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Abstract

We present here a discussion on the use of perceptual grouping to improve
structure and egomotion recovery algorithms for monocular cameras. In par-
ticular we look at grouping lines to avoid the need for trinocular algorithms.
We also present a number of methods for grouping lines, including a novel
method that infers planar groups from those demonstrating a linear deforma-
tion.

1 Introduction

Computer vision is usually split into two sections: detection of the image structures
(and their motions), and interpretation of these artifacts or features in three di-
mensions. Between these operations are two-dimensional image techniques, though
they are often implicitly absorbed into the detection stage. These include the
tracking of features using image velocity prediction, and the association of short
line segments into curves. The latter is an example of perceptual (or pre-attentive)
grouping: the association of features by their position, orientation and image in-
tensities.

One form of interpretation is structure-from-motion, which studies how the
unknown camera motion (egomotion) and scene structure can be determined from
a series of image frames. The camera must move to provide sufficient information
for three-dimensional reconstruction, and therefore all these algorithms use at least
the first derivatives of the visual motion (or two views in a discrete formulation).
Some also use higher derivatives (or more views) [4, 10, 17] but these require much
better tracking of features and rely on small perspective effects or gross changes
in camera motion, and are therefore less robust.

This paper discusses various methods of perceptual grouping, some of them
novel, and the ways in which the structural inferences they make can be used in
the structure-from-motion problem.

We shall be making extensive use of a technique called equation counting [31].
Stated simply this compares the number of independent measurements with the
number of unknowns in a set of equations. If the former is greater, then generally a
unique solution can be found, if it is smaller then there is only enough information
to find a locus of possible solutions, and if they are the same then there will be a
finite number of solutions.

Equation counting can be applied to calculate how many features and frames
are necessary to determine the camera egomotion and the scene structure, without
considering any specific algorithm. We shall be considering monocular views from



an intrinsically calibrated camera (so that ray directions from each viewpoint are
known, but not the distances or depths), but this technique is also valid for other
camera models. We shall also be assuming that the scene is rigid. Our unknowns
are therefore 6 variables for each viewpoint and the unknown structure. However,
the choice of origin, orientation and scale for the scene reconstruction are arbitrary
(the speed-scale ambiguity), and therefore do not need to be determined. We shall
see that perceptual grouping will determine some of the structure of the scene
without measurement, decreasing the number of unknowns.

This paper consists of a survey of the available image features and the infor-
mation that they hold (Section 2), a description of the preliminary experiments
undertaken (Section 3) and a review of other related work (Section 4).

2 Useful feature types

There are a number of useful feature types that can be used as representations of
the image structure and motion for the algorithms which determine the camera
egomotion and scene structure. These can be roughly split into primitive features
that are actually detected in the image (and in this we include regions, usually
referred to as an alternative to features), and compound features that are formed
from preprocessing the primitive features in 2D, before 3D inference is applied.

2.1 Primitive feature types

There are three major types of primitive feature.

Patterned regions are being researched as a way of extracting the visual (image)
motion including the affine coefficients (zeroth and first spatial derivatives of the
visual motion). By assuming that small regions are planar in space these six
velocity coefficients can be used to determine the depth (1 variable), the slant
and tilt (2 variables) and the camera motion (3 remaining variables per affine
region). Therefore two planes in two images each provide 6 affine coefficients
which may, in principle, determine the egomotion (5 variables) and their depth,
slant and tilt (6 variables) [21].

2D Fourier transforms of affinely deforming textures also deform affinely (with
the coefficients of the two deformations being very closely related) [32]. As
features in the frequency domain are often easier to locate and disambiguate,
this may be the best way to find the coefficients of the affine deformation.
Multi-scale methods have also been produced for segmentation of scenes [27,
28, 36], and these two methods could be combined. However no system has yet
been demonstrated to segment images accurately and quickly enough for real-
time structure estimation, without using prior knowledge (perhaps from other
primitive feature types, as below). The method is very attractive however,
because it can represent most of the textured parts of the image.

Corners have 2D image structure and can therefore be tracked to give the local
image motion [11]. They are assumed to represent fixed points in space, though
often they will not (for instance, where one edge occludes another). Equation
counting shows that the image velocities of six of these points (2 measurements
each) can determine their depths in space (1 variable each) and the egomotion
(5 variables). Unfortunately, 2D tracking is slow and liable to fail because of
the increased search dimension. Also sparse sets of points do not describe space



well, and are therefore not very useful to navigation algorithms on their own,
though Delaunay triangulation is often used to infer shapes [2]. The egomotion
and independent motion information extracted may facilitate the interpretation
of other parts of the image.

