Affine Visual Servoing

Geoffrey M.T. Cross and Roberto Cipolla
Department of Engineering, University of Cambridge,
Cambridge, CB2 1PZ.
{92gmtc,cipolla}@eng.cam.ac.uk

Abstract

Small movements of a viewer relative to the surrounding scene induce
deformations in the shape and detail of the projected image. This
paper will consider the problem of using these deformations to provide
visual feedback on the current position of the viewer relative to the
scene.

The implementation calculates the transformations that occur due
to small movements around the current position. If a “target” trans-
formation is specified, the equivalent motion can be interpolated. As a
result, 1t is possible to position the viewer relying solely on visual feed-
back. All the calibrations required are performed within the algorithm,
and the system is assumed to work using an uncalibrated camera.

1 Introduction

Viewing a three dimensional world projected onto a two dimensional plane causes
the image produced by a conventional camera to be both ambiguous and difficult
to interpret automatically. The ability to navigate around obstacles with the
information from a single viewpoint is one that most living beings can develop,
but is difficult to implement into an artificial system. In essence, the problem is
one of learning the structure of a scene and then being able to maneuver within
the scene to a predefined position exploiting visual cues only.

By inducing relative motion between the viewer and the scene, the image field
is augmented to a velocity field, and the details of these deformations have been
shown to encode further information about the structure of the scene which can
be useful for visual navigation. Many representations of these image velocity fields
have been attempted and an economical approach is to decompose the transforma-
tions into the first order differential invariants of the image velocity field [4, 11]—
the curl, divergence and deformation components.

This paper will demonstrate a method of using these invariants to provide
an accurate estimate of the relative distance to a surface by simply tracking a
contour on the surface in the image plane during deliberate movements of the
viewer relative to the scene.

Building on this technique the paper will then demonstrate a robust method of
returning to a predefined target position in the scene. This is achieved by quanti-
fying the transformation that has occurred due to a disturbance from this target
position, and moving in such a way as to reverse this transformation. Such tasks
could be used for many different problems, but notably in all visual navigation
tasks.
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2 Relative Depth from Image Divergence

Contours on a distant surface are naturally seen to deform as the viewer moves
relative to the scene. Furthermore, these deformations have been shown to en-
code both the motion of the viewer and the structure (depth and orientation) of
the surface. If the viewer motion is known, as is the case in most active vision
applications [3, 4] the structure of the surface contour can be extracted.

2.1 Review

For the following analysis the image velocity field is decomposed into its first
differential invariants [11], namely the curl (vorticity), divergence (dilation) and
deformation (pure shear) components.

For a sufficiently small field of view and smooth change in view point, the
differential invariants depend only on the viewer motion (translational velocity,
U, and rotational velocity, £2), the surface depth, Z, and the relation between the
viewing direction (unit vector along the optical axis, Q) and the surface normal. A
change of coordinate system would not have any effect on the results to be derived
below [11, 9, 4].

Defining the vector quantities A and F as

A U-(U-Q)Q "
Nz
F="7 2)

where f is the focal length of the camera and lens, it is possible to obtain a simple
and useful relationship between the ego-motion of the viewer, and the divergence
in the image velocity field [10]:

U-Q

divv =

+F-A . (3)

2.2 Relation between Divergence and Time to Contact

The use of equation (3) in the field of visual servoing (and many other uncalibrated
visual navigation tasks) stems from the special case of motion by the viewer along
the optical axis, towards the surface. In this case, the ray direction, Q, 1s parallel to
the translation direction, U. By ensuring that the length of Q is unity, equation (3)
reduces to the form
divv = w = z (4)
Z te

where . is the time to contact!.

