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Abstract. This chapter presents a method for vote-based 3D shape recognition and
registration, in particular using mean shift on 3D pose votes in the space of direct
similarity transformations for the first time. We introduce a new distance between
poses in this space—the SRT distance. It is left-invariant, unlike Euclidean distance,
and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast
to compute. We demonstrate improved performance over the state of the art in both
recognition and registration on a (real and) challenging dataset, by comparing our
distance with others in a mean shift framework, as well as with the commonly used
Hough voting approach.

1 Introduction

This chapter concerns itself with vote-based pose estimation techniques. These arise
in many vision tasks including 2D object detection [21, 28, 37], motion segmenta-
tion [39, 40], and 3D shape registration and recognition [11, 20, 41]. These methods
all share a common two stage framework: First they generate an empirical distribu-
tion of pose through the collation of a set of possible poses, or votes. The votes are
often computed by matching local features from a test object to those in a library
with known pose [11, 20, 21, 28, 37, 39, 40, 41], or by learning a function that maps
features to votes [16, 29]. The second step is then to find one or more “best” poses in
the distribution (the maxima, in the case of ML/MAP estimation). This curation of
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Fig. 1 Our System. for 3D-shape-based object recognition and registration. (a) Real object,
fabricated from a CAD model. (b) Point cloud extracted using a multi-view stereo (MVS)
system. (c) Iso-surfaces of the scalar volume computed from the points. (d) Features (with
full scale, rotation and translation pose) detected in the volume. (e) Votes for the object centre,
based on detected features matched with a library of learnt features. (f) Local modes of the
votes. (g) The registered CAD model.

data prior to inference makes such vote-based approaches more efficient and robust
than competing techniques, e.g., global or appearance-based methods [26].
Two compelling methods in finding best poses are Hough voting and mean shift.

In Hough voting the standard approach is to compute the probabilities on a regular
grid over the pose parameter space. This discretization leads to loss of accuracy, as
well as a complexity exponential in the pose dimensionality, but ensures coverage of
the entire space. Mean shift [9] iteratively finds local maxima of probability, result-
ing in initialization issues but also high accuracy. The complexity of an iteration is
usually linear in the pose dimensionality. The two methods are therefore somewhat
complementary; indeed they are often used together [21, 28].
While Hough voting can be easily applied to any space (in our case that of

all poses), this is not straightforward for mean shift; each iteration requires the
computation of a weighted average of input votes, formulated as a least squares
minimization of distances from input votes to the mean. In Euclidean space this
minimization yields a unique, closed-form solution—the arithmetic mean. When
poses lie on a non-linear manifold this mean is typically outside the manifold,
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requiring a projection onto it. A more direct approach is to minimize the geodesic
arclengths over the manifold, known as the Riemannian distance.
In this chapter we focus on 3D shape recognition and registration, as part of a

system (see Fig. 1) for recognizing industrial parts. However, unlike existing ap-
proaches, where objects of interest are of either fixed (or omitted) scale [40] or
rotation [21, 28, 37], here we recognize and register objects in the direct similarity
group: the group of isotropic similarity transformations parameterized by transla-
tion, rotation and scale [36]. Scale is necessary when the input data’s scale is un-
known, or when there is high intra-class scale variation. Rotation is necessary for
full registration, leading to more accurate recognition. The resulting 7D pose space
is currently too large to apply Hough voting to in practice [19]. Here we use mean
shift, for which scale and rotation also introduce problems using existing distances:
Euclidean distance is scale variant, and the induced mean of poses has a bias in
scale. The mean of poses using Riemannian distance has no closed-form solution,
even when the poses are pure rotations [25], and is slow to compute [38].
The contribution of this work is to introduce a new distance on the direct sim-

ilarity group. The distance provides scale, rotation and translation-invariance con-
comitantly. The weighted mean of this distance is unique, closed-form, and fast
to compute, as well as having several key properties discussed in Sect. 2.4.3. We
demonstrate the distance’s performance in mean shift, in the context of our 3D shape
registration and recognition system, comparing it with other distances on the same
space, as well as a Hough voting method.
The chapter is laid out as follows: The next section reviews the literature relevant

to 3D shape recognition and registration inference, as well as how our method is
positioned compared to existing approaches. In the following section, we introduce
our new distance on the direct similarity group, and its associated mean. In the final
two sections, we present our experiments, before concluding.

2 Background

We start with discussing two main trends in the literature: global approaches versus
local approaches, in which our method belongs to the latter. We then review how a
local appearancemodel is learned and used for generating votes from features in local
approaches. Our method extracts features using the standardDifference-of-Gaussian
(DoG) operator and matches features between the scene and the model to generate
votes. In the last part of the section, we review the inference techniques used for
vote-based pose estimation, and take a closer look at mean shift applied to this task.

2.1 Global Approaches vs. Local Approaches

Recognizing and registering rigid objects from 3D point clouds is a well-known
problem in computer vision [6, 22, 23]. Often, the 3D point clouds obtained by
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different sensors such as laser scans, time-of-flight cameras, or stereo systems [43]
contain small, irrelevant, neighbouring clutter in addition to the relevant data coming
from the objects.In most cases, the relevant data themselves do not capture full
shapes. Two main approaches to solve the problem are: global approaches and local
approaches. Global approaches recognize objects by relying on global features, i.e.,
features extracted from the complete 3D geometry of the point cloud. Examples
include spherical harmonics [18, 35], shape moments [35], and shape histograms
[29]. It is difficult to handle partial shapes using these approaches, since global
features are sensitive to both absence of shape parts and occurrence of clutter.
Recent works in 2D object detection and object class categorization [21, 28] have