The orientation and rotational velocity of the corner can also be determined
(assuming that the deformation of the image region is low). This may be ob-
tainable directly from the corner detector or may be determined once the corner
has been located, and may be useful in disambiguation [15]. Unfortunately,
the extra coefficient measured is not sufficient to determine any of the extra
structure, even assuming the corner is a surface marking on a plane.

Line segments are regions of high image intensity gradient, and are usually as-
sumed to correspond to line segments in space, though they may be occluding
contours of curved surfaces. They are comparatively easy to detect and track
[9] and, since they naturally connect, they can provide reinforcement for one
another in each image, unlike corners. Line segments also delimit space and the
image much better than corners, though planes are obviously still better. Unfor-
tunately the normal velocity (perpendicular to the line) and rotational velocity
(2 measurements) can only determine the depth and slant of the line in space (2
variables) if the camera motion is already known. But six lines in three frames
can, in principle, determine the camera egomotion and scene structure [17, 33].

Some inferences can be made that associate short line segments into compound
features however, allowing averaging which increases robustness, or even cam-
era motion determination (without the use of second derivative or trinocular
algorithms), as shown below.

2.2 Compound feature types

Compound features are formed by perceptual grouping, which is an attempt to
invert certain projective identities. Evidence for these groupings can be gathered
over a number of frames.

We shall be concentrating on the perceptual grouping of line segments, though
work has been done on recognising patterns of corners [12] and segmenting pat-
terned regions [32]. Each grouping method is described below by its implicit
perceptual assumption, the inverse projective identity being obvious.

Continuity: If line segments form a continuous curve in the images, then they
form one in space. Grouping line segments into curves does not change the
number of equations or unknowns.! Still, continuity of depth and camera motion
implies that the visual motion must change smoothly along the curve, and B-
Spline snakes use this to increase the motion estimate accuracy [6, §].

Linearity: If line segments form a straight line in the images, then they form
one in space. Without its endpoints this long line segment will only offer as
much information as a single short one, but its image position and motion can
be averaged along its length, making the measurements more accurate [9, 33].

Intersection: If three or more close line segments intersect in the images, then
they do in space. (Two line segments will always intersect in the image but are

'However, in a sufficiently structured scene, interpolation can provide epipolar tangencies [23]
which are aligned with the direction of motion. At these points the camera motion but not the
depths are constrained and the egomotion can be recovered in theory [3.



unlikely to in space.) These will define a vertex of unknown depth (1 variable)
with edges of unknown slant (1 variable each) to be determined by the image
velocity of the vertex (2 measurements) and the line segments angular velocities
(1 measurement each). This implies that the velocities of more than five ver-
tices could determine the camera motion (as with point primitives, though in
three images only two three-edge vertices are needed). Because of the undesir-
ability of T-junctions (which represent occlusions, not vertices in general [35]),
it is preferable that the linearity grouping is performed before the intersection
grouping.

Using the proximity of the endpoints of the line segments as a cue allows L-
junctions (with two line segments) to be detected, and decreases the number of
false vertices detected. It also reduces the search space of possible vertices, but
risks losing occluded vertices and introducing spurious ones.

The order of the edges around each vertex in the image should remain constant
for opaque objects. A further perceptual criterion that can be applied is that
the visual motion of the vertex inferred is compatible with the inference from
other methods (eg. planar groups as below).

Parallelism: Parallel lines in space are well known to intersect at a vanishing
point in full perspective images. These vanishing points can be used as intersec-
tions (at infinite depth) as above. However, in many images the weak perspective
approximation [24] is valid, and therefore it is also worthwhile considering the
extra assumption that any parallel lines are parallel in space. This association
allows averaging of the visual motion for accuracy, and also subgrouping into
planar sets.

Planarity: If nearby line segments (or a sufficient number of any features) are
deforming affinely in the image, then they are planar in space. This uses the
affine or weak perspective camera model, which is only valid in small regions of
a full perspective view. Associating the line segments with an affine deformation
determines their 2D motion, and this provides a constraint on the compatibility
of such groupings.

