445 points from 233 images. The correct recognition rate of Boosting of 40 weak-
learners was 0.71 (as global accuracy) or 0.736 (as average class accuracy). The
super tree learnt by 10 extended regions per region obtained the close accuracy as
0.70 (as global accuracy) or 0.728 (as average class accuracy) using only 15 weak-
learners on average. The accuracy obtained seems comparable to [42]. Figure 27
shows the segmentation results. The blocky effect was due to the low pixel image
resolution used.

Discussions

We have proposed a novel way to speed up a boosting classifier. The problem is
formularised as boolean optimisation and a new optimisation method is proposed
for a large number of weak-learners. The tree grown from the decision regions of a
boosting classifier, called Super tree, provides many short paths and preserves the

194 T.-K. Kim and R. Cipolla

Boosting decision regions. The single super tree delivers the close accuracy to a
boosting classifier with a great speed-up for up to several tens of weak-learners. The
proposed two stage cascade allows any number of weak-learners. Experiments have
shown that the tree obtained is reasonably short in terms of average path length
outperforming a standard boosting classifier, fast exit, their cascade. The method
has been also demonstrated for segmentation problems.

5 Summary and Conclusion

We have formulated a novel discriminative co-clustering problem of images and
features, and have presented the solution called MCBoost by simultaneously learn-
ing multiple boosting classifiers. Each boosting classifier in the method cooperates
and competes with others, taking expertise on a subset of images. The method has
been shown to yield meaningful co-clusters of images and features, significantly
outperforming the conventional designs of single or multiple boosting classifiers.
The MCBoost method has been extended into a online version with a soft parti-

tioning of the input space for object tracking. It incorporated a weighting function
Q, which ensures that coherent clusters are formed, in the MCBoost framework.
Whereas existing single classifier trackers tend to adapt to a single appearancemode,
forgetting previous modes, the method called MCBQ allows tracking during rapid
pose changes, since it captures multiple appearances. The method can also be seen
as a multi-class extension of the MIL tracker [22].
Lastly, we have proposed a novel way to convert a standard boosting classifier

into a decision tree for speeding up. The conversion problem is formularised as
boolean optimisation and a new optimisation method is proposed for a large number
of weak-learners. The tree grown from the decision regions of a boosting classifier,
called Super tree, provides many short paths (i.e., speeding up the evaluation time)
and preserves the Boosting decision regions (i.e., the same accuracy). In the ex-
periments, the super tree outperformed a standard boosting classifier, fast exit, their
cascade in speed, delivering the same accuracy to that of an input boosting classifier.
Many visual recognition problems are formulated as classification problems of

image sub-windows. Every possible sub-window, across pixels and scales, is evalu-
ated to decide whether it contains an object of interest or not. The number of sub-
windows is often massive, requiring the evaluation of each sub-window in a very
fast manner. This study has presented required efficient classification methods. We
began with a standard boosting method and have introduced largely three exten-
sions of it to improve the performance in both accuracy and time. Major issues for
future work include a more principled way to select the number of boosting classi-
fiers in MCBoost and to form a forest of Super Trees by randomisation (similarity
to Random Forests [36]). See also the discussions of each section.

Acknowledgements. Section2, Section 3 and Section 4 have been compiled from the au-
thors’ previous publications [31, 34] and [46] respectively.

Multiple Classifier Boosting and Tree-Structured Classifiers 195

References

1. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proc.
ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pp. 89–98 (2003)

2. Jordan, M.I., Jacobs, R.A.: Hierarchical mixture of experts and the EM algorithm. Neural
Computation 6(2), 181–214 (1994)

3. Viola, P., Jones, M.: Robust real-time object detection. Int’l J. Computer Vision 57(2),
137–154 (2002)

4. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and
multiview object detection. IEEE Trans. on PAMI 29(5), 854–869 (2007)

5. Viola, P., Platt, J.C., Zhang, C.: Multiple Instance Boosting for Object Detection. In:
Proc. Advances in Neural Information Processing Systems, pp. 1417–1426 (2006)

6. Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. on
PAMI 26(9), 1112–1123 (2004)

7. Sochman, J., Matas, J.: Waldboost - learning for time constrained sequential detection.
Proc. CVPR 2, 150–157 (June 2005)

8. Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)
9. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent.
In: Proc. Advances in Neural Information Processing Systems, pp. 512–518 (2000)

10. Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression Database.
IEEE Trans. on PAMI 25(12), 1615–1618 (2003)

11. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc.
CVPR, pp. 886–893 (2005)

12. Rowley, H.A., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE
Trans. on PAMI 20(1), 23–38 (1998)

13. Schneiderman, H., Kanade, T.: A Statistical Model for 3D Object Detection Applied to
Faces and Cars. In: Proc. CVPR (June 2000)

14. Wu, B., Nevatia, R.: Cluster Boosted Tree Classifier for Multi-View, Multi-Pose Object
Detection. In: Proc. ICCV (2007)