shown the advantage of using local, rather than global, features in dealing with oc-
clusions and clutter. In 3D, similar success stories have been reported with methods
using local features [8, 15, 17, 20, 24, 41]. These approaches can integrate informa-
tion from a large number of object parts. They demonstrate good generalization as
they are free to combine parts observed on different training examples. Spin Images
by Johnson and Hebert [17] is arguably the most popular early work, in which local
3D descriptions are represented as 2D histograms of points falling within a cylin-
drical region by means of a plane that “spins” around the normal, and recognition is
done by matching spin images, grouping similar matches and verifying each output
pose. Many local features and descriptors have been proposed thereafter, with new
ones being more discriminative, more repeatable, more robust to noise and more
invariant to local rigid transformations. Chen and Bhanu [8] compute histograms
of normals and shape indices for describing local regions. The 3D Shape Context
of Frome etal. [15] extends Spin Images’ basic idea to computing 3D histograms
of points within a sphere around a feature point. Mian etal. [24] accumulate 3D
histograms of mesh triangles within a cubic support. Rusu etal. [34] propose Point
Feature Histograms describing the local geometry of a point and its k nearest neigh-
bours. Knopp etal. [20] extend the SURF descriptor from 2D to 3D and show how
3D shape recognition can be improved by a Hough-transform based approach. Pe-
trelli and Di Stefano [33] improve the repeatability of local reference frames via
point normals. Surveys of local features and descriptors 3D methods are available
in [6, 22, 23].
Many of these approaches share a common vote-based framework. They first

learn a local appearancemodel for the object classes to be recognized and registered,
which maps, either directly or indirectly, features to ground truth object identities
and poses. During inference, features from the scene point cloud are extracted. Via
the local appearance model, each of these features generates one or more votes, rep-
resenting hypotheses that an object of a given pose exists. The votes can be viewed
as points of a kernel density estimator that estimates the joint probability density
function of both object identity and pose. Local modes of the kernel density func-
tion are found via a suitable mode-seeking approach, and returned as final object
identities and poses. Methods such as Iterative Closest Point [5] and variants, are
able to further refine the output poses, if necessary.
Following these approaches, we use the standard vote-based framework in our

3D recognition and registration. However, our approach differs from existing
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approaches in that we infer simultaneously scale, rotation and translation in 3D.
Due to the introduction of scale, the pose space becomes too large (7D) for exist-
ing Hough transform-based approaches to work with, while existing mode-seeking
methods like mean shift have bias in scale, as to be seen in the following sections.

2.2 Learning a Local Appearance Model

2.2.1 Feature Extraction

Salient interest regions are extracted over location and scale from a variety of point
cloud instances of objects of the same class (in our case 20 point cloud instances
per class) using 3D interest point detectors like 3D SURF [20]. For each interest
region, i.e., a sphere centered at c with radius r, a 3D canonical orientation based
on the geometry of the points inside the region is computed, for example by finding
the principal directions of the points using PCA [24], or by fitting a local surface
and then finding most repeatable directions on the surface from the center of the
sphere [33]. A local reference frame is created as a result, hereinafter feature frame,
originating at c, with one unit length equal to r, and with 3D orientation coinciding
with the 3D canonical orientation. The feature frame is specified uniquely by a 3D
direct similarity transformation F ∈ S+(3) [36],

F =

[
s(F)R(F) t(F)

0T 1

]
, (1)

which converts the coordinates of a 3D point from the global coordinate system to
the feature frame. Here, s(F) ∈ R

+, R(F) ∈ SO(3,R) , and t(F) ∈ R
3 specify the

scale, rotation, and translation components of F, respectively. A low-dimensional
feature descriptor d ∈R

k (for some positive integer number k) is extracted based on
the distribution of the coordinates of the points inside the region with respect to F.
Each point cloud instance is associated with a local reference frame specifying

the ground truth pose of the object captured in the point cloud, hereinafter object
frame. Unlike most existing 3D approaches where an object pose specifies trans-
lation only [41], translation and scale [20], or translation and rotation [13], in our
system an object pose specifies scale and rotation and translation altogether, hence
dealing with a larger pose space than existing works. Here we treat scale as part of
an object pose and choose an object frame originating at the center location of the
object, with 3D orientation the same as the object’s orientation, and with one unit
length equal to the object scale. Analogously to the feature frames, an object frame
is specified uniquely by 3D direct similarity transformation X ∈ S+(3),

X =

[
s(X)R(X) t(X)

0T 1

]
, (2)



142 M.-T. Pham et al.

Fig. 2 Effects of translation, rotation, and scale in transforming the pose of an object.

converting the coordinates of a 3D point from the global coordinate system to the
object frame. Since object frame and object pose are equivalent terms, from here
onwards they are used interchangeably.
An training feature consisting of a feature descriptor d, an object class identity

j ∈ {1, ..,J} (where J is the number of classes), and a feature-to-object transforma-
tion T = XF−1 is formed for each detected interest region. Note that although both
matrices F and X are computed from the global coordinate system, since the feature
frame is covariant to the object pose, the resultant feature-to-object transformation
T solely depends on the shape of the object. In other words, it is pose-invariant.
The collection of all training features extracted from every object class, denoted

as em = (dm, jm,Tm = XmF−1m ) for m ∈ {1, ..,M} whereM is the number of training
features, can be viewed as the local appearance model of the object classes.

2.2.2 Learning the Feature-to-Vote Mapping

Existing approaches differ in how the votes are generated from features extracted
from the scene, hereinafter scene features. There are three main approaches: (1)
direct matching of scene features with training features, (2) unsupervised clustering
of training features into visual words followed by matching of scene features with
visual words, and (3) supervised learning to directly map each scene feature to one
or more votes.
In approaches that match scene features with training features directly, all the

training features are kept as a library of exemplars. Hence, the cost for training is
very low. During inference, each scene feature f = (d

′
,F

′
) (with descriptor d

′
and

feature frame F
′
) is matched with every exemplar in the library and each match

generates a vote. In Tombari and Di Stefano’s work [41], matching of f with an
exemplar em is done by thresholding the Euclidean distance ‖dm−d′‖ with a prede-
fined threshold ε . If it is a match, i.e., ‖dm−d′‖< ε , a vote for an object of class jm
at pose TmF

′
is generated. Drost etal. [11] use hashing to match a feature descriptor

with model descriptors instead. A vote may optionally have a weight to reflect the
relative matching score and other prior probabilities, as shown in, for instance, the
work of Knopp etal. [20]. It makes sense to use TmF

′
to predict the object pose,
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since if we transform the object specified by em, albeit unknown, so that the feature
used for the construction of em aligns perfectly with f , i.e., Fm = F

′
, the transformed

object pose must be TmF
′
.