2.3 Estimating the Image Divergence

It has been shown [4] that a robust calculation of the differential invariants can
be made from the area moments of closed contours within the image plane. If a
well-defined closed contour, at the centre of the image, on the surface of interest is

! The time duration before the viewer and the surface collide if the motion is held constant [8].
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tracked as the viewer proceeds along the optical axis (as described above), the con-
tour will appear to undergo an isotropic expansion. By estimating the divergence
from the first moment of area of this closed contour, point and line correspondence
calculations are avoided. This results in a simple contour integration to evaluate
the divergence, which has the effect of averaging any image noise over a large area
of the image and leads to reliable estimates. It can be shown that

da(?) = // V-vdzdy =~ a(t)divv (5)

where a(t) is the area enclosed by the contour.

Substituting equation (3) into (5) and solving the linear differential equation
for the case where the viewer velocity, U, is a constant (and therefore the time to
contact decreases linearly) leads to the required solution (see also figure 2)

tc(O)r .

te(?)

a(t) = a(0) [ (6)

2.4 Implementation
2.4.1 Algorithm

The following algorithm is adopted to provide a robust measurement of the time
to contact to a surface (and hence a measurement of the distance to this surface).

The experiments were performed using a uncalibrated CCD camera held in the
grippers of the manipulating arm of a Scorbot ER-7 robot arm. All processing is
performed in real-time on a single Sun SPARCstation 20.

1. Initialise a closed B-spline snake around a contour on the surface [5]. The
snake is allowed to “lock on” to the contour by deforming it according to the
local intensity gradient. A region of search is specified, and this is reduced
as the snake moves closer to the contour. In practice, 20 to 40 control points
were used depending on the complexity of the contour (gradient discontinu-
ities in the B-spline can be modelled by placing two or more control points
at the same position).

2. The contour can now be tracked as the viewer moves, and a refinement is
to constrain the deformations of the snake to affine transformations [7]—
pure rotations, isotropic expansions, and shears about an arbitrary axis (see
figure 1). A result of this assumption is that the computational load of the
contour tracking is significantly reduced, and the snake is more robust to the
distractions from background scenery and contours.

3. The viewer is deliberately moved towards to surface along the optical axis,
at a constant velocity. The area enclosed by the B-spline snake is recorded
at regular intervals by integrating around the contour. This is efficiently
calculated as a function of the B-spline snake control point positions[4].

4. By linearising equation (6) and fitting the area measurements to a straight
line via a least-squares technique, noise due to quantisation can be reduced.
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a) Rotation b) Isotropic Expansion ¢) Pure Shear

Figure 1: An affine transformation is a linear combination of a) rotations (defined
by one angle in 2D), b) isotropic expansions (defined by one scale factor), and c)
shears (defined by an axis, and a scale factor).

2.4.2 Results

Following the algorithm above, the camera was started at a distance of approx-
imately 50cm from the surface. The time to contact was estimated to 1 part in
100 by taking 20 area measurements during the motion towards the surface (see

figure 3).

Figure 2: This is a sequence through a CCD camera as the viewer is deliberately
moved towards a surface contour. As the sequence progresses, the apparent area
enclosed by the contour is seen to increase and this provides enough information
to extract the time to contact or relative depth of the surface (see also figure3).

3 Visual Servoing

The problem with the approach described above for determining the distance of a
surface from a viewer is that it relies on the accuracy of only one estimate of the
time to contact and no further feedback can be provided beyond this point. The
orientation of the surface has also been ignored, but a similar approach can be con-
sidered with viewer motion perpendicular to the optical axis rather than parallel
to it [3] (the measurements are very susceptible to quantisation and inaccuracies
in the assumed viewer motion).

In this section, we will describe a method of closing the control loop, and
therefore providing feedback information on the quality of the measurements. The
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Figure 3: The first graph depicts the normalised area of the closed contour as
it gets closer to the viewer at a constant rate. By linearising equation (6) and
re-plotting the data, we have demonstrated how accurately the theory supports
the experimental results.

result of this construction is that much more coarse estimates can be made, and
the errors reduced iteratively.

