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Abstract

Robots perambulating and manipulating unmodelled en-
vironments need robust geometric cues to recover scene struc-
ture. It is furthermore attractive to capitalise on structural
information inherent in the evolution of the image under
robot motion. However, especially in artificial environments,
surface texture may be sparse, and silhouettes or apparent
contours are the dominant image features. We develop pre-
vious theories of the analysis of deformation of apparent con-
tours under viewer motion. First, earlier results showing how
surface curvature can be inferred from acceleration of im-
age features are generalised for arbitrary viewer motion and
perspective projection. Second, we show that relative im-
age acceleration, based on parallax measurements, is robust
to uncertainties in robot motion. Thirdly, our theory has
been implemented and extensively tested in a realtime (15
frames per second) tracking system based on deformable con-
tours (snakes). We show that focusing attention by means
of snakes enables rapid, robust computation of surface cur-
vature, including discrimination of extremal and occluding
contours.

1 Introduction

The deformation of an apparent contour (the silhouette of
a smooth surface or the image of the extremal boundary)

under viewer-motion is a potentially rich source of geomet- -

ric information for navigation, motion-planning and object-
recognition. Barrow and Tenenbaum [1] pointed out that
surface orientation along an extremal boundary can be com-
puted directly from image data. Koenderink [15] related the
curvature of an apparent contour to the intrinsic curvature of
the surface (Gaussian curvature); the sign of Gaussian cur-
vature is equal to the sign of the curvature of the contour.
Convexities, concavities and inflections of an apparent con-
tour indicate, respectively, convex, hyperbolic and parabolic
surface points. Giblin and Weiss [9] have extended this by
adding viewer motions to obtain quantitative estimates of
surface curvature. For orthographic projection they show
that a surface can be reconstructed from the envelope of all
its tangent planes, which in turn are computed directly from
the family of silhouettes of the surface, obtained under planar
motion of the viewer. In Blake and Cipolla (1989) [3] this
was extended to the general case of arbitrary non-planar,
curvilinear camera motion under perspective projection.
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In this paper we summarise further developments of the
theory and describe the implementation and results with a
camera mounted on a moving robot arm. We describe a sim-
ple, computationally efficient method for accurately extract-
ing image curves from real images and tracking their tempo-
ral evolution. This is an extension of tracking with Snakes
[14] - energy minimising splines guided by image forces - in
which we avoid computing the internal energies by repre-
senting sections of curves by cubic B-splines and can achieve
realtime processing (15 frames per second) by windowing
[13]. Experiments show that with adequate viewer motion
calibration it is possible to obtain 3D shape measurements
of useful accuracy.

A consequence of the theory, representing an important
step towards qualitative vision, concerns the robustness of
measurements of curvature based on motion parallaz at two
nearby points. Intuitively it is relatively difficult to judge,
moving around a smooth, featureless object, whether its sil-
houette is extremal or not — whether curvature along the
contour is bounded or not. This judgment is much easier
to make for objects which have at least a few surface fea-
tures. Under small viewer-motions, features are “sucked”
over the extremal boundary, at a rate which depends on
surface curvature. Our theoretical findings exactly reflect
the intuition that the “sucking” effect is a reliable indicator
of relative curvature, regardless of the exact details of the
viewer’s motion. Relative measurements of curvature across
two adjacent points are entirely immune to uncertainties in
the viewer’s rotational velocity. This is somewhat related
to earlier results showing that relative measurements of this
kind are important for depth measurement from optic flow
[16, 19, 21] and for curvature measurements from stereoscop-
ically viewed highlights [2]. Furthermore, they are relatively
immune to uncertainties in translational motion in that, un-
like single-point measurements, they are independent of the
viewer’s acceleration. Only dependence on velocity remains.
Experiments show that this theoretical prediction is borne
out in practice. Surface curvature estimated from parallax
measurements prove to be more than an order of magni-
tude less sensitive than single-point measurements to errors
in viewer-motion calibration.

As an illustration of their power, we show how these mo-
tion analysis techniques can achieve something which has so
far eluded photometric analysis: namely reliable discrimina-
tion between fixed surface features and points on extremal
boundaries and the reconstruction of surfaces in the vicinity
of their extremal boundaries.



