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Abstract

The frontier of a curved surface is the envelope of
contour generators showing the boundary, at least lo-
cally, of the visible region swept out under viewer mo-
tion. In general, the outlines of curved surfaces (ap-
parent contours) from different viewpoints are gener-
ated by different contour generators on the surface and
hence do not provide a constraint on viewer motion.
We show that frontier points, however, have projec-
tions which correspond to a real point on the surface
and can be used to constrain viewer motion by the
epipolar constraint.

We show how to recover viewer motion from fron-
tier points for both continuous and discrete motion,
calibrated and uncalibrated cameras. We present pre-
liminary results of an iterative scheme to recover the
epipolar line structure from real image sequences using
only the outlines of of curved surfaces. A statistical
evaluation 1s also performed to estimate the stability
of the solution.

1 Introduction

Structure and motion from the images of point fea-
tures has attracted considerable attention and a large
number of algorithms exist to recover both the spatial
configuration of the points and the motion compatible
with the views. Structure and motion from the out-
lines of curved surfaces, on the other hand, has been
thought to be more difficult because of the aperture
problem, i.e. it is not possible to get the correspon-
dence of points between two images of the same curve.

For a smooth arbitrarily curved surface an impor-
tant image feature is the outline or apparent contour.
This i1s the projection of the locus of points on the
surface which separates the visible from the occluded
parts (figure 1). Under perspective projection this lo-
cus — the critical set or contour generator, ¥ — can be
constructed as the set of points on the surface where
rays through the projection centre ¢ are tangent to the
surface. Each viewpoint will generate a different con-
tour generator with the contour generators ‘slipping’
over the visible surface under viewer motion (figure 2).

Under known viewer motion, the deformation of
apparent contours can be used to recover the sur-
face geometry (structure) [4, 10, 16]. This requires a
spatio—temporal parameterization of image-curve mo-
tion. The latter is of course underconstrained since
the mapping between contour generators, and hence
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Figure 1: Perspective projection: the contour genera-
tor X with a typical point r | the image sphere with
centre ¢ and the corresponding apparent contour point
c+p. Thus p is the unit vector joining the centre c to
the apparent contour point. Also n is normal to the
surface at r .

between apparent contours, at successive instants can
not be uniquely determined since the image contours
are projections of different 3D space curves. The
epipolar parametrization is most naturally matched to
the recovery of surface curvature. In this parametriza-
tion (for both the spatio-temporal image and the sur-
face), correspondence between points on successive
snapshots of apparent contours is set up by match-
ing along epipolar lines. Namely the corresponding
ray in the next viewpoint (in an infinitesimal sense),
is chosen so that it lies in the epipolar plane defined
by the viewer’s translational motion and the ray in the
first viewpoint. The parametrization leads to simpli-
fied expressions for the recovery of depth and surface
curvature from image velocities and accelerations and
known viewer motion. (See [4].)

In this paper we address the problem of recovering
the viewer motion from the deformation of apparent
contours. A solution can be found by considering the
cases in which the epipolar parameterization is degen-
erate and so can not be used to recover the local sur-
face geometry. These are:



1. Cusps or singular apparent contours

This occurs when viewing a hyperbolic patch
along an asymptotic direction. The ray is not
only tangent to the surface but also to the contour
generator and the effect 1s to generate a cusp in
the apparent contour. For opaque surfaces, only
one branch of the cusp is visible and the contour
ends abruptly [11]. Although cusps can be de-
tected and tracked under viewer motions Cipolla
and Giblin [6] have shown that they do not pro-
vide any constraints on viewer motion. They can
however be used to recover the surface geometry
by the image motion of the cusp to induce an al-
ternative parameterisation of the surface in the
vicinity of the cusp generator locus on the sur-

face [6].

2. Rigid space curves

The second case of degeneracy is when the con-
tour generator does not slip over the surface with
viewer motion but is fixed. The contour generator
is not an extremal boundary but is fixed to the
surface or is 3D rigid space curve (surface marking
or discontinuity in depth or orientation). Despite
the aperture problem — only the normal compo-
nent of image velocity can be measured from lo-
cal measurements of a curve — Faugeras et al [§]
and Cipolla [3] have shown how in principle that
the spatio—temporal image of a space curve under
viewer can be used to derive a constraint on the
viewer motion from second order spatio—temporal
derivatives. This has not yet been proved to be
of practical use due to the difficulty in accurately
extracting second order spatio—temporal deriva-
tives. These methods can be used to derive a
constraint at all points on a curve. An alternative
1s to use the normal velocities at special, 1solated
points (see below).