Since matching every scene feature with every training feature is a time-costly
process, it may be beneficial to group training features of similar descriptors coming
from the same class into a visual word using an unsupervised clustering approach
[20, 21]. Such a strategy would reduce the number of exemplars in the library, hence
increasing the matching efficiency. However, the sizes of the clusters must be chosen
carefully, or the false positive rate may increase [21, 41].
In 2D object recognition, the idea of grouping training features of similar appear-

ances is advanced further, by using discriminative and supervised clustering rather
than unsupervised clustering, allowing one to optimize the visual words to produce
more reliable votes in the vote space. Gall and Lempitsky [16] train a Hough forest
that maps a feature directly to multiple votes. However, each node of their Hough
tree is trained to either minimize the class uncertainty or the pose uncertainty. Okada
[27] instead introduces a combined objective function for training a node. Both
methods have shown significant improvements over the unsupervised approach of
Leibe etal. [21].
It would be tempting to apply this idea to 3D. However, an immediate challenge

is how to model uncertainty of a set of 3D poses. In 2D, Gall and Lempitsky work
with 2D center points, and Okada works with 2D points plus scale, the variance
of which is sufficient to model the uncertainty. In our case, the existence of both
3D rotation and scale makes the pose space a non-linear manifold. Any uncertainty
measurement based on the notion of Euclidean distance, including variance, would
have a bias in scale, as to be discussed in Sect. 2.4.1.
In our approach, we use a standard feature extraction process, as described in

Sect. 4. Similar to Tombari and Di Stefano [41], we use the dataset of training fea-
tures as the local appearance model without clustering them into visual words. As
the scope of this work is to introduce a distance that is efficient and more impor-
tantly, unbiased by scale, the task of modeling pose uncertainty, and subsequently
supervised learning of visual words, is left for future work.

2.3 Finding Local Modes in the Vote Space

The inference stage involves the computation of local maxima of the joint kernel
density function p( j,X) of object identity j ∈ {1, ..,J} and pose X ∈ S+(3) repre-
sented by a set of (weighted) votes generated from an input point cloud. Since j
is a discrete variable, we can search for local maxima in each of the J conditional
distributions p(X| j) instead. Without loss of generality, let us assume the form of
p(X| j) as:

p(X| j) =
Nj

∑
i=1

λiH(X,Xi) (3)
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Table 1 Methods of pose estimation over different transformations. t: translation;R: rotation;
s: scale. *Indicates 2D space.

t t, s t, R t, R, s

Hough [41] [20] [13] [19]
Mean shift – [21, 28, 37]* [40] [39]*, This work

where Nj denotes the number of votes for class j, H(·, ·) denotes a kernel function,
and with respect to the ith vote for class j, λi ≥ 0 denotes the weight and Xi ∈ S+(3)
denotes the predicted pose. Here, the weights are normalized, i.e., ∑i λi = 1, so
that p(X| j) is a proper probability density function. Although we are concerned
with 3D transformations, the discussion in the remainder of the chapter assumes
n-dimensional transformations for an arbitrary n > 0.
Twomain techniques for findingmodes of p(X| j) are Hough voting (an extension

of the Generalized Hough Transform [4]) and mean shift [9].
In Hough voting, the input space is partitioned into a finite number of L bins,

i.e., S+(n) =
⋃L

l=1Bl where Bi ∩B j = /0 for all i �= j. For each bin Bl , the weights
of the votes with poses belonging to Bl are summed up. Modes are found by re-
turning bins with largest sums of weights. Using Hough voting, Khoshelham [19]
quantizes the 7D space of 3D translation, rotation and scale for object registration.
This creates a trade-off between pose accuracy and computational requirements,
the latter proving to be costly. Other methods seek to reduce this complexity by
shrinking the pose space and marginalizing over some parameters. Fisher etal. [13]
quantize translations and rotations in two separate 3D arrays; peak entries in both
arrays indicate the pose of the object, but multiple objects create ambiguities. Knopp
etal. [20] show effective object recognition using Hough voting over 3D translation
and scale. Tombari and Di Stefano [41] first compute Hough votes over translation,
assuming known scale in their 3D object recognition and registration application,
then determine rotation by averaging the rotations at each mode. Geometric hash-
ing [11, 24] is a similar technique to Hough voting which reparameterizes pose in
a lower dimensional space before clustering. However, all these dimensionality re-
duction techniques lead to an increased chance of false positive detections. Another
issue with Hough voting is that it returns bins, not poses, as output. One still needs a
way to select the best pose, or to compute a representative pose, for each output bin.
Mean shift avoids the trade-off suffered by Hough voting methods, being both

accurate and having lower (usually1 linear) complexity in the pose dimensional-
ity, making it suitable for inference in the full 7D pose space of the direct similarity
group in 3D. To date it has been used in 2D applications: object detection over trans-
lation and scale [21, 28, 37], and motion segmentation over affine transformations
[40], as well as in 3D for motion segmentation over translation and rotation [39].
Mean shift relies on a kernel function typically in the form,

1 Certain distance computations are not linear, e.g., that of Sect. 2.4.2.
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H(X,Xi) =
1
ζ

K(d2(X,Xi)), (4)

where d(·, ·) is a distance function and K(·) is a non-negative non-increasing uni-
variate function, and ζ is a normalization factor so thatH(·,Xi) is a proper probabil-
ity density function. Choosing the distance function d(·, ·), is crucial for mean shift
as it directly changes the locations and the number of the output modes. On non-
Euclidean spaces, even the Euclidean distance yields undesired behaviours as to be
shown in Sect. 2.4. This is the first contribution we know of to apply mean shift
to a 3D application using translation, rotation and scale simultaneously. A reason
this has not done before could be the problems associated with computing means
using existing Euclidean and Riemannian distances in the direct similarity group
S+(n). We now review mean shift in more details and discuss distance functions in
this space. In what follows, we omit index j since it is clear from the context that j
is given.