2 Theoretical framework

It is now well established that static views of extremal bound-
aries are rich sources of surface geometry (1, 5, 9, 15]. The
physical constraints of tangency (all rays at an extremal
boundary are in the surface’s tangent plane) and conjugacy
(the extremal boundary is not in general orthogonal to the
ray direction but conjugate to it) allow the recovery of surface
orientation and the sign of Gaussian curvature directly from
the image of the extremal boundary, the apparent contour
[3].

Moreover, each vantage point, generates a new extremal
boundary making it an ideal cue in the active exploration
of 3D geometry. We outline below how the deformation of
apparent contours under known viewer-motion can be used
to recover the position, orientation and full surface curvature
(3D shape) of visible surfaces in the vicinity of their extremal
boundaries.

2.1 Surface Geometry

Consider a point P on the extremal boundary of a smooth,
curved surface which we represent locally by a vector valued
function r(s,t) with parameters s and £. The parametric rep-
resentation can be considered as covering the surface with 2
families of curves: r(s,fy), and r(so,t) where sq, s are fixed
for a given curve in the family. A one-parameter family of
views is indexed by the time parameter ¢ and s,t are de-
fined so that the s-parameter curve, r(s,%g), is an extremal
boundary for a particular view to (figure 1).

spherical perspective image

v(to)

\

extremal boundary r(s,to)

apparent contour, Q(s, o)

Figure 1. Surface and Viewing Geometry.

P lies on a smooth surface which is parameterised locally as
r(s,t). For a given vantage point, v(tg), the family of rays em-
anating from the viewer’s optical centre (C) that touch the sur-
face defines an s-parameter curve (s, tg) - the extremal boundary
from vantage point to. The spherical perspective projection of this
extremal boundary — the apparent contour, Q(s,to) - determines
the divection of rays which graze the surface. The distance along
the ray, CP, is M so,t0)-

v(t + 6t)

617
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Figure 2. Epipolar parameterisation

A moving observer at position v(t) sees a family of emtremall
boundaries r(s,t) indexed by the time parameter t. Their spheri-
cal perspective projections are represented by a 2 parameter famlz'ly
of apparent contours Q(s,t). For the epipolar parameterisation
t-parameter curves (r(so,t) and Q(so,1)) are defined by chos'ing
the correspondence between successive contours to be in an epipo-
lar plane which is determined by the translational velocity and the
direction of the ray.

A t-parameter curve r(sp,t) can be thought of as the 3D
locus of points grazed by a light-ray from the viewer, un-
der viewer-motion. Such a locus is not uniquely defined.
The correspondence, as the viewer moves, between “succes-
sive” (in an infinitesimal sense) extremal boundaries is not
unique. Hence there is considerable freedom to choose a
spatio-temporal parameterisation of the surface, r(s,t). A
natural choice of parametrisation, it has been shown [3], is
the epipolar parameterisation in which points on successive
extremal boundaries are matched in the epipolar plane de-
fined by the ray direction and the instantaneous viewer trans-
lational velocity (figure 2). The advantage of the parametri-
sation is clear below, when it leads to a simplified treatment
of surface curvature and a unified treatment of the projection
of rigid space curves and extremal boundaries.

Surface curvature (3D shape) can be expressed in terms
of the coefficients of the first and second fundamental forms
I1,1I [8]. For the epipolar parametrisation, these are:

= [ o '] 0
=[5 0], )

where 6 is the angle between the ray direction and the ex-
tremal boundary; &' is the normal curvature of the t-parameter
curve r(sq, 1)) and &° is the normal curvature of the extremal
boundary r(s,tp) at P. Equivalently ' is the curvature of the
normal section at P in the direction of the ray. Note that IT
is diagonal, a result of choosing, in the epipolar parametri-
sation, basis directions that are conjugate [T].

r(du,f)



In the following we relate the surface geometry at a point
P with its spatio-temporal image and then proceed to show
how the components of I and II can be recovered.