3. Frontier points

The remaining case of degeneracy of the epipo-
lar parameterisation occurs for epipolar planes
(spanned by the direction of translation and the
ray) which coincide with tangent planes to the
surface. The points of contact on the surface are
called frontier points — so called because they are
locally on the boundary of the visible region swept
out by the contour generators. The frontier is in
fact the locus of intersections of consecutive con-
tour generators in an infinitesimal sense (figure
2).

The surface can not be reconstructed by the
epipolar parameterisation at these points since
the contour generator is locally stationary. How-
ever instantaneously frontier points correspond to
real, fixed feature points on the surface and hence
can provide a constraint on viewer motion.

The special case of frontier points under ortho-
graphic projection and object rotation about a sin-
gle axis was considered by Rieger [15] and Giblin et
al [9]. Porrill and Pollard [13], although primarily con-
cerned with stereo calibration from 3D space curves,

Figure 2: Degenerate case of epipolar parameterisa-
tion. The epipolar plane is a tangent plane of the
surface at a frontier point. Movement of the view-
point will cause the contour generators to sweep over
the surface. At a frontier point the contour generators
from consecutive viewpoints intersect. For continuous
curvilinear motion the frontier is a curve on the sur-
face — the envelope of contour generators.

noted that the intersection of the two contour gener-
ators from two discrete viewpoints generated a real
point visible in both images which could also be used
to generate an epipolar constraint.

In this paper we show how frontier points can
be detected in image sequences and used to recover
viewer egomotion. We analyse both the continuous
(infinitesimal) and discrete viewer motion cases as well
as considering calibrated and uncalibrated cameras.
We present preliminary experimental results obtained
from real image sequences of curved surfaces from
unknown viewpoints. An iterative technique 1s im-
plemented which recovers the epipolar line structure
(essential matriz) from the image motion of frontier
points. A statistical evaluation is also performed to
estimate the stability of the solution.

2 Frontier Points

Consider a surface r(u, v) parametrized locally by
two parameters u and v, and a camera motion with
projection centre ¢(?) parametrized by time ¢. The
condition on the three variables u,v,t that the point
r(t) lies on the contour generator at time ¢ is simply

(r(u,v) — c(t))n(u,v) =0, (1)

where n(u,v) is the normal to the surface at r(u,v).
The equation (1) can be thought of as defining a fam-
ily of curves in the u, v parameter plane. As such the
envelope of the family of curves, which can be thought
of as the locus of intersections of ‘consecutive’ curves
of the family, is given by differentiating (1) with re-
spect to ¢ (compare [1, p.102]). This gives

c;mn =0, (2)



Figure 3: The frontier. A surface and five contour gen-
erators for nearby (equally spaced) intervals of time.
Each of these corresponds to a definite value of ¢ in the
equation (1). Contour generators for nearby values of
t intersect approximately on the frontier. The frontier
is actually the limit of intersection points as the time
interval tends to 0.

Figure 4: For translational motion in a straight line
the frontier degenerates to a point through which all
the contour generators pass. The motion is in the
tangent plane at the isolated frontier point.

the suffix ¢ denoting differentiation. What this says is
that points r(u,v) obtained by eliminating ¢ between
(1) and (2) are precisely the points of the envelope of
contour generators on the surface. We call this enve-
lope the frontier of the surface relative to the given
motion. Over a short period of time, the part of the
surface covered by the contour generators is on one
side of this frontier. Note that at frontier points the
epipolar parametrization breaks down since the con-
tour generators cannot form part of a coordinate sys-
tem on the surface near the frontier as they do not
cross one another transversally. This is illustrated in
figure 3, where the frontier is a curve with one point
corresponding to each value of ¢.

Suppose we exclude the case where the direction
of translation, c¢;, is parallel to the view vector r —
c. (In this case the camera is heading straight for
the contour generator point.) Then the epipolar plane
is spanned by the vectors ¢; and r — ¢. The second
of these is automatically perpendicular to the surface
normal n (by (1)) so the epipolar plane coincides with
the tangent plane to the surface precisely when the
first vector, ¢;, is also perpendicular to the normal.
This is the condition (2). Thus frontier points can also
be described as epipolar tangency points: the epipolar
plane is the tangent plane.

Note that if the motion is linear then the frontier
degenerates: for ¢; is then a constant vector, and the
condition (2) becomes independent of ¢t. If a point
r(u,v) lies on the frontier at some time ¢ then this
same point continues to satisfy the frontier condition
at subsequent times: the motion lies in the tangent
plane at this isolated frontier point. This is illustrated
in figure 4. The same would hold for any motion which
lay entirely in the tangent plane to a surface at a par-
ticular point of the surface.