Algorithm 1.Mean shift [9] (for notation see text)

Require: X = {Xi,λi}N
i=1, distance function d(·, ·)

1: Initialize X
2: repeat
3: Xold := X
4: wi := λiK(d2(X,Xi)) ∀i = 1, ..,N
5: X := argminX ∑i wid2(X,Xi)
6: until d(Xold,X)< ε
7: return X

2.4 Mean Shift

The mean shift algorithm [9] (Algorithm 1) is a popular algorithm for finding local
modes by coordinate ascent in kernel density estimation. Given a distance function
d(·, ·) on the input space, the kernel density estimator is given by

f̂K(X) =
N

∑
i=1

1
ζ

λiK(d2(X,Xi)), (5)

whereX is the random variable,X = {Xi,λi}N
i=1 is a set of input points with weights

λi ≥ 0, K(·)≥ 0 is a kernel function, and ζ is a volume density function which nor-
malizes K(d2(·,Xi)). The most common (and our) choice for K(·) is the Gaussian
kernel, exp

(
− ·
2σ2

)
, where σ is the bandwidth of the kernel. On Euclidean spaces

a natural choice for d() is the Euclidean distance, dE(); e.g., if X and Y are matri-
ces, dE(X,Y) = ‖X−Y‖F where ‖·‖F is the Frobenius norm. Under the Euclidean
distance, the solution of step 5 in Algorithm 1,
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Fig. 3 Scale bias of the extrinsic mean. Let us consider S+(2) (without translation): on a
plane, a rotation can be represented as a point on a circle, the radius being the scale. Left: with
rotation only, the arithmetic mean ofA and B leads to a smaller scale but the reprojection onto
the manifold (i.e., the unit circle) gives a reasonable result. Right: with rotation and scale, the
mean is already on the manifold, but with a smaller scale.

μ(X ) = argmin
X

∑
i

wid
2(X,Xi), (6)

also known in the literature as a Fréchet mean [14], becomes an arithmetic mean,
i.e., μ(X ) = ∑i wiXi

∑i wi
.

In pose estimation, votes are represented by linear transformations which form a
matrix Lie group. This chapter is concernedwith the direct similarity group S+(n)⊂
GL(n+1,R), which is the set of all affine transformation matricesX∈ S+(n) acting
on Rn preserving angles and orientations [36]. When applying mean shift on a ma-
trix Lie group, the choice of d() is crucial since it affects both the computation of
weights and the mean (steps 4 & 5 of Algorithm 1). Two well-known distances arise
in the literature: Euclidean and Riemannian. We now review how existing methods
utilize these distances in mean shift on matrix Lie groups.

2.4.1 Euclidean Distance

Given a matrix Lie group G ⊂ GL(n,R), since GL(n,R) ⊂ R
n2 (up to an isomor-

phism), the most straightforward way to apply mean shift on G is to run Euclidean
mean shift on Rn2 instead. However, at each iteration the arithmetic mean may not
lie in G. It is therefore projected back to G via the mapping:

π :Rn2 →G : π(X) = argmin
Y∈G

‖Y−X‖2F . (7)

The projected arithmetic mean, μ(X ) = π
(

∑i wiXi
∑i wi

)
, is referred to in the literature

as the extrinsic mean [25, 38].
Mean shift using Euclidean distance (extrinsic mean shift) has shown good re-

sults on Stiefel and Grassmann manifolds [7]. However, there are two drawbacks
with extrinsic mean shift applied to S+(n). First, dE() is invariant to rotation and
translation but not to scaling, making the weights, wi, computed by mean shift scale
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Fig. 4 The intrinsic mean. Three poses in S+(3) (with different scales, rotations and transla-
tions) and their intrinsic mean (pink). The geodesics between the mean and input poses are
also drawn. Note that the shortest distance between two transformations is not necessarily a
straight line in terms of translation.

variant. Thus, although the extrinsic mean is scale-covariant,2 extrinsic mean shift is
not. Second, the extrinsic mean of rotation and scale transformations causes a bias
towards smaller scales, as illustrated in Fig. 3.

2.4.2 Riemannian Distance

An alternative choice for d() is the Riemannian distance. dR(). GivenX,Y ∈ S+(n),
dR(X,Y) is defined as the arclength of the geodesic betweenX andY, i.e., the short-
est curve along the manifold connecting X and Y (see Fig. 4). In general dR (X,Y)
is difficult to compute, but if Y is located within the open neighbourhood bounded
by the cut locus of X in S+(n) (defined in [31]) then dR (X,Y) =

∥∥logm(
X−1Y

)∥∥
F,

where logm(·) is the matrix logarithm. This requirement is not too restrictive in
practice; in S+(n) the rotation angle should not reach π radians [45]. For example,
in SO(2,R) the cut locus of X is just a single point:−X [25].
Since dR() depends only on the intrinsic geometry of G, the Fréchet mean (i.e.,

mean defined as the solution of Eq. (6)) using dR() is called the intrinsic mean
[25, 31]. Efficient formulations of dR() exist for some G, notably SE(3) [2], which
can be adapted to S+(3). However, in S+(n) for n> 3, dR() generally has no efficient
formulation, taking O(n4) time to compute [10].
Intrinsic mean shift methods have been proposed [7, 40]. The intrinsic mean itself

has multiple non-closed-form solutions [25]; in our experiments we compute an
approximation using a single step3 of the iterative method of [40].