3.1 Image Field Transformations

A camera in free-space has six degrees of freedom, but if we place the constraint
that the optical axis should be fixated towards a fixed position on the surface, the
coordinate system is reduced to four dimensions. For the purposes of this paper,
we shall define the coordinate system as in figure 4.

Figure 4: The camera coordinate system used in section 3.1 for a camera fixated
on a point in the scene specifies three angle rotations, wy, ws and ws, and a depth
scale factor, d.

Any motion of the camera in one of these four independent directions induces
deformations of the image, and therefore an image velocity field can be constructed.
The requirement that the camera remains fixated on a point on the surface ensures



British Machine Vision Conference

that the velocity field does not contain any translational component, and can be
written at a point (x,y) in the image as:

u o U uy x (1)
v )T\ v vy Yy
where (ug,uy, vy, vy) are the first order partial derivatives of the velocity with
respect to the subscript.

This transformation clearly has four degrees of freedom which correspond to
the four degrees of freedom of the viewing camera.

3.2 Calibrating the Transformation Field

Following on from the previous section, the camera can make small movements in
each of its four axes and record the transformations that take place in the image
field. In general, the effect of “rolling” about the ws-axis is a rotation in the image
plane, and a change of relative depth, d, induces an isotropic expansion (section 2).

Each of these perturbations will induce an image plane transformation, and
four such transformations complete the parameterisation. These transformations
can be expressed as 2-D matrices as in equation (7): T,,, T.,, Tw,, and Ty
where the subscript references the axis in which the motion was made. As the
movements of the camera are independent, it is clear that these matrices are non-
singular (moving the camera back inverses the transformation) and associative
(the order of the movements is not important, as the axes are independent) in
multiplication.

If we now assume that the transformation field 1s linear for small perturba-
tions of the camera, it can be inferred that, for example, three movements each
causing a transformation T will result in an overall transformation T?®. Further,
a transformation in the w; direction followed by a transformation in the wy direc-
tion will induce an overall transformation of Ty, Ty,. A general movement of the
camera given by the four dimensional vector, (Aw;, Aws, Aws, Ad), will induce a
transformation, F, where

F(Awr, Aws, Awg, Ad) = (Tu,) ™" (Tu,)*? (Tuy) 2 (Ta) 2 (8)

3.3 Visual Feedback

Within the range of validity of equation (8), it should be possible to identify
the motion in the four dimensional space that would have induced any affine
transformation in the image plane. This is the basic requirement of a visual
servoing system.
If the transformation observed is represented by matrix S, the motion can be
found by solving
S = F(Awl, A(.Jz, A(.J3, Ad) . (9)

Unfortunately there does not appear to be an analytical solution to this problem,
and therefore the solution must be found by an iterative solution, which in itself
requires an “error function” to be defined (see section 3.5).



British Machine Vision Conference

3.4 Computing the Transformations

The results obtained with this algorithm depend on being able to estimate the
linear transformation between two images. This in turn requires correspondences
to be tracked as the images change. Two methods are now described:

e The centroid of a closed contour is invariant as the image deforms according
to the affine constraints. Therefore each closed contour that can be tracked
in the image provides one correspondence between images. It is necessary
to obtain at least two correspondences, and therefore this method requires
two independent closed B-spline snakes to follow two contours on the surface
of interest. In practice, most real surfaces have many suitable contours to
track, which makes this method viable, but computationally expensive.

e A large number of matches can be obtained by considering the control points
of one B-spline snake to provide correspondences between the images. The
Aperture Problem [1] states that this method should not work correctly, as
the snake has no way of extracting the component of tangential velocity to
the curve. However the errors can be minimised by ensuring that the second
differential of the contour position is as large as possible (i.e. that the curve
does not have long smooth regions), and in practice the method has been
shown to work well. Constraining the snake to deform affinely [7] also helps
solve this problem.