One proposed method of utilising this involves the fitting of B-Spline snakes
to curves in the image (compound features describing associated line segments)
[6]. However, whether closed or open, most of the snakes (which have enough
structure to give the complete affine transformation) will not be planar. Though
this can be detected, 1t is not efficient to have to reject most candidates.

The method proposed here uses four or more nearby line segments, each pro-
viding a 2D constraint in 6D affine deformation Hough space. Obviously this
grouping involves considerably more effort than the other methods mentioned,
but it is for a much greater gain in information — two planar groups in two
frames can determine the egomotion [21]. A simpler method than a search
through Hough space is just to test overdetermined groups. (If parallel lines are
predominant, then planar parallel lines can be tested for first.) Such a system
is described in Section 3.1.

The association of primitive features into compound groups does not only imply
structure and determine image motion by averaging overdetermined information.
It can also imply a new expectation of the behaviour of the group in the future,
allowing improved feature tracking. Another use is to segment the image into
objects [34].



The eventual implementation of these methods should use all forms of com-
pound feature in parallel on streams of images. Initially, however, the concept
can be proven by testing a number of images with perceptual grouping methods
applied separately. It would be preferable to be able to compound all types of
primitive feature, but here we continue to restrict discussion to long straight line
segments.

3 Experiments

A sequence of experiments have been carried out to test the feasibility of the
above grouping methods. They have been kept simple deliberately, using the
minimum number of frames, and the most exhaustive combination method that is
practical. Eventual implementations will use frames sequentially and more efficient
test samples.

3.1 Implementation

Long line segments are selected by hand and matched in four images of the same
object. The endpoints are not given accurately (see Figure 1). The test for colin-
earity is performed first, and the compound features formed replace their compo-
nents for the following tests for other types of grouping (Figure 3(a)). In the tests
where velocities are used (those for planar and parallel planar lines) the motions
from frames 1-2, 2-3 and 3-4 were used.

Colinearity: Colinearity is determined by finding a line of best fit for the end-
points of the lines, and then measuring the sum of the squared errors of the
endpoints from this line.

Parallelism: Parallelism is determined by finding the parallel lines that best fit
the endpoints observed, and then measuring the sum of the squared errors of
the endpoints from these lines. Triplets of lines displaying uniform expansion
are labelled as coplanar.

Intersection: The best intersection is defined as that point which is closest to
the lines (in a least squares sense). The degree of intersection of a set of lines
is then determined by measuring the least sum of the squared distances of the
endpoints from lines passing through this best intersection.

Planarity: In the proposed final implementation, sets of lines (or colinear groups
of lines) are found that correspond to affine transformations. To qualify as a
group, a basis subset of the set of lines must define an affine transformation in a
well conditioned manner. The groups are built up from all the possible minimal
basis sets by adding the line that fits the deformation that they define best,
and then repeating. However, this generates a large number of matches so, for
simplicity, we have tested all sets of five lines for compatibility with an affine
transformation, as defined by an error measure similar to those of the other
grouping methods above, summing the squared errors from the affine model
(see Figure 2).

This still produces a large number of possible groups, but there are a couple of
methods of pruning these. Firstly, any two lines that lie in a plane but are not
colinear will define that plane, and therefore two planar groups that have more



Figure 1: The four frames with 14 line segments selected

than one line in common are coplanar and therefore incompatible. Secondly,
each group defines an affine transformation, and therefore the velocities of each
lines endpoints, parallel to itself as well as perpendicular. The similarity between
these endpoint velocity predictions define a score for each pair of planar groups
that have no more than one line in common. The pair with the highest score
are selected, as are then any other groups that are still compatible.

For each possible grouping, a best estimate of the line segment endpoints is
made given the criterion of the grouping. Then the x? test was used to determine
whether the Mahalanobis distance between the measured endpoints and those of
the estimate was significant or not [16]. The endpoint image measurements (which
combine all the measurements of the lines position) are assumed to have a V2 pel
(pixel width) standard deviation perpendicular to the line segments, and complete
uncertainty parallel to them. The Mahalanobis distance is therefore the sum of
the squared errors (normal to the lines) divided by 2 pel?.

3.2 Results

Colinearity: As one would expect from such a sparse scene, detecting the colin-
ear pair of line segments was not difficult: results were very conclusive (see Fig-

ure 3(a)).