2 Scale-covariant means a scale transformation of input data produces the same transforma-
tion on the output.

3 This is equivalent to computing a mean using the log-Euclidean distance [3], d(X,Y) =
‖logm(X)− logm(Y)‖F.
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2.4.3 Properties of a Good Distance in S+(n)

In the context of mean shift, and subsequent to our overview of Euclidean and Rie-
mannian distances, we propose the following list of desirable properties for a dis-
tance in S+(n) and its associated mean:

1. Unique: The mean should have a unique solution.
2. Closed-form: For efficient computation, the mean should have a closed-form
solution.

3. Scale-compatible: If all rotations and translations are equal, the mean should be-
have as an average of the scales. Mathematically, if ∀Xi ∈X :R(Xi) =R′, t(Xi) =
t′ for some R′ and t′, then we would like R(μ(X )) = R′, t(μ(X )) = t′, and
s(μ(X )) to be an average of s(Xi)’s. In this case, we say that μ is scale-compatible.

4. Rotation-compatible: If ∀Xi ∈ X : s(Xi) = s′, t(Xi) = t′, then s(μ(X )) = s′,
t(μ(X )) = t′ and R(μ(X )) is an average of R(Xi)’s.

5. Translation-compatible: If ∀Xi ∈ X : s(Xi) = s′, R(Xi) = R′, then
s(μ(X )) = s′, R(μ(X )) = R′ and t(μ(X )) is an average of t(Xi)’s.

6. Left-invariant: A left-invariant distance is one that is unchanged by any post-
transformation, i.e., d(ZX,ZY) = d(X,Y) ∀X,Y,Z ∈ S+(n). This property is
crucial for two reasons: (a) it leads to a left-covariant mean: μ(ZX ) = Zμ(X ),4

i.e., if all poses Xi are transformed by Z, the mean is transformed by Z as well,
and (b) it ensures that the weights wi computed in mean shift are invariant to any
post-transformationZ, leading to left-covariant mean shift.

A symmetric distance, s.t. d(X,Y) = d(Y,X) ∀X,Y ∈ S+(n), intuitively seems de-
sirable, but its absence does not prevent a distance from being used in mean shift
and furthermore, given the properties listed, it is not necessary. In other words, we
do not require the distance function to be a metric. Right-invariance might also be
considered a desirable property, but in the context of 3D recognition this occurrence
does not relate to any meaningful behaviour.

3 The SRT Distance and Its Mean

In this section, we describe our new distance on S+(n), which fulfills all the desir-
able properties defined in Sect. 2.4.3. We call it the SRT distance, with correspond-
ing mean μSRT.

3.1 Distance Definition

We first define the following component-wise distances:

ds(X,Y) =

∣∣∣∣log
(

s(X)

s(Y)

)∣∣∣∣ , (8)

4 ZX = {ZX : X ∈ X } is a left coset of X . Proof in [32, Append. A.4].
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Table 2 Properties of distances and associated means in S+(n). †The approximation of [40]
is, however, unique and translation compatible.

Properties Extrinsic Intrinsic SRT

Distance:
Symmetric � � �

Left-invariant � � �

Mean:
Unique � �† �

Closed-form � � �

Scale-compatible � � �

Rotation-compatible � � �

Translation-compatible � �† �

dr(X,Y) = ‖R(X)−R(Y)‖F , (9)

dt(X,Y) =
‖t(X)− t(Y)‖

s(Y)
, (10)

in which ds(), dr() and dt()measure scale, rotation and translation distances respec-
tively, with X and Y in S+(n). Given some bandwidth coefficients σs,σr,σt > 0, the
SRT distance is defined as:

dSRT(X,Y) =

√
d2s (X,Y)

σ2s
+

d2r (X,Y)

σ2r
+

d2t (X,Y)

σ2t
. (11)

By controlling σs,σr,σt , it is possible to create an SRT distance that is more sen-
sitive to one type of transformations among scale, rotation, and translation than the
others. In this sense, the SRT distance is more flexible than the Euclidean and Rie-
mannian distances.
We now prove that the SRT distance possesses the most crucial property, the 6th

property in the list.

Theorem 1. dSRT() is left-invariant.

Proof. The main idea involves showing that dSRT() is related to a pseudo-seminorm
on S+(n), i.e., dSRT(X,Y) =

∥∥Y−1X
∥∥
SRT, where

‖·‖SRT =
√
log2(s(·))

σ2s
+
‖R(·)− I‖2F

σ2r
+
‖t(·)‖2

σ2t
. (12)
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Indeed, for all X,Y ∈ S+(n), the transformationY−1X consists of:

s
(
Y−1X

)
=

s(X)

s(Y)
, (13)

R
(
Y−1X

)
= RT (Y)R(X), (14)

t
(
Y−1X

)
=

RT (Y)(t(X)− t(Y))

s(Y)
. (15)

Applying the ‖·‖SRT norm on Y−1X yields:

∥∥Y−1X
∥∥2
SRT =

1
σ2s
log2

(
s(X)

s(Y)

)
+
1

σ2r

∥∥RT (Y)R(X)− I
∥∥2
F ,

+
1

σ2t

∥∥∥∥RT (Y)(t(X)− t(Y))

s(Y)

∥∥∥∥
2

. (16)

Since the Frobenius norm is rotation invariant, the second and third terms of the
right-hand side of Eq. (16) may be rewritten as:

1
σ2r

∥∥RT (Y)R(X)− I
∥∥2
F =

1
σ2r
‖R(X)−R(Y)‖2F , (17)

1

σ2t

∥∥∥∥RT (Y)(t(X)− t(Y))

s(Y)

∥∥∥∥
2

=
1

σ2t

∥∥∥∥ t(X)− t(Y)

s(Y)

∥∥∥∥
2

. (18)

proving dSRT(X,Y) =
∥∥Y−1X

∥∥
SRT. It follows that:

dSRT(X,Y) =
∥∥Y−1X

∥∥
SRT =

∥∥(X−1i Z−1
)
(ZX)

∥∥
SRT = dSRT(ZX,ZY), (19)

proving dSRT() is left invariant. ��
Note that, unlike dE() and dR(), dSRT() is not symmetric; it could be made symmet-
ric by a slight modification of the translation component, but at the expense of the
translation-compatibility of the corresponding mean.