2.2 Imaging model and Spatio-temporal
image

The imaging model is a spherical pin-hole camera of unit
radius. A point on a visible surface , r(s,t), projects to a
(unit) vector Q(s,t) on the image sphere:

r(s,t) = v(t) + A(s, 1) R(t)Q(s, 1), (3)
where, at time ¢, v(¢) is the position of the viewer, A(s, )
is the distance along the ray from the viewer to the point r
and F(t) is a rotation operator describing the orientation of
the camera frame relative to the world frame. The viewer
motion is assumed rigid, involving translational motion v
and rotational motion 2 defined by:

(Q/\)-: R

where " denotes differentiation with respect to time and A
denotes a vector product.

For a given vantage position v(tp) the apparent contour
is a continuous family of rays Q(s,#,) emanating from the
camera’s optical centre which touch the surface so that

Q.n=0. (4)

where n is the surface normal (figure 1).

The moving observer at position v(t) sees a family of
apparent contours indexed by time, Q(s,t), swept out over
the image sphere (figure 2). As before the spatio-temporal
parameterisation of the family is not unique. The mapping
between extremal boundaries, and hence between apparent
contours, at successive instants is undetermined. With the
epipolar parameterisation a natural correspondence between
points on successive snapshots of an apparent contour can be
set up. The lines of constant s on the image sphere are de-
fined so that the tangent to the t-parameter curves, Q(so,1)
are given by [7]

(411 Q i
Note that Q is equal to the image velocity of a point on
the projection of a static space curve [18]. This is not sur-
prising since instantaneously image velocities are dependent
only on depth and not surface curvature. Points on different

Q= -aAQ

image contours are matched by moving along great-circles on
the image sphere with poles defined by the direction of the
viewer’s instantaneous translational velocity v. If the motion
is linear corresponding points on the image sphere will lie on
an epipolar great-circle (or an epipolar line for planar im-
age geometry). For a general motion, however, the epipolar
structure rotates continuously as the direction of v changes
and the space curve, r(sg, ), generated by the movement of
a contact point will be non-planar.
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3 Dynamic properties of the ap-
parent contour

Depth, A; the normal curvature s' along the line of sight;
and the curvature of the apparent contour, «? are in fact
sufficient to compute the full surface curvature at a point
[7]. These can all be recovered from the apparent contour
and its deformation with viewer motion.

3.1 Depth from image velocities

When the viewer executes a known motion then surface depth
can, of course, be computed from image velocities [4] [12).
This is correct for static space curves but it also holds for
extremal boundaries even though they are not fixed in space.
From (5) we see that depth can be computed from the normal
component of image velocity, Q.n, if the angular velocity is
known: )
v.n
= (6)
Qn+(2AQ)n

This formula is an infinitesimal analogue of triangulation
with stereo cameras. The numerator is analogous to base-
line and the denominator to disparity. In the infinitesimal

limit stereo will correctly determine the depth of an extremal
boundary.

3.2 Normal curvature along the line of
sight from image accelerations

The normal curvature at P in the direction of the ray Q,
', can be computed from image accelerations, Q, at the
apparent contour if the viewer motion (both translational
and rotational velocity and acceleration) is known:

(v.n)?

Vol [1]_o(@(in

—(2AQ)n—

(A V)n
A

v.n

Qn

MF A
2Q¥)(2 A Q)n
A

+(2.Q)(2.n)

+ (7)

The magnitude of &' can be used to distinguish surface
markings or creases from extremal boundaries. A fixed fea-
ture is simply a degenerate case of the parameterisation and
can be considered as the limiting case of a surface point with
infinite curvature (1/&* = 0). The sign of £* is an important
geometric cue since it determines the “sidedness” of the ex-
tremal boundary — on which side of the image contour lies
the surface.

3.3 Local Surface Curvature

The remaining the components of I and IT now follow.
The normal curvature of the extremal boundary, «°, can
be recovered from the curvature of the apparent contour, k.



The two curvatures are simply related by 7

e

P = \——
kP = A= "
sin” 6

(8)
where depth, A and § are recovered from image velocities
along the apparent contour via (6).