3 Motion constraints at frontier points

3.1 Infinitesimal motion

As shown above frontier points are points on a
smooth surface where the tangent plane coincides with
the epipolar plane. From their definition as points
which satisfy ¢;.n = 0, it is obvious that if they can
be detected they provide a simple constraint on the
direction of translation.

Consider the projection of a frontier point onto the
image sphere. Since the surface normal projects to the
normal to the apparent contour and the epipolar plane
projects to a great-circle with poles on the unit sphere,
e = ey /|et| € S?, the following property holds.

Property 1 Frontier points project to points on the
image sphere where an epipolar great-circle (with poles
defined by the direction of translation) is tangent to the
apparent contour.

Thus the projection of a frontier point in the image
provides a great-circle constraint on the direction of
translation, c;. If several such frontier points exist,
the corresponding great circles all intersect at the same
two points +e € S?. It is thus possible to determine
the direction of translation, c;.



How can the projection of the frontier points be
detected when viewer motion is unknown? A solution
follows by considering the image motion.

The normal image velocity for a point on an appar-
ent contour on the image sphere, q, is given by [4]:

" _@xaq-n (3)

where A is the distance from the projection centre to
the contour generator point on the surface and €2 is
the angular rotational velocity. (Note that this is the
same as for a point on a static space curve at depth
A — contour generator points and fixed points differ in
their image accelerations.)

Consider the simpler case of no viewer rotation
about the projection centre. (If the rotation is known
the rotationally component of image motion can be
subtracted since it is independent of scene structure).
From the definition of frontier points and (3) we see
that the normal velocity at the image of a frontier
point 1s zero. The envelope of the apparent contours 1s
then the projection of the frontier. This can be used to
detect frontier points and hence recover the direction
of translation. For a discrete motion the bitangents at
two consecutive apparent contours are epipolar great
circles. The projection of the frontier point has the
same epipolar tangent but a different image position.

What happens when viewer rotation is unknown?
From (3) we see that the image velocity at frontier
points has a special structure with zero translational
component.

Property 2 At the projection of frontier points,
(points where the tangents of the apparent contours
go through the epipole € ) the normal velocity is deter-
maned by the rotational motion only and is indepen-
dent of viewer translation and scene structure.

Q@ n=—(0xq)n (4)

This property can be used in an iterative scheme to
search for frontier points. After hypothesising a direc-
tion of translation as a point e on the image sphere,
(4) evaluated at 4 or more epipolar tangency points
can be used to check for a consistent solution to the
rotational velocity (three unknowns). Equation (4) is
in fact linear in the 3 unknown components of rota-
tional velocity (the coefficients depend on the image
tangent). The least squares solution and the residual
error can in principle be used to iteratively solve for
the position of the epipole, e (see below).

3.2 Discrete motion with calibrated cam-
eras

Discrete motion can be considered as a special case
of linear motion (figure 3). The frontier degenerates
to a frontier point which is the intersection of the
two contour generators from the two viewpoints. It
is the point where the epipolar plane is tangent to the
surface. Its projection in both image spheres will be
where the epipolar great circles are tangent to the ap-
parent contours. The projections of the frontier point

will correspond to the same real point on the surface.
In general, of course, apparent contours of the same
surface in two viewpoints will not be projections of the
same surface contour.

The epipole and a set of epipolar tangency points in
each image determine a pencil of epipolar plane which
are tangent to the surface at frontier points. Both
images will in fact generate the same pencil of epipo-
lar planes and this can be exploited to determine the
direction of translation (2 parameters), T, and the ro-
tation R (3 parameters) between the viewpoints. This
information is usually represented by the essential ma-
triz [12], E = (Tx)R where (T x) is the matrix that
represents cross product with T. For the optimisa-
tion analysis in the next section we introduce a more
convenient representation of the motion between view-
points. We use the position of the epipoles in the left
and right image, e; and e, (4 parameters) and the con-
nection between oriented lines (planes) through the
epipoles, i.e. basically a planar rotation, (1 param-
eter). In all representations 5 independent parame-
ters are needed to calibrate the two viewpoints if the
camera intrinsic parameters are known. Iterative tech-
niques using the coefficients of the essential matrix [13]
estimate 8 parameters.

Consider two images w; and ws of rigid objects.
The relation between image features in the two images
fulfill the following two equivalent properties (figure
5).

Property 3 The features of R * wy and ws have the
same tangents through T.