3.2 Mean Computation

Having defined dSRT(), we now derive the Fréchet mean μSRT using dSRT(), which
is:

μSRT(X ) = argmin
X∈S+(n)

∑
i

wid
2
SRT(X,Xi). (20)

and show that it is closed-form5 and generally unique.

5 Our close-form notion includes matrix singular-value decomposition.
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Theorem 2. The solution of Eq. (20), the SRT mean, is given as:

s(μSRT(X )) = exp

(
∑i wi logs(Xi)

∑i wi

)
, (21)

R(μSRT(X )) = sop

(
∑i wiR(Xi)

∑i wi

)
, (22)

t(μSRT(X )) = ∑
i

wit(Xi)

s2(Xi)

/
∑

i

wi

s2(Xi)
(23)

where sop(X) = argminY∈SO(n,R) ‖Y−X‖F is the orthogonal projection of ma-
trix X onto SO(n,R). Additionally if X is singular-value decomposed into X =
Udiag(λ1 . . . ,λn)VT for some orthogonal matrices U,V ∈ O(n,R) and singular
values λ1 ≥ . . .≥ λn ≥ 0. the function sop(X) computes

sop(X) = Udiag(1, ..,1,det(UV))VT. (24)

The SRT mean is unique if and only if all the singular values are distinct.

Proof. The sum in Eq. (20) can be rewritten as

∑
i

wid
2
SRT(X,Xi) =

Fs(X)

σ2s
+

Fr(X)

σ2r
+

Ft(X)

σ2t
, (25)

where6 F�(X) = ∑N
i=1wid2�(X,Xi). Since s(X) only appears in Fs(X), we can refor-

mulate

s(μSRT(X )) = argmin
s(X)∈R+

∑
i

wi log2
(

s(X)

s(Xi)

)
, (26)

yielding the solution (21). Similarly, since t(X) only appears in Fr(X), after
rewriting

t(μSRT(X )) = argmin
t(X)∈Rn

∑
i

wi
‖t(X)− t(Xi)‖2

s2(Xi)
, (27)

we get Eq. (23) as the solution. Finally, sinceR(X) only appears in Fr(X), we rewrite

R(μSRT(X )) = argmin
R(X)∈SO(n,R)

∑
i

wi ‖R(X)−R(Xi)‖2F . (28)

This is precisely Moakher’s definition of Euclidean (extrinsic) mean of 3D rota-
tion matrices [25, def. 5.1] generalized to n-dimensional rotation matrices. Moakher
proves that for the case of n = 3 [25, Sect. 3.1],

R(μSRT(X )) = sop(R) = argmin
Y∈SO(n,R)

∥∥Y−R
∥∥
F , (29)

6 � should be replaced with s, r or t.
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where R = ∑i wiR(Xi) , by showing that

∑
i

wi ‖R(X)−R(Xi)‖2F =
(

∑
i

wi

)∥∥R(X)−R
∥∥2
F+∑

i
wi

∥∥R−R(Xi)
∥∥2
F . (30)

which is straightforwardly generalized to the case of n �= 3.
Finding sop(R) when n = 3 is studied in [12, 25]. Here, we generalize the results

to SO(n,R). First, let the singular value decomposition of R be

R = Udiag(λ1..,λn)VT, (31)

for some orthogonal matrices U,V ∈ O(n,R) and unique (but not necessarily dis-
tinct) singular values λ1 ≥ . . . ≥ λn ≥ 0. Considering a change of variable R

′
=

UTR(X)V , we get:

UTRV = diag(λ1..,λn) , (32)∥∥R(X)−R
∥∥2
F =

∥∥∥UT
(
R(X)−R

)
V
∥∥∥2
F
=

∥∥∥R
′ − diag(λ1 . . . ,λn)

∥∥∥2
F
. (33)

Thus, minimizing
∥∥R(X)−R

∥∥2
F with respect to R(X) is equivalent to minimiz-

ing f (R
′
) =

∥∥∥R
′ − diag(λ1..,λn)

∥∥∥2
F
with respect to R

′
. Here, R

′ ∈ O(n,R) and

det(R
′
) = det(UV). Rewriting function f (R

′
):

f (R
′
) = trace

(
I− 2R

′Tdiag(λ1..,λn)+ diag2 (λ1 . . . ,λn)
)

(34)

=
n

∑
i=1

(
1− 2R

′
i,iλi +λ 2i

)
, (35)

we can see that only the diagonal elements of R
′
are involved in f (R

′
). Therefore,

the optimal R
′
must be a diagonal orthogonal matrix. Among all the diagonal or-

thogonal matrices available in O(n,R) (there are 2n in total), the one that minimizes
f (R

′
) and has det(R

′
) = det(UV), considering that λn is the smallest singular value,

is given by
R′ = diag(1, ..,1,det(UV)) . (36)

In other words,
sop(R) = Udiag(1, ..,1,det(UV))VT. (37)

We now analyze the uniqueness of sop(R). First, if some singular values are not
distinct, i.e., λk = λk+1, then the kth and (k + 1)th columns of matrices U and V
of Eq. (31) become non-unique, making sop(R) non-unique. Second, in the case
that all the singular values are distinct, if λn > 0 then both U and V are unique,
making sop(R) unique. If λn = 0, the nth column of U and the nth column of V can
both be negated while still satisfying Eq. (31) (their directions are fixed by other
columns). However, sop(R) remains unchanged due to the simultanous negation of
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both singular vectors. Therefore, sop(R) is unique if and only if all the singular
values of R are distinct. ��
It can be further verified that μSRT(X ) is:

1. Scale-compatible: The scale component s(μSRT(X )) is a geometric mean of
s(Xi)’s.

2. Rotation-compatible: The rotation componentR(μSRT(X )) is an extrinsic mean
of R(Xi)’s.

3. Translation-compatible: The translation component t(μSRT(X )) is an arithmetic
mean of t(Xi)’s.

Table 2 summarizes the desirable properties of the SRT distance and mean, and
contrasts them with those of the Euclidean and Riemannian distances.