The sign and magnitude of the Gaussian curvature, K,
can then be computed from (1) and (2) as the product of
the normal curvature, ¢, and the curvature of the apparent
contour, k7, scaled by inverse-depth [15]

KPR

A

K= (9)

4 Motion parallax and robust es-
timation of surface curvature

Although it is perfectly feasible to compute surface curvature
from the observed deformation of an apparent contour, we
have seen that this requires knowledge of the viewer’s trans-
lational and rotational velocities and accelerations. More-
over the result (see below) is highly sensitive to motion cali-
bration errors. This may be acceptable for a moving camera
mounted on a precision robot-arm or when a grid is in view
so that accurate visual calibration can be performed [20]. In
such cases it is feasible to determine motion to the accuracy
of around 1 part in 1000 that is required. However, when
only crude estimates of motion are available another strat-
egy is called for. One possibility is refine the estimate of mo-
tion using image velocities [10]. The alternative approach is
to seek qualitative measurements of geometry that are much
less sensitive to perturbations in assumed egomotion.

In this section we show that the difference of the image
motion of a pair of nearby points can be much more robust
as a cue than the absolute image motion at a point. Differ-
ences of measurements at two points are insensitive to errors
in rotation and in translational acceleration. Typically, the
two features might be one point on an extremal boundary
and one fixed surface point. The surface point can be con-
sidered as having infinite curvature and therefore acts simply
as a stable reference point for the measurement of curvature
at the extremal boundary. Intuitively the reason for the in-
sensitivity of relative estimates of curvature is that global
additive errors in motion measurement are cancelled out.

4.1 Motion parallax

Consider two visual features whose projections on the im-
age sphere are Q(s;,t), ¢ = 1,2 which we will abbreviate
to Q), i = 1,2. Think of them as two points on extremal
boundaries, which trace out curves with (normal) curvatures
kt and &' as the viewer moves. The relative image displace-
ment & of the two points is

5(t) = Q1 — QW

Parallax is the temporal derivative, & of 8.

(10)
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If instantaneously the two points project to the same
point on the image sphere, so that

Q¥ =Q"=q,

then, from (5), the parallax & depends only on their relative
inverse-depths and on viewer velocity. It is independent of
angular rotation €2:
§=(vA - : 11
=(v Q)/\Q{W—W] (11)
The use of “Motion Parallax”[11] for robust determination of
the direction of translation v and of relative depths from im-

age velocities was described by Longuet-Higgins and Prazdny
[16] and Rieger and Lawton [19].

4.2 Rate of parallax

Following from the well known results about motion paral-
lax, we derive the central result of this paper — that the rate
of parallax is a robust cue for surface curvature. The direct
formula (7) for normal curvature &' in terms of image accel-
eration was sensitive to viewer translational acceleration and
rotational velocity and acceleration. If instead differences of
image accelerations are used the undesirable sensitivity van-
ishes.

Equation (7) expresses the relationship between image
acceleration and normal curvature. It can be written for
both points Q) and Q. The important point is that the
two copies of this equation for the two positions can be sub-
tracted, cancelling off the undesirable dependency on 0,0
and on V.

Let us define the differential curvature Ax' of the feature
pair by

1 1 1

o (12)

Note that it is not an infinitesimal quantity but a difference
of inverse curvature. Consider the two features to be instan-
taneously spatially coincident, that is, initially, Q(s1,?)
Q(s2,t). Moreover assume they lie at a common depth
and hence, instantaneously, Q) = Q®@. In practice, of
course, the feature pair will only coincide exactly if one of
the points is a surface marking which is instantaneously on
the extremal boundary. The effect of a small separation is
analysed below. Now, taking the difference of equation (7)
for the 2 image positions leads to the following relation be-
tween the two differential quantities; the “rate of parallax”,
4 and the differential curvature Ax®:

K?tl K?ﬂ

A,

. v 2
S (v.n)? 1

A (13)
Differential curvature Ax' can be computed from depth A,
viewer velocity v, and the “rate of parallax”. Dependence on
viewer motion is now limited to the translational velocity v.
There is no dependence on viewer acceleration or rotational
velocity. Hence the relative measurement should be much
more robust. (Higher derivatives are generally far more sen-
sitive, computationally, to noise.)