Property 4 The tangents of wy through e; and the
tangents through of wo through eq are related to each
other with a one-dimensional rotation.

Remark. The two images w; and ws are features on
the viewing sphere. The rotation of such an image is
well defined. The tangent through a point is also well
defined.

The two properties are equivalent. The first one 1s
asymmetric with respect to the images and the formu-
lation is similar to the continuous velocity case. The
second property is symmetric with respect to the two
images and the formulation is similar to the uncali-
brated case.

Notice also that all features can be used, 1.e. points,
rigid planar curves, rigid space curves and the contour
generators of curved surfaces of surfaces. ad
3.3 The discrete motion case with uncal-

ibrated cameras

Again consider two images wy and ws of rigid ob-
jects. In the uncalibrated case we can hope to de-
termine the fundamental matrix F'. The fundamental
matrix I [7] is a rank 2 matrix defined up to scale,
(7 parameters). We can represent this by the epipoles
in the left and right image, e; and e (4 parameters)
and the connection between oriented lines through the
epipoles, i.e. basically an one-dimensional oriented
projective transformation, (3 parameters).

The relation between the two images fulfills the fol-
lowing property.



Property 5 The tangents of wy through e; and the
tangents of ws through es are related to each other with
one-dimensional oriented projective transformation.

We now show to exploit these properties to solve for
the direction of translation and rotation. An iterative
scheme 1s now described.

4 Optimization

In the experiments planar images are taken and B-
splines are fitted to apparent contours. With a cali-
brated camera these image curves determine a family
of rays. We project the B-splines onto the viewing
sphere. Given an image and an epipole, i.e. a point
on the viewing sphere e € S?, it is straightforward
to find the points on the contours where the tangents
go through the epipole. Notice that on the viewing
sphere the tangents are great circles. If the epipole is
the north pole on the earth then tangents through the
epipole are longitudes. After choosing a particular lon-
gitude or zero meridian, (the one through Greenwich),
all tangents can be identified with a planar angle «.
See figure 5.

Given two images and an essential matrix F| the
epipoles e; and es in the left and right images can
be computed. Furthermore the essential matrix re-
lates the lines through e; with lines through es. In
particular a choice of zero meridian in one image de-
termines the choice of zero meridian in the other. The
difference between a tangent angle «; in image 1 and
corresponding tangent angle a} in image 2

aerr,i(E) = Qi — a;’

can thus be calculated. This difference 1s independent
of the choice of zero meridian in the first image.
Ideally aepr i(E) should be zero for all ¢ at the cor-
rect essential matrix F, but due to measurements er-
ror it is not. The errors are roughly uncorrelated and
usually of the same magnitude. As a preliminary ex-
periment we have chosen to estimate £/ with a non-
linear least squares estimator with equal weights, i.e.

we estimate F with the matrix £ that minimizes
F= (aermi(B))*
i

Thus we have assumed that the error variances of
ey i (F) are approximately equal. A proper inves-
tigation of these variances can and will be included in
the future.

We are minimizing over a manifold of essential ma-
trices

M ={F=(Tx)R|T € S*, Re SO(3)}.
It is not possible to choose a good global parametriza-
tion so at each iteration with ©/ = Fj a new parametri-

sation of a neighbourhood of the manifold M around
the point Fj was chosen, i.e. a function Fj

R’ 3w Ex(x) € M,

11 -1 1

Figure 5: Once a base direction is chosen, see the dot-
ted line in the images, an angle « is associated with
every epipolar tangency plane.

We chose a parametrisation = = (z,, %9, 23,24, 75)7,
in which the first two parameters describe changes
in the first epipole ey, the next two parameters de-
scribe changes in the second epipole e; and the last
one roughly describe a rotation # around one epipole.
Using this parametrization we determine a Taylor ex-
pansion of first order of a,.. (Fy(2))

Oerr (B (7)) & g + B

and a Taylor expansion of second order of f(E(z))

F(Ee(@)) = fo+ (0N e+ 27 (8% f)z/2.

Standard optimization techniques were then used to
find the a better choice of essential matrix Ej 1. Since
we are only searching through a five parameter space
and since quadratic convergence is achieved through
the use of Newton-Raphson like techniques a local op-
timum can be found quite fast.

When a local minima has been found standard tech-
niques can also be used to estimate the magnitude of
the image errors and also to estimate the covariance
matrix of the estimated essential matrix.

For the linear problem it can be shown [14], that the
minimal sum of squared errors can be used to estimate
the variance 0%[ae,,] of the individual errors, i.e.