3.3 SRT Mean Shift

We form our mean shift algorithm on S+(n) using dSRT() and μSRT(X ) in steps 4 &
5 of Algorithm 1 respectively. It follows from the left-invariance of dSRT that SRT
mean shift is left-covariant.
The coefficients σ s,σ t ,σ r act in place of the kernel bandwidth σ in Eq. (5). Also

note that, while the coefficient ζ is constant in Euclidean space, it is not constant in
a non-Euclidean space, in which case ζ = ζ (Xi) [30, 40] cannot be factored out of
the kernel density estimate. Since ζ (Xi) can be costly to compute (sometimes non-
closed-form), existing mean shift algorithms on Lie groups [7, 40] replace ζ (Xi)
with a constant. However, in the case of dSRT(), indeed any left-invariant distance,
it can be shown that ζ (Xi) is constant:

Lemma 1. Using dSRT, the volume densities are constant: ∀X,Y ∈ S+(n) : ζ (X) =
ζ (Y).

Proof. The volume density function ζ (Y) with respect to the SRT distance and
kernel K(·) at transformation Y is given by:

ζ (Y) =

∫
S+(n)

K
(
d2SRT(U,Y)

)
dν(U), (38)

where ν(U) is a (left-)Haar measure on S+(n) [30]. ν(U) has a property that
dν(U) = dν(ZU) for all Z ∈ S+(n). Let us fix Z = XY−1. Since dSRT() is left-
invariant, using the substitute V = ZU and left-multiplying both input arguments of
dSRT() with Z, we obtain:

ζ (Y) =
∫

S+(n)
K
(
d2SRT(Z

−1V,Y)
)

dν(V)

=

∫
S+(n)

K
(
d2SRT(V,ZY)

)
dν(V) = ζ (X). (39)

Therefore, ζ (X) is constant for all ∀X ∈ S+(n). ��
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4 Experiments

4.1 Experimental Setup

Our experimental data consists of 12 shape classes, for which we have both a phys-
ical object and matching CAD model. We captured the geometry of each object
using Vogiatzis and Hernández’s multi-view stereo method [43] in the form of point
clouds (Fig. 1(b)), 20 times from a variety of poses. Along with the class label,
every shape instance has an associated ground truth pose, computed by first approx-
imately registering the relevant CAD model to the point cloud manually, then using
the Iterative Closest Point algorithm [5] to refine the registration.

4.1.1 Pose Vote Computation

Given a test point cloud and set of training point clouds (with known class and pose),
the computation of input pose votes X is a two stage process similar to [20, 41]. In
the first stage, local shape features, consisting of a descriptor and a scale, translation
and rotation relative to the object, are computed on all the point clouds (Fig. 1(c)).
In the second stage each test feature is matched to them (we use 20) nearest training
features, in terms of Euclidean distance between descriptors, to generate m pose
votes.7

4.2 Inference

4.2.1 Mean Shift

Mean shift finds a local mode, and its weight, in the output pose distribution for a
given object class. Since there may be many such modes we start mean shift from
100 random input poses for each class. Each mode, duplicates excepted, is then
added to a list of candidate poses across all classes.
In S+(3) it is possible to use the quaternion representation of rotation, q(X),

which we do. For efficiency, we therefore alternatively define the rotation compo-
nent of dSRT() as

dr(X,Y) =
√
1−|q(X)Tq(Y)|, (40)

where | · | is needed to account for the fact that q(X) and −q(X) represent the same
rotation. This formulation confers a small computational advantage over other, non-
component-wise distances in this space.

7 Since all inference methods will use the same set of input pose votes, the method by which
these are computed is not central to the evaluation of relative performance.
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4.2.2 Hough Voting

We implemented a published Hough voting scheme [20] to compare with the mean
shift inference approaches. This computes sums of weights of the pose votes which
fall into each bin of a 4D histogram over translation and scale, effectively marginal-
izing over rotation. The highest bin sum for each class defines a pose mode. Note
that we used our own pose votes and weights, and not those computed using the
method described in [20].

4.3 Evaluation

We use cross validation on our training data for evaluation—a training set is cre-
ated from 19 of the 20 shape instances in each class, and the remaining instance
in each class becomes a test shape. Each test shape undergoes 5 random transfor-
mations (over translation, rotation and scale in the range 0.5–2), and this process is
repeated with each training shape being the test shape, creating 100 test instances
per class. We use 10 classes in our evaluation (shown in Fig. 5), so 1000 tests in
all. The remaining 2 classes are used to learn the optimal kernel bandwidth, σ ,
for each inference method. We have made the data used in this evaluation publicly
available [1].
We evaluate each inference method on two criteria: Recognition rate and regis-

tration rate.

4.3.1 Recognition Rate

As described above, each inference method generates a list of modes across pose
and class for a given test instance, each with an associated weight. The output class
is that of the mode of highest weight. A confusionmatrix logs the output class versus
ground truth class across all tests. The recognition rate is given by the trace of this
matrix, i.e., the number of correct classifications.

4.3.2 Registration Rate

The output pose for a given test instance is given by that of the weightiest mode
whose class matches the ground truth class. We choose to consider a pose X to be
correct if its scale is within 5%, orientation is within 15° and translation is within
10% (of the object size) of the ground truth’s. Explicitly, the criteria to be met are

∣∣∣∣log
(

s(X)

s(Y)

)∣∣∣∣ < 0.05, (41)

acos

(
trace(R(X)−1R(Y))− 1

2

)
< π/12, (42)
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Fig. 5 Test objects. CAD models of the 10 real objects used for evaluation. Top: piston2,
bearing, piston1, block, and pipe. Bottom: cog, flange, car, knob, and bracket.