In the case that Q) is known to be a fixed surface ref-
erence point, with 1/« = 0, then Ax' = £' so that the dif-
ferential curvature Ax' constitutes an estimate, now much
more robust, of the normal curvature x'2 at the extremal
boundary point Q(®). Of course this can now be used in
detecting extremal boundaries; determining the “sidedness”
(on which side of the image contour lies the surface) and in
equations (1) and (2) to obtain robust estimates of surface
curvature. Our experiments confirm this, as shown below.

4.3 Degradation of sensitivity with sepa-
ration of points

The theory above relating differential curvature to rate of
parallax assumed that the two points Q) and Q® were
actually coincident in the image, and that the underlying
surface points were also coincident and hence at the same
depth A = A®_ In practice, point pairs used as features
will not coincide exactly and an error limit on curvature (or,
more conveniently, its inverse) must be computed to allow for
this. The limit can be used to provide an error interval for
computed curvature. It is also useful as a threshold for the
test (see below) for labelling extremal boundaries — that s,
to tell how close to zero the inverse normal curvature 1/&?
must lie to be considered to be on a surface marking or a
crease edge rather than an extremal boundary.

The error in inverse normal curvature, Re.por, consists of
errors due to the difference in depths of the 2 features, A\,
and due the finite separation in the image, §. These effects
can be easily computed from the difference of equation (7)
for the 2 points. For nearhy points that are on the same
surface and for rotation about a fixation point the dominant
error can be conveniently expressed as [7]:

v.n
+ z\|A/\|m

0

or| 72 9X[E] 4+ A3
IRC‘H" { 9/\E ‘+ |6|(V n)g

(14)
Measurements of curvature using parallax measurements will

be robust if the separations between points on nearby con-

tours satisfy
1

&
161 < EBVAY

(15)

5 Implementation

We have implemented the theory of deformation of apparent
contours using images taken from a camera mounted on a
robot arm. Image contours are tracked using a variant of
the well-known “snake” of Kass, Witkin and Terzopoulos
(14]. The snake is a computational construct, a dynamic
curve able to track moving, deforming image features. Since
many snakes can be active at once, each tracking its feature
contour as a background process, they constitute a versatile
mechanism for direction and focus of attention, a second
generation of Inoue’s window system [13].

We have made a simple innovation that considerably en-
hances efficiency.
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We use a B-spline in place of the original elastic rod sim-
ulation, greatly reducing the number of state variables re-
quired for a snake of a given length. Since accurate mea-
surements are required to compute image accelerations, care
has been taken over sub-pixel resolution. At earlier stages of
tracking, when coarse blurring is used, the capture range of
the snake is large but localisation is poor — the snake may
lag considerably behind the contour. Once the snake has
converged onto the contour, standard edge-detection tech-
niques [6] are used to obtain accurate localisation. For rela-
tive measurements of curvature, as advocated for robustness,
two snakes are used.

5.1 Tracking with the B-spline snake

The B-spline is a curve in the image plane

x(s) = 3 fils)a (16)
T
where f; are the spline basis functions with coefficients qi -
the vertices or control points of the curve’s “characteristic
polygon”. The curves may be open or closed as required.
The flexibility of the curve increases as more control points
are added; each allows either one more inflection in curve
or, when multiple knots are used, reduced continuity at one
point. The vertices are positioned so that the curve locates
the desired image contour. Away from equilibrium, the ex-
ternal force on a point x(s) is chosen to be
F(s;) = VIVG(0) * I(x(s))| (17)
so that, at equilibrium (when image forces vanish), x(s) sta-
bilises close to a contour of high-contrast. There are no
internal forces since the B-spline representation maintains
smoothness via hard constraints implicit in the representa-
tion.

External forces are applied to the curve itself but for iter-
ative adjustment of displacement it is necessary to compute
the force transmitted to each control point. This is done via
the principle of virtual work. At each iteration the motion
of the control points, §q; is given by [7):

Sqi = a}_ fi(s;)F(s;) (18)
7
where «, the compliance constant, is chosen so that, in prac-
tice, the maximum movement at any iteration always lies
within the radius of the pointspread function for the applied
smoothing.