15. Huang, C., Ai, H., Li, Y., Lao, S.: Vector Boosting for Rotation Invariant Multi-View
Face Detection. In: Proc. ICCV (2005)

16. Tu, Z.: Probabilistic Boosting-Tree: Learning Discriminative Models for Classification,
Recognition, and Clustering. In: Proc. ICCV (2005)

17. Grossmann, E.: AdaTree: boosting a weak classifier into a decision tree. In: IEEE Work-
shop on Learning in Computer Vision and Pattern Recognition, p. 105 (2004)

18. Babenko, B., Dollár, P., Tu, Z., Belongie, S.: Simultaneous learning and alignment:
Multi-instance and multi-pose learning. In: ECCV Workshop on Faces in Real-Life Im-
ages (2008)

19. Wojek, C., Walk, S., Schiele, B.: Multi-Cue Onboard Pedestrian Detection. In: Proc.
CVPR (2009)

20. Pham, M.T., Cham, T.J.: Fast training and selection of Haar features using statistics in
boosting-based face detection. In: Proc. ICCV (2007)

21. Avidan, S.: Ensemble tracking. IEEE Trans. PAMI 29(2), 261–271 (2007)
22. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance

learning. In: Proc. CVPR, Miami, FL (June 2009)
23. Black, M.J., Jepson, A.: Eigentracking: Robust Matching and Tracking of Articulated

Objects Using a View-Based Representation. In: Buxton, B.F., Cipolla, R. (eds.) ECCV
1996. LNCS, vol. 1064, pp. 329–342. Springer, Heidelberg (1996)

24. Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features.
IEEE Trans. on PAMI 27(10), 1631–1643 (2005)

25. Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an
application to boosting. J. of Computer and System Sciences 55(1), 119–139 (1997)

26. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–
267 (2006)

196 T.-K. Kim and R. Cipolla

27. Grabner, H., Leistner, C., Bischof, H.: Semi-Supervised On-line Boosting for Robust
Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS,
vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

28. Hall, P., Marshall, D., Martin, R.: Merging and splitting eigenspace models. IEEE Trans.
on PAMI 22(9), 1042–1049 (2000)

29. Jebara, T., Pentland, A.: Parameterized structure from motion for 3d adaptive feedback
tracking of faces. In: Proc. CVPR, pp. 144–150 (June 1997)

30. Jones, M., Viola, P.: Fast multi-view face detection. Technical Report 96, MERL (2003)
31. Kim, T.-K., Cipolla, R.: MCBoost: Multiple classifier boosting for perceptual co-

clustering of images and visual features. In: Proc. Advances in Neural Information Pro-
cessing Systems, Vancouver, Canada (December 2008)

32. Lee, K.-C., Ho, J., Yang, M.-H., Kriegman, D.: Visual tracking and recognition using
probabilistic appearance manifolds. Computer Vision and Image Understanding 99(3),
303–331 (2005)

33. Avidan, S.: SpatialBoost: Adding Spatial Reasoning to AdaBoost. In: Leonardis, A.,
Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 386–396. Springer, Hei-
delberg (2006)

34. Kim, T.-K., Woodley, T., Stenger, B., Cipolla, R.: Online Multiple Classifier Boosting for
Object Tracking. In: Proc. of IEEE CVPR Workshop on Online Learning for Computer
Vision, San Francisco, USA (June 2010)

35. Zhou, S.: A binary decision tree implementation of a boosted strong classifier. In: IEEE
Workshop on Analysis and Modeling of Faces and Gestures, pp. 198–212 (2005)

36. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
37. Quinlan, J.: Bagging, boosting, and c4.5. In: Proc. National. Conf. on Artificial Intelli-

gence, pp. 725–730 (1996)
38. Schwender, H.: Minimization of Boolean Expressions Using Matrix Algebra, Technical

report, Collaborative Research Center SFB 475. University of Dortmund (2007)
39. Chen, J.: Application of Boolean expression minimization to learning via hierarchical

generalization. In: Proc. ACM Symposium on Applied Computing, pp. 303–307 (1994)
40. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press

and McGraw-Hill (2001)
41. Kim, T.-K., Kim, H., Hwang, W., Kittler, J.: Component-based LDA Face Description

for Image Retrieval and MPEG-7 Standardisation. Image and Vision Computing 23(7),
631–642 (2005)

42. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and Recognition Us-
ing Structure from Motion Point Clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008)

43. Basak, J.: Online adaptive decision trees. Journal of Neural Computation 16, 1959–1981
(2004)

44. Yeh, T., Lee, J., Darrell, T.: Adaptive Vocabulary Forests for Dynamic Indexing and
Category Learning. In: Proc. ICCV (2007)

45. Rahimi, A., Recht, B.: Random Kitchen Sinks: Replacing Optimization with Random-
ization in Learning. In: Proc. Neural Information Processing Systems (2008)

46. Kim, T.-K., Budvytis, I., Cipolla, R.: Making a Shallow Network Deep: Growing a Tree
from Decision Regions of a Boosting Classifier. In: Proc. of British Machine Vision
Conference, Aberystwyth, UK (2010)