‖t(X)− t(Y)‖√
s(X)s(Y)

< 0.1, (43)

withY being the ground truth pose. In the case of an object having symmetries there
are multiple Y’s, and distance to the closest is used.

4.3.3 Learning σ

We learn the mean shift kernel bandwidth, σ (or in the case of SRT, σs, σr and
σt ), used for each mean shift algorithm by maximizing the registration rate from
cross-validation on two training classes (which are not used in the final evaluation).
Registration rate is maximized using local search: an initial bandwidth is chosen,
then the registration rate computed for this value and the values 1.2 and 1/1.2 times
this value. That value with the highest score is chosen, and the process is repeated
until convergence. With 3 parameters to learn, the local search is computed over a
3D grid.

4.4 Results

Table 3 summarizes the quantitative results for the four inference methods tested.
It shows that SRT mean shift performs best at both recognition and registration.
The third row gives registration rate taking into account scale and translation only
(as the Hough method only provides these), indicating that mean shift performs
considerably better than Hough voting at registration. Also given (row 5) is the mean
of output scales (each as a ratio of the output scale over the ground truth scale) of the
registration result, which shows a marked bias towards a smaller scale when using
extrinsic mean shift. Whilst better than extrinsic mean shift at registration, intrinsic
mean shift is the slowest8 method by an order of magnitude.

8 We used optimized implementations for all methods.
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Table 3 Quantitative results for the four inference methods tested. The SRT mean shift
method is best in all respects except speed, for which it is better than the other mean shift
methods.

SRT Extrinsic Intrinsic Hough

Recognition 64.9% 49.6% 45.5% 56.1%
Registration 68.3% 52.0% 62.0% –

Registration (t,s) 79.8% 62.0% 75.7% 57.3%9

Processing time 1.6s 9.7s 127s 0.043s
Mean scale 0.995 0.959 0.987 –

Table 4 Registration rate per class (%). SRT mean shift performs best on 7/10 classes.

bearing block bracket car cog flange knob pipe piston1 piston2

SRT 77 13 95 75 100 41 88 86 44 63

Extrinsic 36 12 90 50 80 32 53 63 37 67

Intrinsic 54 19 83 90 90 36 65 82 34 67

The per-class registration rates of the mean shift methods are given in Table 4,
showing that SRT out-performs extrinsic mean shift in 9 out of 10 classes, and
intrinsic mean shift in 7 out of 10. The scale-invariance of registration rate, and
hence, by implication, recognition rate, using SRT and intrinsic mean shift, and the
contrasting scale-variance of extrinsic mean shift (as discussed in Sect. 2.4.1), is
shown empirically in Fig. 6.

Fig. 6 Scale-invariance. Registration rate over scale, showing that only extrinsic mean shift
varies with scale.

9 This score is the percentage of ground truth poses that were in the same bin as the output
pose.
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(a) SRT mean shift (b) Extrinsic mean shift

(c) Intrinsic mean shift (d) Hough voting

Fig. 7 Confusion matrices for the four inference methods tested. The Hough voting method
performs poorly on objects with low rotational symmetry, while mean shift methods, and in
particular SRT, perform better.

The confusion matrices for the four inference methods are shown in Fig. 7.
Hough voting performs very poorly on bracket, car and pipe, getting a recogni-
tion rate of just 1.3% on average for these classes, which all have low rotational
symmetry; in particular it prefers cog and flange (which both have high rotational
symmetry), no doubt due to the marginalization this method performs over rotation.
Intrinsic mean shift shows a tendency to confuse block, and cog and piston1 to a
lesser degree, for other classes, whilst extrinsic and SRT mean shift confuse cog,
and block and piston1 to a lesser degree for other classes.
Finally, Fig. 8a–c demonstrates that SRT mean shift applied to a real scene con-

taining multiple objects yield more accurate results than extrinsic mean shift and
intrinsic mean shift. Given a threshold weight above which modes are accepted,
mean shift on the votes can produce many false positive detections, as shown by
the low precision at high recall rates in Fig. 8d. This issue is addressed in another
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work [44]. Our system can additionally (though not used here) filter the list of out-
put poses using physical constraints such as the position of the ground plane and
collision detection, which we found removed the majority of false positive results,
including those shown in Fig. 8a–c.

(a) Extrinsic mean shift output with six objects (b) Intrinsic mean shift output with six objects

(c) SRT mean shift output with six objects (d) Precision–recall

Fig. 8 Performance with multiple objects. Given a point cloud with 6 objects, (a) Extrinsic
mean shift finds 3 of them with 2 false alarms, (b) Intrinsic mean shift finds 2 of them with
2 false alarms, (c) SRT mean shift find 3 of them with no false alarms. (d) Precision-recall
curves of the mean shift methods for correct registration and recognition jointly.

5 Conclusion

We have introduced the SRT distance for use in mean shift on poses in the space
of direct similarity transformations, S+(n). We have proven the distance to be left-
invariant, and have a unique, closed-form mean with the desirable properties of
scale, rotation and translation compatibilities. We have demonstrated the use of this
distance for registration and recognition tasks on a challenging and realistic 3D
dataset which combines real-world objects, with and without rotational symmetries,
together with a vision-based geometry capture system and basic features.
Our results show that SRT mean shift has better recognition and registration rates

than both intrinsic and extrinsic mean shift, as well as Hough voting. We also show
that extrinsic mean shift not only is scale-variant but also biases output scale, and
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that intrinsic mean shift is slower to compute. In addition to the performance in-
crease over Hough voting, especially in the presence of rotationally symmetric ob-
jects, we demonstrate for the first time that mean shift on the full 7D pose space
of S+(3) is not only possible, but that it also provides accurate 7D registration, in-
cluding rotation. This is not practical using Hough-based approaches, due to their
exponential memory requirements.
Potential future research includes creating efficient probability density functions

on S+(n), which will serve as building blocks for statistical learning and inference
on this non-Euclidean space.
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