5_2 — fmin

(c—d)

where ¢ is the number of measurements and d is the
number of estimated variables. In the linear case this
is an unbiased estimate, but in the non linear case
this estimate although biased will give us some clues
on the magnitude of the image errors. For small errors
the linearization is adequate and the bias should not
be a problem. A plot over the residuals a.,. can also
be helpful. Sometimes just by looking at such a plot
irregularities and large outliers can be found.

Using the linearization of the parametrization
around the minima

err (E(2)) = ag + B



Figure 6: Left (top) and right images showing appar-
ent contours and frontier points used to estimate the
epipolar line structures. Epipolar tangents are shown
in the left image with their corresponding epipolar
lines in the right image. If the estimate of motion
between the views is correct the set of epipolar tangen-
cies define the frontier points on the curved surfaces
which are visible in both views.

an estimate of the covariance matrix of the estimated
parameters z, can be found,

Viz] =~ o*(BTB)71.

The eigenvectors and eigenvalues of V' gives useful in-
formation about the directions in which the epipoles
are badly estimated.

The only technical part is the choice of parametriza-
tion z — E(z) and the calculation of 9f, 9?f and B.
It turns out that the gradient f and the matrix B
is exactly the same as for point features. The curva-
ture at the tangent point only affects the hessian 6% f.
The calculation are simpler in the planar case. A gen-
eral feeling can be obtained by studying the following
example.

Example. Assume that the epipole is at the origin
e = (0,0) a curve patch p(s) has a tangent through the
origin for s = 0, along the positive x-axis at distance
X, ie p(0) = (X,0) and p’(0) = (1,0). Assume also

that the curve has curvature k. Then the gradient of

the angle o with respect to changes in the epipole is

0
Oa = [ /X ]
and the second derivatives are

0o = [ —1(/))(2 —I/l(/k))((z?’) ]

The general planar case can be obtained by transform-
ing the gradient and the second derivatives by a ro-
tation matrix, and similarly the spherical case is ob-
tained by a slightly more complicated transformation,
but qualitatively the expressions are the same. a

5 Experimental results

A few experiments on real images are presented
in this section. In every experiment an approximate
internal calibration matrix has been used. B-spline
curves are fitted to apparent contours. A couple of
different starting points were chosen for the essential
matrix and then the iterative scheme described above
was used to find a local minima. The residuals at the
minima are used to evaluate the solution. A statis-
tical evaluation was then performed to estimate the
stability of the solution.

In the first experiment, see figure 6, five apparent
contours of corresponding fruits (10 frontier points)
were used to estimate the essential matrix. The so-
lution is ilustrated in figure 6 by using the estimated
essential matrix to predict the epipolar lines for all
tangencies in the left image. The epipolar line struc-
ture is qualitatively excellent. Epipolar tangencies in
the left 1mage remain epipolar tangencies in the right
view indicating the correct detection of frontier points
and displacement and rotation between the two view-
points. A rough estimate of the standard deviation
olaey,,i] for the errors gave

o=0.94 1073

A study of the stability of the estimated essential ma-
trix showed that it was particularly poorly estimated
in two directions. Using the local parametrisation,
the five estimated standard deviations for z around
the minima, i.e. square root of eigenvalues of V[X],
were

A = (0.125,0.033,0.003,0.001,0.0002).

The worst directions (the one corresponding to eigen-
value 0.125) correspond to a combined change in
epipoles toward or away from the group of image
curves. The second direction correspond to a com-
bined change of epipoles sideways with respect to the
group of image curves.

Experiments were also performed on a sequence of
images of a Henry Moore statue, see figure 7. The
statistical evaluation indicate that the solution is very
unstable. This is probably caused by the low number
of tangencies, the small baseline and perhaps a poorly
calibrated camera. These are the same problems that
plague all structure from motion algorithms. This and
the problem of local minima is considered in more de-
tail in [5].



Figure 7: Henry Moore sculpure. 8 epipolar tangen-
cies lead to convergence to a local minima. Due to
the small field of view and because the direction of
translation is outside the image frame the solution is
unstable and very sensitive to image contour localisa-
tion errors.

6 Conclusions and future work

We have shown how to recover viewer motion from
frontier points in both the contininous and discrete
motion cases and proposed an iterative method for
both calibrated and uncalibrated cameras. We have
presented preliminary results of an iterative scheme
to recover the epipolar line structure from real image
sequences of families deforming apparent contours of
curved surfaces.

The apparent contour and its deformation under
viewer motion is known to be a rich source of surface
geometric information which can be used in visual nav-
igation and object manipulation. Here we have shown
how the frontier points of apparent contours can also
be used to recover the viewer motion.
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