Both these methods provide two sets of position vectors (one for the starting
image, and one for the image after the camera has been moved)

!
Yn,1 / Yn1
= : and = : 10
Y ( .2 ) Y ( Yoo ) 1o
where n = 1...m and m is the number of correspondences found. The transfor-
mation S is required which will transform the first image onto the second with as

little error as possible. We wish, therefore, to find the transformation, S, which
will minimise

2
D lvn—Syil - (11)
n=1

3.5 Approximating the Position Error

In section 3.3 we introduced the relationship between the overall observed trans-
formation, S, and the displacements, #, y, z and ©. Equation (11) provides a good
cost function, and by adjusting the variables until a minimum value is identified,
very good estimates of the overall displacements are found. The problem can be
expressed as:

2
Jming 37 [y = (T2 (T,)Y () (Te)vi | (12)
T p=1

The calibration transformations can be found from a least squares fit to equa-
tion (11).
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Techniques for solving this optimisation are available, and both Hooke and
Jeeves (see [2] for a description of this optimisation method) and the standard
non-linear least squares optimisation methods have been shown to be suitable. It
should be noted that equation (8) is only valid for small values of #, y, z and ©
which reduces the search region significantly.

3.6 Implementation
3.6.1 Algorithm

The following algorithm outlines one implementation of this method of visual
servoing:

1. Initialise a closed B-spline snake around a contour feature on the surface of
interest, and start to track the contour as described in section 2.4.1. While
continually tracking the snake, the camera should be moved to the target
position.

2. Record the target image as a set of points on the image defined by the
position of the control points of the B-spline snake. A large number of points
ensures that small errors due to the Aperture Problem will not be significant
later in the experiment, and 20 points were used in our implementation.

3. Perturb the camera position to a new position, ensuring that the contour is
continually tracked and centred in the image field.

4. Perform three? calibrating motions in each of the three dimensions and mea-
sure the resulting transformation of the B-spline snake for each of these
motions.

5. The solution to equation (12) is found using the Hooke and Jeeves search
method. The variables should be constrained to ensure they remain within
the validity of equation (8). This part of the algorithm is the most compu-
tationally expensive, but in practice, the optimisation converged within 1 to
2 seconds.

6. Use the motion vector obtained from the previous step to move the camera
towards the target, and repeat from step 4.

3.6.2 Results

Starting from a position about 50cm from the target position, the camera position
converged very quickly towards to target. It was found that 3 iterations were
necessary to place the camera to within 5mm of the target position (table 1 and

figure 3.6.2).

2 As described in section 2.4.1, the robot arm used for these experiments only had 5 degrees
of freedom, and therefore the camera position has only 3 degrees of freedom if it is fixated on a
point in the scene.
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Iteration Vector to target Distance to target
X y z (in em)
0 25.2 |1 -10.0 | -22.0 34.5
1 173 | -87|-153 24.7
2 10.1 | -3.0 3.0 11.0
3 1.8 0.0 1.0 2.1
4 0.1 0.2 0.8 0.8
5 0.1 -01| -04 0.4
6 0.0 0.0 0.3 0.3

Table 1: An example of the convergence rate for the affine visual servoing algo-
rithm. The camera is started at a distance of 34.5cm from a target position, and
over 3 iterations, it is maneuvered to within lcm of the target. Further iterations
oscillate within lcm of the target.

4 Conclusions

The image divergence can be accurately extracted from a closed contour image
sequence. It provides an excellent algorithm for estimating the time to contact
between a surface and a viewer simply by tracking a contour on the as the cam-
era moves towards the surface. A similar technique can be used to estimate the
orientation of the surface, by moving the camera in a plane perpendicular to the
optical axis. However the deformations are small and are not accurately estimated
by the divergence alone.

Visual feedback provides a more robust method of estimating the camera posi-
tion relative to a “target” position. The technique can be used on an uncalibrated
system, and provides excellent results. Currently the calibration matrices must be
obtained by deliberately moving the camera at the start of each iteration of the
feedback loop. However future work will involve inferring these transformations
from the data gathered during the previous iterations—calibrating moves will only
be made if necessary (due to the lack of data from previous moves).
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