As the snake approaches the image contour it “locks on”
and tracking is maintained provided the contour does not
move too fast. In the present implementation a limited num-
ber of snakes were initialised by hand in the first frame near
images contours of interest after which they track the image
contour automatically (figure 3). We have recently produced
arealtime system (15 frames per second) with computer con-
trol of camera motion in which snakes just “hang-around?” in
the image until they are swept by the motion of the camera
over a feature for which they have affinity.



Figure 3. B-spline snake for image contour localisation.

The snake “hangs around” until camera motion sweeps it into
the vicinily of an i#mage feature. Ezxternal image forces guide
it towards the image contour to which it then locks on to and
tracks over the image sequence. The intilial, intermediate and
final position are shown.

Figure 4. Estimating surface curvatures from 3 discrete views

Points are selected on image contours in view I, indicated by
crosses A and B for points on an extremal boundary and sur-
face marking respectively. For epipolar parameterisation of the
surface corresponding features lie on epipolar lines in subsequent
views. Measurement of the 3 rays lying in an epipolar plane can
be used to estimate the osculating circle in the epipolar plane

5.2 Numerical estimation of depth and cur-
vature

Computing depth and surface curvatures from equations (6)
and (7) is a non-trivial problem since it involves the esti-
mation of second order spatio-temporal derivatives. This is
greatly simplified for simple motions — linear viewer motion
perpendicular to the optical axis - when the trajectories of
fixed features appear as straight lines in the spatio-temporal
image [4]. First and second order temporal derivatives of the
trajectory can then be used to determine depth and surface
curvature respectively.

For arbitrary motions we have developed a simple nu-
merical method for estimating depth and surface curvatures
from a minimum of three discrete views, by determining the
osculating circle in each epipolar plane [7]. The error and
sensitivity analysis is greatly simplified with this formula-
tion. Of course this introduces a tradeoff between truncation
error and measurement error. We are no longer computing
surface curvature at a point. However the computation is
less sensitive to edge localisation. It also allows the use of
longer “stereo baselines”.
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6 Experimental Results

6.1 Determining surface curvatures from
3 discrete views

Figure 4 shows 1 view from a sequence of a scene taken from
a camera mounted on a moving robot-arm whose motion
has been accurately calibrated from visual data [20]. The
image contours are tracked automatically and the nurnerical
method described in the [7] is used to estimate the radius of
curvature of the normal section, R (where k' = 1/R), for a
point on an extremal boundary of the vase, A . The method
is repeated for a point which is not on an extremal boundary
but is on a nearby surface marking, B. This is a degenerate
case of the parameterisation. A surface marking can be con-
sidered as the limiting case of a point with infinite curvature
and hence ideally will have zero “radius of curvature”.

The radius of curvature at A was estimated as 42 =+
10mm. It was measured using calipers as 45 £ 2mm. For
the marking, B, the radius of curvature was estimated as
3 + 10mm. The estimated curvatures agree with the actual
curvatures. However, the results are very sensitive to pertur-
bations in the motion parameters. The estimate of curvature
is affected by errors in image localisation, and uncertainties
in ego-motion calibration in a non-linear way. The effect of
small errors in the assumed egomotion can, however, be eas-
ily computed by first order perturbation analysis (figure 5a
and b, curves I).

Differential measurements of curvature are in principle
based on measuring the relative image motion of nearby
points on different contours (equation (13)). In practice this
is equivalent (equation(12)) to computing the difference of
radii of curvature (inverse curvature) at the 2 points. The
radius of curvature measured at a surface marking is deter-
mined by errors in measurement of motion. It can be used as
a reference point to subtract the global additive errors due
to imprecise motion when estimating the curvature at the
point on the extremal boundary. Figures 5 a and b (curves
1) show that the sensitivity of the differential curvature to
error in position and rotation computed between points A
and B (2 nearby points at similar depths) is reduced by an
order of magnitude. This is a striking decrease in sensitiv-
ity even though the features do not coincide exactly as the
theory required.

6.2 Discriminating between fixed surface
features and extremal boundaries

The magnitude of R = 1/* can be used to determine whether
a point on an image contour lies on an apparent contour or:
on the projection of a fixed surface feature such as a crease,
shadow or surface marking.