Figure 2: Example of the error estimation in a proposed affine deformation from a
square. The diagram shows the measured lines (solid), the best affinely deformed model
(dashed), and the errors of the measured lines from the model endpoints (bold).

Parallelism: Lines were correctly grouped (see Figure 3(a)), using a standard
deviation of 2v/2 pel to allow for perspective effects. Experiments using images
with stronger perspective effects suggest that it may be necessary to use the
intersection groupings to find vanishing points instead. The four triplets of
coplanar parallel lines were also found correctly.

Intersection: Each triplet of lines was tested for a common intersection in each
frame. Four of the five vertices represented were found. The other (lines 4,8,13
in the new scheme) being defined too inaccurately by its lines. In images with
strong perspective effects, most of the intersections found are vanishing points
(here 17 out of 21 triplets), but there were no other false vertices.

Planarity: All sets of five lines were tested over all three frame pairs and these
generated approximately 60 candidate plane groupings. The compatibility crite-
ria scores (see Section 3.1) produced perfect results, identifying all three planes
(see Figure 3(b-d)), though other groupings had almost as high scores. We hope
to find that when closer frames are used, and velocities better represent the
inter-frame displacements, these results will improve, even before more frames
are integrated.

3.3 Discussion

The results are encouraging. The single frame groupings (colinearity, parallelism
and intersection) perform well in single images, and nearly perfectly over the se-
quence. This alone could give us sufficient extra information to extract the egomo-
tion and structure using a binocular algorithm (if enough intersections are found)
whilst retaining and improving the robustness and accuracy of line tracking.

The planar grouping method is also promising, particularly given that these
results came from only four frames. It is unfortunate however that such a large
number of candidate planes are produced, and the use of constraints during the
search procedure will be vital to keep the computations tractable. Use of the full
vertex velocities should reduce the search space, and help ensure that the initial
planes accepted are correct, reducing the search space further.

4 Relation to previous work

Though perceptual grouping in vision was considered by Gestalt psychologists, and
early vision researchers mentioned it [20], it was not until Witkin and Tenenbaum



Figure 3: (a) The first frame, with the two colinear line segments (4 and 9 in Figure 1)
replaced by their compound feature, showing the groups of parallel lines found. These
were correctly grouped into four triplets, each lying in a plane. (b), (c) and (d) show
affine deformations associated with the three correct planar groups between Frame 1
(shown) and Frame 2. The motion of the lines lying in the plane has been correctly
modelled by the affine deformation, whereas the motion of those out of the plane has
not.

[37] and Lowe [18] that it was considered seriously for computer vision. Sarkar and
Boyer [26] offer a very good review of what work has been done in what areas of
this field, and in what regions there has been little effort, particularly mentioning
motion analysis and the role motion segmentation can play in improving algo-
rithms. Sarkar and Boyer [25] have also offered a structure for the organisation
of perceptual groups within an image, but there has been little or no work on the
integration of a number of frames.

Line segments have also been the focus of a more structural approach, which
we adopt here, not only for detecting patterns, but also for considering their mean-
ing. A number of computational methods have been produced for finding vanishing
points (common intersections) in sets of lines [7, 13, 14, 19], and Sawhney and Han-
son [29] proposed a similar scheme to our affine groups, though they only consider
similarity transformations (no shear) and therefore fronto-parallel planes (which
they consider most interesting). Smith [30] and Adiv [1] also use affine deforma-
tion (of points and patterned regions respectively) to segment scenes. There has



also been some variation in the constraints considered in the interpretation, from
assuming a cuboid world of three vanishing points [22], to only assuming planar,
pairwise-rigid motion [12]. However there has been little that demonstrates the
smooth transition from image motion measurement to 3D understanding that can
be achieved with perceptual grouping.

5 Conclusion

We have shown how inferences in the image domain imply scene structure, con-
centrating on those that associate long line segments, and have demonstrated that
the criteria are sufficient to judge the validity of the groupings in our prelimi-
nary experiments. We have also shown that the extra structure implied by the
groupings can allow new structure-from-motion algorithms which should be more
reliable than current methods.

Future work is to include investigations into methods for combining the infor-
mation from the individual compound features in single frames, and algorithms
for computing egomotion and structure from the features, and will conclude with
a real time implementation using line segment tracking.
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