With noisy image measurements or poorly calibrated mo-
tion we must test by error analysis the hypothesis that R is
not equal to zero for an extremal boundary. The effects
of small errors in image measurements, and ego-motion are
easily computed and can be conveniently represented by the
covariance of the estimated curvature.
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Figure 5 . Sensitivity of curvature estimated from absolute mea-
surements and parallaz to errors in motion.

The radius of curvature (R = 1/k') for a point on the extremal
boundary (A) is plotted as a function of errors in the camera
position (a) and orientation (b). Curvature estimation is highly
sensitive to errors in egomotion. Curve [ shows that a perturba-
tion of Imm in position (in a translation of 100mm) produces an
error of 155% in the estimated radius of curvature. A perturba-
tion of Imrad in rotation about an azis defined by the epipolar
plane (in a total rotation of 200mrad) produces an error of 100%.
However, if parallaz based measurements are used the estimation
of eurvature is much more robust to errors in egomotion. Curve
IT shows the difference in radii of curvature between a point on
the extremal boundary (A) and the nearby surface marking (B)
plotted against error in the position (a) and orientation (b). The
sensitivity is reduced by an order of magnitude, to 19% per mm
error and 12% per mrad error respectively.

Using absolute measurements, however, the discrimina-
tion between fixed and extremal features is limited by the un-
certainties in robot motion. For the image sequence of figure
4 it i1s only possible to discriminate between fixed features
and points on extremal boundaries with inverse curvatures
greater than 15mm.

By using relative measurements the discrimination is greatly

improved and is limited by the finite separation between the
points as predicted by (14). For the example of figure 4 this
limit is approximately 3mm.

Suppose no known surface feature has been identified in
advance. Can the robust relative measurements be made to
bootstrap themselves without an independent surface refer-
ence? It is possible by relative (two-point) curvature mea-
surements obtained for a small set of nearby points to de-
termine pairs which are fixed features. Once a fixed feature
is detected it can act as stable reference for estimating the
curvature at extremal boundaries.

In detecting an apparent contour we have also determined
on which side is the surface and so can compute the sign of
Gaussian curvature from the curvature of the image contour.
Figure 6 shows a selected number of contours which have
been automatically tracked and are correctly labelled.

Figure 6. Detecting and labelling extremal boundaries

The magnitude of the radius of curvature (1/k", computed from
3 views) can be used to classify image curves as either the projec-
tion of extremal boundaries or fired features (surface markings,
occluding edges or orientation discontinuities). The sign of s
determines on which side of the image contour lies the surface.
NOTE: a x label indicates a fived feature. A < label indicates
an apparent contour. The surface lies to the right as ene moves
in the direction of the twin arrows. The stgn of Gaussian curva-
ture can then be inferred diectly from the sign of the curvature of
the apparent contour.

6.3 Reconstruction of surfaces

In the vicinity of the extremal boundary we can recover the
2 families of parametric curves. These constitute a conju-
gate grid of surface curves: s-parameter curves (the extremal
boundaries from the different viewpoints) and t-parameter
curves (the intersection of a pencil of epipolar planes defined
by the first 2 viewpoints and the surface). The recovered
strip of surface is shown in figure 7.



Figure 7. Reconstructed surface in the vicinity of the extremal
boundary (A) of the vase shown in figure 4, shown here from a
new viewpoint

7 Conclusion

We have presented a computational theory of 3D shape re-
covery from the deformation of the apparent contour. We
have successfully demonstrated initial implementations of
this theory in discriminating between the projection of rigid
and extremal curves and recovering surface strips in the
vicinity of the extremal boundaries. We have found that
the apparent contour is a robust indicator of solid shape.

We have also shown that in practice given just one surface
reference point, discrimination is easier, and highly robust
relative curvature measurements can be made at points on
apparent contours. We believe this represents a significant
step in the development of practical techniques for robust,
qualitative 3D vision.

We are currently working on the realtime implementa-
tion of these algorithms for use in tasks involving the active
exploration of the 3D geometry of visible surfaces.
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